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Conclusions in pictures: 
color-orbit and color-flip fields
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Conclusions in pictures: 
color-orbit and color-flip fields
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Ultracold fermions with three internal states can exhibit very unusual color 
superfluidity in the presence of color-orbit and color-flip fields, where SU(3) 
symmetry is explicitly broken.

The phase diagram of color-flip versus interaction parameter for fixed color-
orbit coupling exhibits several topological phases associated with the nodal 
structure of the quasiparticle excitation spectrum. The phase diagram exhibits 
a pentacritical point where five nodal superfluid phases merge.

Even for interactions  that occur only in the color s-wave channel, the order 
parameter for superfluidity exhibits singlet, triplet and quintuplet 
components due to the presence of color-orbit and color-flip fields.

These topological phases can be probed through measurements of 
spectroscopic properties such as  excitation spectra, momentum distributions 
and density of states.

.Conclusions in words
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Motivation: color superfluidity and 
ultracold fermions 

• Why studying ultracold fermions is important?

• Because it allows for the exploration of several 
fundamental properties of matter, such as 
superfluidity, which is encountered in atomic, 
condensed matter, nuclear and astrophysics.
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Possible phase diagram for 
Quantum Chromodynamics (QCD)
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SdM – Physics Today, October (2008)



QCD and ultracold fermions (UCF) with 
three internal states: SU(3) case

• QCD – gluons mediate interactions
• QCD – s-wave interactions are not controllable
• QCD - quark masses are different
• QCD – quarks are charged
• QCD – quarks have three colors (internal states)

• UCF – contact interactions
• UCF – s-wave interactions are controllable
• UCF – Fermi atoms masses are the same
• UCF – Fermi atoms are neutral
• UCF – Fermi atoms can have three internal states 
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Ultracold fermions (UCF) with two 
internal states: SU(2) case

14(2008)October Today, Physics-SdM 

KLi, 406

F = 9/2

F = 5/2



Simplest example: colored fermions 
and single interaction channel
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Single  channel
only Red and Blue 

have contact interactions

Green band is inert: non-interacting



BCS Pairing (g << EF or kFas 0-)
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gEF
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BEC Pairing (g >> EF or kFas 0+)

FERMI SEA IS 
DEPLETED

EF
Weakly interacting
gas of tightly bound
Molecules with inert 
Green fermions g

2µ = -Eb< 0
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Feshbach Resonances

)(Baag Ss →→ B-dependent
scattering length

Contact
interaction
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E(k) at T = 0 and kx = 0 (S-wave)

µ > 0 µ < 0Same Topology
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QCD-like color superfluidity nearly identical 
to BCS-BEC crossover of SU(2) case  

fermions Greeninert    (2008)Today PhysicsSdM, + 22
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2) Introduction to spin-orbit and color-orbit  coupling
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Raman process and spin-orbit coupling
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spin-orbit

detuning

Raman
coupling


















Ω
−

+






 −







 −−

Ω
+

+

222

222
22

22

m
kk

m
ki

k
m
ki

m
k

R
x

R

x
RR

k

k

δ

δ

25

Rb87

SU(2) rotation to new spin basis:
σx σz ; σz σy ;  σy σx



Experimental phase diagram for 87Rb:
bosons with two internal states (spin-1/2)
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Case with three internal states: 
color-orbit and color flip fields
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Raman Process

YbK, Li, 173406



Case with three internal states
color-orbit and color-flip fields
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Kinetic energies of 
Red, Green and Blue fermions

Color-orbit and 
Color-Zeeman fields

Color-flip field



Case with three internal states: 
color-orbit and color flip fields
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Colored fermions are a correlated 
three band system
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Example of Fermi Surface
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Start with SU(2) case

• For simplicity and to gain insight let me start 
first with the SU(2) case: two colors or simple 
peudospin-1/2 fermions.

• How spin-orbit and Zeeman fields change the 
crossover from BCS to BEC as interactions are 
tuned?
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spin-orbit

detuning

Raman
coupling



















Ω
−

+






 −







 −−

Ω
+

+

222

222
22

22

m
kk

m
ki

k
m
ki

m
k

R
x

R

x
RR

k

k

δ

δ

33

Rb87



Zeeman and Spin-Orbit Hamiltonian
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Energy Dispersions in the ERD case

Can have intra- and 
inter-helicity pairing.
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Bring Interactions Back (real space)

Kinetic Energy

Contact Interaction

Spin-orbit and Zeeman
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Bring interactions back:
Hamiltonian in initial spin basis
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Bring interactions back:
Hamiltonian in the helicity basis
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Excitation Spectrum

Can be
zero
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Excitation Spectrum (ERD)

US-2 US-1

d-US-0i-US-0
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Phase diagram for finite spin-orbit 
coupling and changing Zeeman field
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Now look at SU(3) case

• Let me analyze the SU(3) case: three colors or 
pseudo-spin-1 fermions.

