

Modeling nuclear matter with ultracold atomic gases

John E. Thomas NC State University ECT June 18-22, 2018

Thank You to our Sponsors!

Paul Baker

Alex Cronin

Tatjana Curcic

Mick Pechan

Motivation and Outline

Outline

Hydrodynamics in a Unitary Fermi Gas

Local Shear Viscosity
Boxes and Channels

Optical Control of Interactions
 Scattering Length and Effective Range
 Spatial Profile

Conclusions

Fermionic Lithium ⁶Li

6Li

One valance electron: $s = \frac{1}{2}$

Nuclear spin: I = 1

High Field Basis

$$|s_z, I_z\rangle$$

$$|3\rangle \simeq |-1/2,-1\rangle$$

$$|2\rangle \simeq |-1/2, 0\rangle = \downarrow$$

$$|1\rangle \simeq |-1/2, 1\rangle = \uparrow$$

Feshbach Resonance: Unitary Fermi Gas

Resonant Coupling between Colliding Atom Pair – Bound Molecular State

Tunable Strong Interactions

Hydrodynamics of the cloud in 3D

• Measure all three cloud radii using two cameras.

Aspect Ratio versus Expansion Time

Shear and Bulk Viscosity at Resonance

Cloud Averaged Shear Viscosity versus Temperature

 θ_0

$$\theta_0 \equiv \frac{T}{T_F(n_0)}$$

*EoS from Ku et al., Science, 2012

Reduced temperature at the trap center

Local Viscosity: Full 3D Hydro Fit

Bluhm, Hou, Schaefer: Expand shear viscosity in "diluteness"

$$\eta = \frac{\eta_0}{\hbar^2} \frac{(mk_B T)^{3/2}}{\hbar^2} [1 + \frac{\eta_2}{\hbar^2} (n\lambda_T^3) + \cdots]$$

Fit cloud expansion data with full 3D hydrodynamics

Second order hydrodynamics method extrapolates exactly to Boltzmann equation limit: hydro to ballistic region at the cloud edges.

Fit:
$$\eta_0 = 0.265(0.02)$$
 $\eta_2 = 0.065(0.02)$ $\eta_3 = -5 \times 10^{-4}$

Compare to variational Boltzmann result: Bruun, Smith, PRA 75, 043612 (2007) $\eta_0 = \frac{15}{32\sqrt{\pi}} = 0.264$

Cloud-Averaged Shear Viscosity: Comparison of Second Coefficient with 3D Hydrodynamics

Ratio: Local Shear Viscosity / Entropy Density*

*EoS from Ku et al., Science, 2012

Hydrodynamics in Boxes and Channels

Dynamically controlled repulsive box potentials created by two micro-mirror arrays

Energy and particle flow

Hydrodynamics in Boxes and Channels

Expansion into a vacuum

Exit area $A = 60 \times 21 \,\mu\text{m}^2$

Reservoir volume $V_1 = 60 \times 60 \times 80 \ \mu \text{m}^3$

Find number $N_1(t)$ in reservoir and compare to measurements

Exiting number per second

$$\dot{N} = n v A = n_1 A \frac{n}{n_1} v$$

Assume adiabatic hydrodynamics: Kinetic energy per unit mass plus Enthalpy per unit mass is conserved along streamlines.

Enthalpy density for Unitary Fermi gas

$$\frac{v^2}{2} + \frac{h}{mn} = \frac{v_1^2}{2} + \frac{h_1}{mn_1}$$

$$h = p + \varepsilon = \frac{5}{3}\varepsilon = n \epsilon_F(n) f_E(\theta)$$

From local equation of state

Ku et al., Science, 2012

$$f_{\rm E}(0) = \xi_{Bertsch} = 0.376$$

Hydrodynamic flow through a channel

For adiabatic hydrodynamics $f_E(\theta) = constant$

$$\frac{h}{h_1} = \left(\frac{n}{n_1}\right)^{5/3}$$

$$\frac{h}{h_1} = \left(\frac{n}{n_1}\right)^{5/3} \qquad \text{For } v_1 \ll v \qquad v = \sqrt{\frac{2h_1}{mn_1}} \sqrt{1 - \left(\frac{n}{n_1}\right)^{2/3}}$$

