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Fermionic Lithium 6Li

One valance electron: s = 1
2 Nuclear spin: I = 16Li

⟩|3 ≃ -1/2,-1| ⟩

⟩|2 ≃ -1/2, 0| ⟩ = ↓
⟩|1 ≃ | ⟩ = ↑-1/2, 1

⟩|s𝑧𝑧, I𝑧𝑧

High Field Basis



gΣ
1

38v1 =

Singlet Diatomic
Potential

Feshbach Resonance: Unitary Fermi Gas

B

Triplet Diatomic
PotentialuΣ

3kE

Resonant Coupling between Colliding Atom Pair – Bound Molecular State

832.2 G-Resonant Scattering

Unitary Limit
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 4𝜋𝜋 𝑓𝑓0 2 = 𝜆𝜆𝑑𝑑𝑑𝑑2 /𝜋𝜋



Tunable Strong Interactions

527.5 G

Zero Crossing
(Ideal gas) 832.2 G

Broad
Resonance

Narrow
Resonance

543.3 G



Hydrodynamics of the cloud in 3D

• Measure all three cloud radii using two cameras.

Trap with 
3:1 transverse

aspect ratio



Aspect Ratio versus Expansion Time

E/EF=0.52
E/EF=0.75
E/EF=1.22
E/EF=1.69

Ballistic

x

y

Average Shear Viscosity
only Fit Parameter )(

)(
tb
tb

y

x

x

y

y

x

ω
ω

σ
σ

=

527.5 G

832 GEnergy Dependent!



Elliott, Joseph, JET
PRL 112, 040405 (2014)

Shear viscosity
Bulk viscosity 𝜉𝜉𝐵𝐵 = 𝛼𝛼𝐵𝐵ℏ𝑛𝑛

𝜂𝜂𝑆𝑆 = 𝛼𝛼𝑆𝑆ℏ𝑛𝑛

Shear and Bulk Viscosity at Resonance

Bulk viscosity

04.0)0( <Bα



Joseph, Elliott, JET
PRL 115, 020401 (2015)

𝜂𝜂
ℏ𝑛𝑛

Cloud Averaged Shear Viscosity versus Temperature

Transition to Superfluid

*EoS from Ku et al.,Science, 2012
Reduced temperature

at the trap center

𝜃𝜃0 ≡
𝑇𝑇

𝑇𝑇𝐹𝐹(𝑛𝑛0)



Local Viscosity: Full 3D Hydro Fit

𝜂𝜂 = 𝜂𝜂0
𝑚𝑚𝑘𝑘𝐵𝐵𝑇𝑇 3/2

ℏ2
1 + 𝜂𝜂2 𝑛𝑛𝜆𝜆𝑇𝑇3 + ⋯

Bluhm, Hou, Schaefer: Expand shear viscosity in “diluteness”

Fit cloud expansion data with full 3D hydrodynamics

Second order hydrodynamics method extrapolates exactly to 
Boltzmann equation limit: hydro to ballistic region at the cloud edges.

Compare to variational Boltzmann result: 
Bruun, Smith, PRA 75, 043612 (2007)

𝜂𝜂0 = 0.265(0.02) 𝜂𝜂2 = 0.065(0.02)Fit: 𝜂𝜂3 = −5 × 10−4

𝜂𝜂0 =
15

32 𝜋𝜋
= 0.264



Cloud-Averaged Shear Viscosity: Comparison 
of Second Coefficient with 3D Hydrodynamics

𝛼𝛼2 = 0.31(4)

𝛼𝛼0 = 3.55(15)

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓: 𝛼𝛼2 = 2𝜋𝜋 3/2𝜂𝜂0 𝜂𝜂2𝜂𝜂2 = 0.065(0.02) = 0.27(8)

𝜂𝜂
ℏ𝑛𝑛

= 𝛼𝛼0𝜃𝜃0
3/2 + 𝛼𝛼2

𝜂𝜂
ℏ𝑛𝑛

𝜂𝜂0 = 0.265(0.02) 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑔𝑔𝑔𝑔𝑔𝑔: 𝛼𝛼0 =
3𝜋𝜋2

