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Ultra-cold Bose Gases: Condensate

Dynamics and non-homogeneity- Gross-Pitaevskii equation:

| (x)|2 = n(x)with

demonstrate a simple experimental configuration for
trapped-atom interferometry and use it to confirm the
coherence of our quasi-uniform BEC.

Our setup for producing 87Rb condensates in a harmonic
potential is described elsewhere [16]; we create BECs in
the jF;mFi ¼ j2; 2i hyperfine ground state using a hybrid
magnetic-optical trap [17]. The dark optical trap [18,19]
that is central to this work is formed by three 532 nm laser
beams—a ‘‘tube’’ beam propagating along the x axis and
two ‘‘sheet’’ beams propagating along the y axis. The
green laser beams create a repulsive potential for the atoms
and confine them to the cylindrical dark region depicted in
red in Fig. 1(a). To create a uniform potential, we addi-
tionally cancel the gravitational force on the atoms at a
10"4 level, using a magnetic field gradient [16].

As outlined in Fig. 1(b), all three trapping beams are
created by reflecting a single Gaussian beam off a phase-
imprinting spatial light modulator with three superposed
phase patterns [20]. The tube beam is an optical vortex
created by imprinting a 24! phase winding on the incom-
ing beam [21], the sheet beams are created using
cylindrical-lens phase patterns, and the three outgoing
beams are deflected in different directions using phase
gradients. With a total laser power of P0 # 700 mW we
achieve a trap depth of V0 # kB $ 2 "K.

We evaporatively cool the gas in the harmonic trap down
to T # 120 nK, when the cloud size is similar to the size of
our optical box [see Fig. 1(c)] and kBT % V0. At this point
the gas is partially condensed, but the BEC is lost during
the transfer into the box trap, which is not perfectly adia-
batic. Over 1 s, we turn on the green light and then turn off
the harmonic trapping, capturing >80% of the atoms.

In Fig. 1(d) we show in-trap absorption images of the
cloud just before and just after the transfer into the box trap.
The images are taken along the y direction, using high-
intensity imaging [8,9,22] with a saturation parameter
I=Isat # 150. For each image, we show the line-density
profiles along x and z, obtained by integrating the image
along one direction. If a cylindrical box of length L and
radius R is filled perfectly uniformly, the density distribu-
tion along x is simply a top-hat function ofwidthL. Along z,
the line-of-sight integration results in ‘‘circular’’ column-

and line-density profiles,/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
. In the experimen-

tal images, the edges of the cloud are rounded off for two
reasons, both related to the diffraction limit of our optical
setup. First, the 1=e2 waist of the 532 nm trapping beams is
diffraction limited to# 3 "m, which leads to some round-
ing off of the potential bottom near the edges of the box.
Second, our imaging resolution is diffraction limited to
# 5 "m, making the cloud edges appear more smeared
out than they actually are. The green dashed lines in the
right panel of Fig. 1(d) are fits to the data based on a
perfectly uniform distribution convolved only with the
imaging point-spread function. The fits describe the data
well and giveL ¼ 63( 2 "m andR ¼ 15( 1 "m. These

values are consistent with the calculated separation of the
green walls, reduced by the diffraction-limited wall
thickness.
After the transfer into the box trap, the cloud contains

N # 6$ 105 atoms at T # 130 nK. From this point, we
cool the gas to below Tc by forced evaporative cooling in
the box trap. We lower the trapping power P in an expo-
nential ramp with a 0.5 s time constant, thus proportionally
reducing the power in all three trapping beams. Initially,
the trap depth is much larger than kBT, so significant
cooling occurs only for P & 0:5P0. At the end of the
evaporation, we always raise (over 0.5 s) the trapping
power back to P0 so that the cloud cooled to different
temperatures is always confined in the same potential.
Figure 2 qualitatively illustrates the effects of evapora-

tion and condensation in the box trap. We show images of
the cloud both in situ and after 50 ms of TOF expansion
from the trap.Whereas in a harmonic trap cooling results in
simultaneous real-space and momentum-space condensa-
tion, here it has no dramatic effects on the in-trap atomic
distribution. The density is gradually reduced by evapora-
tion, but the shape of the cloud does not reveal condensa-
tion. On the other hand, in momentum space (i.e., in TOF)
the effects of cooling are obvious and the signatures of
condensation are qualitatively the same as for a harmoni-
cally trapped gas—the momentum distribution becomes
bimodal and the BEC expands anisotropically, with its
aspect ratio inverting in TOF.
We now turn to a quantitative analysis of our degenerate

quasiuniform Bose gas. We assess the flatness of our trap-
ping potential and contrast the thermodynamics of con-
densation in our system with the case of a harmonically
trapped gas.
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FIG. 2 (color online). Evaporation and Bose-Einstein conden-
sation in the optical-box trap. Cooling is achieved by lowering
the trapping laser power P. We show absorption images taken
after 50 ms of TOF and in situ [insets, with same color scale as in
Fig. 1(d)]. The bottom panels show cuts through the momentum
distributions recorded in TOF. In contrast to the case of a
harmonic trap, no dramatic effects of cooling are observed
in situ. However, BEC is clearly seen in the bimodality of the
momentum distribution and the anisotropic expansion.
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Bose-Einstein Condensation of Atoms in a Uniform Potential
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We have observed the Bose-Einstein condensation of an atomic gas in the (quasi)uniform three-

dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution

and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the

theoretical prediction for a uniform Bose gas. The momentum distribution of a noncondensed quantum-

degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and

close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a

matter-wave interference experiment. Our experiments open many new possibilities for fundamental

studies of many-body physics.