Flow rate
$$\dot{N}_{max}$$
 A $= \begin{bmatrix} 2n_1h_1h_1 \\ h_1h_1 \\ m m \end{bmatrix} \begin{bmatrix} 12 \\ 13 \end{bmatrix} \begin{bmatrix} n_1 \\ n_1 \end{bmatrix}^{2/3}$ Maximum flow rate for $\frac{n}{n_1} = \left(\frac{3}{4}\right)^{3/2}$

for
$$\frac{n}{n_1} = \left(\frac{3}{4}\right)^{3/2}$$

Fixed reservoir volume
$$V_1$$

$$\frac{d}{dt} \left(\frac{N_1}{N_{10}} \right) = -\Gamma \left(\frac{N_1}{N_{10}} \right)^{4/3} \qquad \Gamma = \frac{3}{16} \frac{A \, v_{F10}}{V_1} \sqrt{3 f_E(\theta_{10})}$$

$$\Gamma = \frac{3}{16} \frac{\text{A v}_{F10}}{\text{V}_1} \sqrt{3f_{\text{E}}(\theta_{10})}$$

$$\frac{N_1(t)}{N_1(0)} = \frac{1}{\left(1 + \frac{\Gamma}{3}t\right)^3}$$

Number N₁ in reservoir versus time

Hydrodynamic flow through a channel

$$\Gamma = \frac{3}{16} \frac{A \, V_{F10}}{V_1} \sqrt{3 f_E(\theta_{10})}$$

For one spin state: N_{10} = 18,000

$$n_{10} = \frac{N_{10}}{V_1} = 6.2 \times 10^{10} \text{ atoms/cm}$$

$$\epsilon_F=0.1\mu\mathrm{K}$$
 ; v_{F10} =1.63 cm/s

$$\frac{3}{16} \frac{\text{A v}_{F10}}{\text{V}_1} = \frac{1}{74.8 \text{ ms}}$$

$$\frac{N_1(t)}{N_1(0)} = \frac{1}{\left(1 + \frac{\Gamma}{3}t\right)^3}$$

$$f_{\rm E}(0.2) = 0.6$$

Applications of Dynamically-Controlled Boxes and Channels

Flowing systems

Density profile n(x,z)

Stream velocity v(x,z)

Local transport properties

Perturbed initially static systems

Sound waves

Propagation of density perturbations

Shock waves

Two temperature systems

Thermal conductivity

Energy flow without particle flow: Balanced pressures

Density profiles in linear potential

Thermodynamic photos of $n(\mu,T)$

Optical Control of Interactions

Tunable interactions in ultracold gases

Better neutron matter models by optical control

Optical control of the scattering phase shift $\delta_0(k)$

$$k \cot \delta_0(k) = -\frac{1}{a} + \frac{k^2}{2} r_e$$

Independent control of the zero energy scattering length a and effective range r_e

Neutron Star Crust a = -18.5 fm $r_e = +2.7 \text{ fm}$ $k_F \simeq 1 \text{ fm}^{-1}$ Schwenck, Pethick, PRL **95**, 160401 (2005)

Pressure: Fugacity expansion

$$p = \frac{2k_BT}{\lambda_T^3} (z - 2^{-\frac{5}{2}}z^2 + \sqrt{2} b_2 z^2)$$

$$b_{2} = \sum_{k} e^{\frac{|E_{b}|}{k_{B}T}} + \int_{0}^{\infty} \frac{dk}{\pi} \frac{\partial \delta_{0}(k)}{\partial k} e^{-\frac{\hbar^{2}k^{2}}{mk_{B}T}}$$

Optical control of the second virial coefficient b₂

Two-Field Optical Control of Magnetic Feshbach Resonances

Jagannathan, Arunkumar, Joseph, JET, Phys. Rev. Lett. 116, 075301 (2016)

Optical System

- generates v_1 beam

- Large frequency offset between v_1 and v_2 beams. \checkmark
- Wide frequency tunability of v_1 beam. \checkmark
- Good frequency stability between u_1 and u_2 beams. \checkmark

Two-Field Optical Control Model

Bare Basis

"Continuum-Dressed" Basis

<u>Determine</u> $k \cot \delta_0(\omega_1, \Omega_1, \omega_2, \Omega_2, k)$

Physics: 1) Two-field optical dressed states

2) Anomalous optical shifts arising from the k-continuum

Optical Control of the 1-3 Broad Resonance

$$B_{13\infty} = 690 G$$

$$B_{13\infty} = 690 G$$
 $\Delta B_{13} = 122 G$

Scattering Length vs B-Field

$$\Omega_1 = 1 \gamma_e$$
 $\Omega_2 = 0.2 \gamma_e$ $\gamma_e = 2\pi \times 11.8 \, \text{MHz}$