8
𝜂𝜂0 = 2.77



Ratio: Local Shear Viscosity / Entropy Density*

*EoS from Ku et al., Science, 2012

Bluhm − Schaefer
Ku − Zwierlein

KSS Limit

08.0
4
1

≈
π

Quark-Gluon Plasma

𝜂𝜂
𝑠𝑠

= 0.52 @ 𝜃𝜃 = 0.27



Hydrodynamics in Boxes and Channels

𝑁𝑁1 0 = 𝑁𝑁10 𝑁𝑁2 0 = 0

Lorin

Dynamically controlled repulsive box potentials
created by two micro-mirror arrays

Energy and particle flow
Xin

Stetson



Hydrodynamics in Boxes and Channels

80 𝜇𝜇m

60 𝜇𝜇m

21 𝜇𝜇m

n1 v1

60 𝜇𝜇m

n  v Exit area 𝐴𝐴 = 60 × 21 𝜇𝜇m2

Reservoir volume
𝑉𝑉1 = 60 × 60 × 80 𝜇𝜇m3

Ṅ = n v A = n1 A
n

n1
v

Exiting number per second

Assume adiabatic hydrodynamics:
Kinetic energy per unit mass 
plus Enthalpy per unit mass 
is conserved along streamlines.

v2

2
+

h
mn

=
v12

2
+

h1
mn1

h = p + ε = 5
3
ε = n 𝜖𝜖F n fE(𝜃𝜃)

Enthalpy density
for Unitary Fermi gas fE 0 = 𝜉𝜉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵= 0.376

From local equation of state
Ku et al.,Science, 2012

Find number 𝑁𝑁1(t) in reservoir 
and compare to measurements

Expansion into a vacuum



Hydrodynamic flow through a channel

h
h1

=
n

n1

5/3

fE 𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
For adiabatic hydrodynamics v =

2h1
𝑚𝑚n1

1 −
n

n1

2/3

v1 ≪ vFor 

Ṅ = A
2n1h1
𝑚𝑚

n
n1

2

1 −
n

n1

2/3
Flow rate

Maximum flow rate 

for  
n
n1

= 3
4

3/2Ṅmax = A
n1h1
𝑚𝑚

3
4

2 2
3

n1h1 = n10h10
n1
n10

8/3

= n10h10
N1

N10

8/3

= n102
m vF102

2
fE(𝜃𝜃10)

N1

N10

8/3
Fixed reservoir
volume 𝑉𝑉1

𝑑𝑑
𝑑𝑑𝑑𝑑

N1

N10
= − Γ

N1

N10

4/3

Γ =
3

16
A v𝐹𝐹𝐹𝐹

V1
3𝑓𝑓E(𝜃𝜃10)

N1(𝑡𝑡)
N1(0) =

1

1 + Γ
3 𝑡𝑡

3
Number 𝑁𝑁1
in reservoir
versus time



Hydrodynamic flow through a channel

Γ =
3

16
A v𝐹𝐹𝐹𝐹

V1
3𝑓𝑓E(𝜃𝜃10)

N1(𝑡𝑡)
N1(0) =

1

1 + Γ
3 𝑡𝑡

3

For one spin state: 𝑁𝑁10 = 18,000

𝜖𝜖𝐹𝐹 = 0.1𝜇𝜇K ; v𝐹𝐹𝐹𝐹 =1.63 cm/s

3
16

A v𝐹𝐹𝐹𝐹
V1

=
1

74.8 ms

n10 = 𝑁𝑁10
𝑉𝑉1

= 6.2 × 1010atoms/cm3

𝑓𝑓E 0.2 = 0.6



Applications of Dynamically-Controlled 
Boxes and Channels

𝑁𝑁1 𝑇𝑇1 𝑁𝑁2 𝑇𝑇2

𝑃𝑃1 𝑉𝑉1 𝑃𝑃2 𝑉𝑉2

x

z

Local transport properties

Flowing systems
Density profile n(x,z)
Stream velocity v(x,z)

Thermal conductivity

Two temperature systems

Energy flow without particle flow: Balanced pressures

Perturbed initially static systems
Sound waves
Propagation of density perturbations
Shock waves