• How color-orbit and color-flip fields change 
the crossover from BCS to BEC as interactions 
are tuned?
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SU(3) invariant kinetic energy
and three identical interaction channels
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Pair operator



No color-orbit and no color-flip fields
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KE is SU(3) invariant

Can go to a mixed color basis where only two mixed colors
pair and the third one is inert as a result of SU(3) invariance!

NOT VERY INTERESTING, JUST CROSSOVER!



Add color-orbit and color-flip fields 
(near zero temperature)

45bands quasihole 3 and
clequasiparti 3 has Spectrum



Hamiltonian Blocks
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Mixed (rotated) color basis
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Order parameter tensor
(mixed color basis)
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Zero color-orbit coupling
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Non-zero color-orbit coupling
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Non-zero color-orbit coupling
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R3

R1point calpentacriti  and  Quintuple



Color compressibility near 
quintuple point
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Color compressibility near 
gapless R1 to fully gapped FG line
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Momentum distributions 
of original colors
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Order parameter tensor 
(mixed color basis)
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Order parameter tensor
(mixed color basis)

57



Order parameter tensor
(total pseudo-spin basis)
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Order parameter tensor 
(total pseudo-spin basis)
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SINGLET AND QUINTUPLET PAIRING
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Conclusions in pictures: 
color-orbit and color flip fields
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Conclusions in pictures: 
color-orbit and color flip fields
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Ultracold fermions with three internal states can exhibit very unusual color 
superfluidity in the presence of color-orbit and color-flip fields, where SU(3) 
symmetry is explicitly broken.

The phase diagram of color-flip versus interaction parameter for fixed color-
orbit coupling exhibits several topological phases associated with the nodal 
structure of the quasiparticle excitation spectrum. The phase diagram exhibits 
a pentacritical point where five nodal superfluid phases merge.

Even for interactions  that occur only in the color s-wave channel, the order 
parameter for superfluidity exhibits singlet, triplet and quintuplet 
components due to the presence of color-orbit and color-flip fields.

These topological phases can be probed through measurements of 
spectroscopic properties such as  excitation spectra, momentum distributions 
and density of states.

.Conclusions in words
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THE END
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Two-photon Raman process - I
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Two-photon Raman process - II
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Efimov States 
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Low density

High density

Intermediate
density



Shaji

Kono subarashii shinpojiumu no \ shusaisha no
minasama, \ happyou sasete itadakimashite \
arigatou gozaimasu.

Watakushi wa nihongo hanasemasen shi, \ kyou
takusan no gaikokujin no kata ga\ irasshaimasu
shi, \ moushiwake gozaimasen ga \ eigo de
happyou wo sasete itadakimasu.
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Some of our earlier work 
on topological superfluids

G. E. Volovik’s “Exotic Properties of Superfluid 3He” (1992).
JLTP 140, 409 (2005)



Topological superfluids with spin-orbit 
coupling for SU(2) fermions
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Structure of Neutron and Proton

72

Having electric charge, mass, color charge and flavor, 
quarks are the only known elementary particles that 
engage in all four fundamental interactions of 
contemporary physics: electromagnetism, gravitation, 
strong interaction, and weak interaction.



SU(2) rotation to new spin basis:
σx σz ; σz σy ;  σy σx
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spin-orbitdetuning
Raman
coupling
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Rb87



Eigenvectors
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Order Parameter: Singlet & Triplet
ηz

ηx

ηy

zzx hhvkh ==⊥ )()( kk ),,0()(eff zx hvkh =k

76



Color density of states

77

N3

R3

R1

FG



Single 
interaction

channel 
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PHASE DIAGRAM

NODAL STRUCTURE OF 
QUASIPARTICLE SPECTRUM



Hyperfine Structure of 87Rb

79



Hyperfine Structure of 6Li
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Hyperfine Structure of 40K
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Hyperfine Structure of 173Yb
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