Scattering Length vs Two-photon detuning

Controlling the Effective Range

Advantages of Two-Field Optical Method

K₂ vs a for Single and Two-Field Methods

Single-field K₂ vs a

$$\Delta a = 5 a_{bg}$$

$$A \rightarrow B$$
: $\Delta_e = -100$ MHz to -7.5 MHz
or $A' \rightarrow B'$: $\Delta_e = +100$ MHz to $+7.5$ MHz
B: $K_2 = 27 \times 10^{-11}$ cm³/s

Two-field K₂ vs a

$$C \rightarrow D$$
: $\Delta_e = -4.6 \text{ MHz to } 4.6 \text{ MHz}$

C, D:
$$K_2 = 3.6 \times 10^{-11} \text{cm}^3/\text{s}$$

 K_2 is less by a factor of 7 and requires a much smaller frequency change for the same Δa

Experiment 1 : Optical Control of Magnetic Feshbach Resonances

Loss Suppression at the 1-2 Broad Peak — Two Optical Fields

Experiment 2 : Optical Control of Two-Body Scattering Length a_{12}

Narrow 12 Resonance in ⁶Li

Mean-Field Shift: RF Spectroscopy

Shift ∝ Density of atoms

$$\Delta v = \frac{2h}{m} n_{3D}(\mathbf{r}) [a_{13} - \overline{a_{12}}(B)]$$

Near B ∼ 543 G

- $a_{13} = -270 a_0$ $|1\rangle$ $|3\rangle$ Feshbach resonance at 690 G
- $a_{12}\cong a_{bg}=62~a_0$ $|1\rangle$ $|2\rangle$ Feshbach resonance near 543 G

Magnetic Field Stabilization

Magnetically Tuning Interactions: Narrow Feshbach Resonance

Scattering Length – Narrow Feshbach Resonance

$$\Delta v_{meas} = \frac{2h}{m} \ \overline{n_{3D}} \ [a_{13} - \overline{a_{12}}(B)]$$

$$a_{13} = -270 \ a_0$$
 $a_{12} \cong a_{bg} = 62 \ a_0$ $\overline{n_{3D}} = 3.6 \times 10^{11} \ cm^{-3}$

Controlling Interactions Using Two Optical Fields

 $|g_1\rangle$ tuning – with only v_1 beam

 $|g_1\rangle$ tuning – with both v_1 and v_2 beams

When
$$\delta = \Delta_2 - \Delta_1 = 0$$
, $|g_1'\rangle$ becomes $|g_1\rangle$

Optically Controlled Scattering length

Comparison of Magnetic and Optical Tuning

How did we achieve same level of tunability in scattering length?

- Initial magnetic field close to B_{res}
- At $\delta = 0$ minimum loss
 - $|g_1'\rangle$ is tuned to unshifted position of $|g_1\rangle$ and becomes degenerate with $|T,k\rangle$

Experiment 3: Spatial Control of Interactions in Ultracold Gases

Realizing an Interaction Sandwich

- Prepare $|1\rangle |3\rangle$ mixture at $B_{res} + 10 \ mG$
- Apply optical beams v₁ and v₂
- Apply RF pulse |3⟩ → |2⟩ for
 1.2 ms and image atoms in |2⟩
- Weak interactions Maximum atom transfer

Manipulating Interaction Profiles on a Atomic Cloud

Experiment 4: Two-Field Loss Spectra

Loss vs Two-Photon Detuning

B-field below Resonance: Theory vs Experiment

Green: k = 0

Red: k-integrated

Loss vs Two-Photon Detuning

B-field above Resonance: Theory vs Experiment

Anomalous "Anomalous" Shift!

Shapes agree, Spectral Shift of Experiment wrt Theory

Applications: Optical Control of Interactions

Two-body interactions

S-wave, P-wave...

Dynamical control of the effective range

Few body physics

Spatial control

Momentum - selective control

3 - state mixtures

Dynamical control of stability

Symmetrized interaction strength

Thank You!