Density profiles in linear potential
Thermodynamic photos of n(𝜇𝜇,T)



Optical Control of Interactions 

Controlling 
interactions using 

magnetic fields

Controlling 
interactions 

using 
optical fields

Tunable interactions in ultracold gases

Lacks high-resolution 
in time, space and momentum

Atom loss and 
heating due to 
spontaneous 

scattering
Two-field optical method – loss suppression 
through destructive quantum interference



Better neutron matter models by optical control

Optical control of the scattering phase shift 𝛿𝛿0(𝑘𝑘)

𝑘𝑘 cot 𝛿𝛿0 𝑘𝑘 = −
1
𝑎𝑎

+
𝑘𝑘2

2
𝑟𝑟𝑒𝑒

Independent control of the
zero energy scattering length 𝑎𝑎
and effective range 𝑟𝑟𝑒𝑒

𝑝𝑝 =
2𝑘𝑘𝐵𝐵𝑇𝑇
𝜆𝜆𝑇𝑇3

(𝑧𝑧 − 2−
5
2 𝑧𝑧2 + 2 𝑏𝑏2 𝑧𝑧2)Pressure: Fugacity expansion

𝑏𝑏2 = �
𝑏𝑏

𝑒𝑒
𝐸𝐸𝑏𝑏
𝑘𝑘𝐵𝐵𝑇𝑇 + �

0

∞𝑑𝑑𝑑𝑑
𝜋𝜋
𝜕𝜕𝛿𝛿0 𝑘𝑘
𝜕𝜕𝜕𝜕

𝑒𝑒−
ℏ2𝑘𝑘2
𝑚𝑚𝑘𝑘𝐵𝐵𝑇𝑇 Optical control of the

second virial coefficient b2

Neutron Star Crust
𝑎𝑎 = - 18.5 fm
𝑟𝑟𝑒𝑒 = + 2.7 fm
𝑘𝑘𝐹𝐹 ≃ 1 fm−1

Schwenck, Pethick, 
PRL 95, 160401 (2005)



Two-Field Optical Control of Magnetic Feshbach Resonances

uΣ
1

68ve =

gΣ
1

38v1 =

37v2 =

Singlet Diatomic
Potential 1v

2v

B

Triplet Diatomic
Potential

uΣ
3kE

| ⟩𝒈𝒈𝟐𝟐
| ⟩𝒈𝒈𝟏𝟏

| ⟩𝒆𝒆

Path 1: | ⟩𝑔𝑔1 → | ⟩𝑒𝑒
Path 2: | ⟩𝑔𝑔1 → | ⟩𝑒𝑒 → | ⟩𝑔𝑔2 → | ⟩𝑒𝑒

Quantum interference – Simple picture

Jagannathan, Arunkumar, Joseph, JET, Phys. Rev. Lett. 116, 075301 (2016) 



Optical System

generates 𝜈𝜈1 beam 

generates 
𝜈𝜈2 beam 

Design Goals 

• Large frequency offset between 𝜈𝜈1 and 𝜈𝜈2 beams. 
• Wide frequency tunability of 𝜈𝜈1 beam.
• Good frequency stability between 𝜈𝜈1 and 𝜈𝜈2 beams.  

Laser 2

Laser 1

Tuning range 
~ 1 GHz 



Two-Field Optical Control Model

⟩|e

⟩|𝐸𝐸 ⟩|Ek′

⟩|g2

𝜔𝜔1
𝜔𝜔2

𝜔𝜔1

“Continuum-Dressed” Basis

Feshbach Res. 
ContinuumDressed 

Bound State

⟩|e

⟩|g1
⟩|T, k′

⟩|g2

𝜔𝜔1 𝜔𝜔2

VHF

Bare Basis

Singlet 
Bound States

Triplet 
Continuum

Determine 𝑘𝑘 cot 𝛿𝛿0 𝜔𝜔1,Ω1,𝜔𝜔2,Ω2,𝑘𝑘

Physics: 1) Two-field optical dressed states
2) Anomalous optical shifts arising from the k-continuum 



Optical Control of the 1-3 Broad Resonance

Scattering Length vs B-Field

∆𝐵𝐵13 = 122 𝐺𝐺𝐵𝐵13∞ = 690 𝐺𝐺 Ω1 = 1 𝛾𝛾𝑒𝑒 Ω2 = 0.2 𝛾𝛾𝑒𝑒 𝛾𝛾𝑒𝑒 = 2𝜋𝜋 × 11.8 MHz

𝐵𝐵 = 695 𝐺𝐺

Scattering Length vs Two-photon detuning

∆1 = − 6 MHz



Controlling the Effective Range

2-Body Loss Rate Constant @ 2𝜇𝜇KEffective Range vs Two-photon detuning

𝐵𝐵 = 695 𝐺𝐺
∆1 = − 6 MHz



Single-field 
low loss region

Single-field tuning 
of interactions –
Small changes Two-field tuning of interactions –

Large changes  

Two-field low loss 
region

Advantages of Two-Field Optical Method

Single Optical Field
Two Optical Field



𝐾𝐾2 vs 𝑎𝑎 for Single and Two-Field Methods
Single-field 𝐾𝐾2 vs 𝑎𝑎 Two-field 𝐾𝐾2 vs 𝑎𝑎

𝐴𝐴′ → 𝐵𝐵′: ∆𝑒𝑒 = +100 MHz to + 7.5 MHz
𝐴𝐴 → 𝐵𝐵: ∆𝑒𝑒 = −100 MHz to − 7.5 MHz

or

∆𝑎𝑎 = 5 𝑎𝑎𝑏𝑏𝑏𝑏

B: 𝐾𝐾2 = 27 × 10−11cm3/𝑠𝑠

𝐶𝐶 → 𝐷𝐷: ∆𝑒𝑒 = −4.6 MHz to 4.6 MHz

C, D: 𝐾𝐾2 = 3.6 × 10−11cm3/𝑠𝑠

𝐾𝐾2 is less by a factor of 7 and requires a much 
smaller frequency change for the same ∆𝑎𝑎



Experiment 1 : Optical Control of Magnetic   
Feshbach Resonances



B = 554 G

B = 300 G

| ⟩𝑒𝑒

| ⟩𝑇𝑇, 𝑘𝑘

| ⟩𝑔𝑔1𝑛𝑛

| ⟩𝑔𝑔2

𝜈𝜈1𝜈𝜈2

B = 543.2 G

Loss Suppression at the 1-2 Broad Peak
– Two Optical Fields

0.5 𝑚𝑚𝑚𝑚 → 0.5 𝑠𝑠𝑠𝑠𝑠𝑠



Experiment 2 : Optical Control of Two-Body  
Scattering Length 𝑎𝑎12

Narrow 12 Resonance in 6Li



Mean-Field Shift: RF Spectroscopy 

• 𝑎𝑎13 = −270 𝑎𝑎0 - ⟩|1 - ⟩|3 Feshbach resonance at 690 G

• 𝑎𝑎12 ≅ 𝑎𝑎𝑏𝑏𝑏𝑏 = 62 𝑎𝑎0 - ⟩|1 - ⟩|2 Feshbach resonance near 543 G

Shift ∝ Density of atoms

Near B ~ 543 G
∆𝜈𝜈 =

2ℎ
𝑚𝑚 𝑛𝑛3𝐷𝐷(𝒓𝒓) 𝑎𝑎13 − 𝑎𝑎12(𝐵𝐵)



10 mG

100 mG pp

10 mG

Magnetic Field Stabilization

FWHM = 10 𝐻𝐻𝐻𝐻

3mG 
(at B = 530 G)



Magnetically Tuning Interactions:
Narrow Feshbach Resonance

RF pulse - ⟩|3 → ⟩|2 for t = 1.2 ms



Scattering Length – Narrow Feshbach Resonance

∆𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
2ℎ
𝑚𝑚 𝑛𝑛3𝐷𝐷 𝑎𝑎13 − 𝑎𝑎12(𝐵𝐵)

𝑛𝑛3𝐷𝐷 = 3.6 × 1011 𝑐𝑐𝑐𝑐−3𝑎𝑎13 = −270 𝑎𝑎0 𝑎𝑎12 ≅ 𝑎𝑎𝑏𝑏𝑏𝑏 = 62 𝑎𝑎0

Phys. Rev. Lett. 108, 045304 (2012) 

Mean Field
Shift

Scattering
Length



Controlling Interactions Using Two Optical Fields

| ⟩𝒆𝒆

| ⟩𝒈𝒈𝟐𝟐

| ⟩𝑻𝑻,𝒌𝒌 B

𝛎𝛎𝟏𝟏

| ⟩𝒈𝒈𝟏𝟏

| ⟩𝒈𝒈𝟏𝟏′

| ⟩𝒆𝒆

| ⟩𝒈𝒈𝟐𝟐

𝛎𝛎𝟐𝟐

| ⟩𝑻𝑻,𝒌𝒌 B

𝛎𝛎𝟏𝟏

| ⟩𝒈𝒈𝟏𝟏
| ⟩𝒈𝒈𝟏𝟏′

When 𝛿𝛿 = ∆2 − ∆1 = 0,
| ⟩𝒈𝒈𝟏𝟏′ becomes | ⟩𝒈𝒈𝟏𝟏

| ⟩𝒈𝒈𝟏𝟏 tuning – with only 𝛎𝛎𝟏𝟏 beam | ⟩𝒈𝒈𝟏𝟏 tuning – with both 𝛎𝛎𝟏𝟏 and 𝛎𝛎𝟐𝟐 beams

∆1



Optically Controlled Scattering length

∆𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
2ℎ
𝑚𝑚 𝑛𝑛3𝐷𝐷 𝑎𝑎13 − 𝑎𝑎12

𝑜𝑜𝑜𝑜𝑜𝑜(𝐵𝐵, 𝛿𝛿,Ω2(𝑧𝑧))

𝐵𝐵 = 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 + 10 𝑚𝑚𝑚𝑚

𝑛𝑛3𝐷𝐷 = 1.5 × 1011 𝑐𝑐𝑐𝑐−3

𝑧𝑧 = 0

Scattering
Length

Mean Field 
Shift



Comparison of Magnetic and Optical Tuning

Optical Magnetic

𝑧𝑧 = 0

How did we achieve same level of tunability in scattering length?  

• Initial magnetic field – close to 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟
• At 𝛿𝛿 = 0   - minimum loss 

- | ⟩𝒈𝒈𝟏𝟏′ is tuned to unshifted position of | ⟩𝒈𝒈𝟏𝟏 and becomes 
degenerate with | ⟩𝑻𝑻,𝒌𝒌



Experiment 3 : Spatial Control of Interactions in 
Ultracold Gases



Realizing an Interaction Sandwich

• Prepare ⟩|1 − ⟩|3 mixture at 
𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 + 10 𝑚𝑚𝑚𝑚

• Apply optical beams 𝛎𝛎𝟏𝟏 and 𝛎𝛎𝟐𝟐

• Apply RF pulse ⟩|3 → ⟩|2 for
1.2 ms and image atoms in ⟩|2

• Weak interactions – Maximum 
atom transfer 

a 1
2

(a
bg

)

z (μm) 

Weak Interaction

Resonant Interaction

Weak Interaction



Manipulating Interaction Profiles on a Atomic Cloud

2D Spatial Profile of Atom Cloud 1D Profile Scattering Length



Experiment 4 : Two-Field Loss Spectra



Loss vs Two-Photon Detuning

B-field below Resonance: Theory vs Experiment

Green: k = 0 
Red: k-integrated 



Loss vs Two-Photon Detuning

B-field above Resonance: Theory vs Experiment



Anomalous “Anomalous” Shift!

Shapes agree, Spectral Shift of Experiment wrt Theory 

Sp
ec

tr
al

 S
hi

ft 
𝝂𝝂 𝟐𝟐

(M
H

z)



Applications: Optical Control of Interactions

Few body physics

Two-body interactions

S-wave, P-wave…

Dynamical control of the effective range

Spatial control

Momentum - selective control

3 - state mixtures

Dynamical control of stability

Symmetrized interaction strength



Thank You!
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