DOI: 10.1103/PhysRevLett.110.200406 PACS numbers: 03.75.Hh, 67.85.!d

Ultracold Bose and Fermi atomic gases are widely used
as test beds of fundamental many-body physics [1].
Experimental tools such as Feshbach interaction reso-
nances [2], optical lattices [3], and synthetic gauge fields
[4] offer great flexibility for studies of outstanding prob-
lems arising in many areas, most commonly in condensed-
matter physics. However, an important difference between
‘‘conventional’’ many-body systems and ultracold gases is
that the former are usually spatially uniform whereas the
latter are traditionally produced in harmonic traps with no
translational symmetries.

Various methods have been developed to overcome this
problem and extract uniform-system properties from a
harmonically trapped sample [5–13], relying on the local
density approximation [5–11] or selective probing of a
small central portion of the cloud [11–13]. Sometimes
harmonic trapping can even be advantageous, allowing
simultaneous mapping of uniform-system properties at
different (local) particle densities. On the other hand, in
many important situations local approaches are inherently
limiting, for example, for studies of critical behavior with
diverging correlation lengths. The possibility to directly
study a spatially uniform quantum-degenerate gas has thus
remained an important experimental challenge. So far,
atomic Bose-Einstein condensates (BECs) have been
loaded into elongated [14] or toroidal [15] traps that are
uniform along only one direction while still harmonic
along the other two directions.

Here, we demonstrate the Bose-Einstein condensation of
an atomic gas in a three-dimensional (3D) (quasi)uniform
potential. We load an optical box trap depicted in Fig. 1(a)
with 87Rb atoms precooled in a harmonic trap and achieve
condensation by evaporative cooling in the box potential.
Below a critical temperature Tc " 90 nK, condensation is
seen in the emergence of a bimodal momentum distribu-
tion and the anisotropic time-of-flight (TOF) expansion
of the BEC. We characterize the flatness of our box poten-
tial and show that both the momentum distribution of the

non-condensed component and the thermodynamics of
condensation are close to the theoretical expectations for
a uniform system, while being clearly distinct from the
conventional case of a harmonically trapped gas. We also
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FIG. 1 (color online). Preparing a quasiuniform Bose gas.
(a) The optical-box trap is formed by one hollow tube beam and
two sheet beams creating a repulsive potential for the atoms. The
atomic cloud is confined to the dark (red) cylindrical region.
Gravitational force is canceled by a magnetic field gradient B0.
(b) The three trapping beams are created by reflecting a single
Gaussian beam off a phase-imprinting spatial light modulator.
(c) The atoms are loaded into the box trap after precooling in a
harmonic trap. (d) In situ images of the cloud just before (left) and
after (right) loading into the box and corresponding line-density
profiles along x (bottom plots) and z (side plots) directions. OD
stands for optical density; the line densities along x (z) are
obtained by integrating the images along z (x). The blue dashed
lines in the left panel are fits to the thermal component of the
harmonically trapped gas. Thegreendashed lines in the right panel
are fits based on the expected profiles for a uniform-density gas.
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Ultra-cold Gases: s-wave scattering

The 2-body interaction potential W(x) can be replaced  
at low-density and low-energy by an effective contact (pseudo) potential  
which reproduces the low-energy behaviour of the microscopic potential  

s-wave  
scattering length

- Very low temperature (<1mK):  
only l=0 collisions are relevant (due to centrifugal barrier) 
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Fano-Feschbach: in “many” cases s-wave tunable
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Ground state breaks U(1) symmetry - Number Conservation:  
Goldstone mode -  

no cost to change the global phase of the wave function  
(gapless spectrum)

Ultra-cold Bose Gases: Condensate
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T=0  Bose gases: Elementary excitations

Uniform system (Mean-Field):
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T=0 Bose mixtures
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Elementary excitations
Ground state breaks U(1)xU(1) symmetry: 2 Goldstone modes -  

coming from no cost to change the global and relative phase of the 2 order 
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Supercurrent stability

Persistent Currents in Spinor Condensates
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We create and study persistent currents in a toroidal two-component Bose gas, consisting of 87Rb atoms

in two different spin states. For a large spin-population imbalance we observe supercurrents persisting for

over two minutes. However, we find that the supercurrent is unstable for spin polarization below a well-

defined critical value. We also investigate the role of phase coherence between the two spin components

and show that only the magnitude of the spin-polarization vector, rather than its orientation in spin space,

is relevant for supercurrent stability.

DOI: 10.1103/PhysRevLett.110.025301 PACS numbers: 67.85.!d, 03.75.Kk

Persistent currents are a hallmark of superfluidity and
superconductivity, and have been studied in liquid helium
and solid state systems for decades. More recently, it
has become possible to trap an atomic Bose-Einstein
condensate (BEC) in a ring geometry [1–8] and induce
rotational superflow in this system [3,5,7,8]. This offers
new possibilities for fundamental studies of superfluidity in
a flexible experimental setting. Both long-lived superflow
[5,7] and quantized phase slips corresponding to singly
charged vortices crossing the superfluid annulus have
been observed [7,8].

So far experiments on persistent currents in atomic
BECs were limited to spinless, single-component conden-
sates. Extending such studies to multicomponent systems,
in particular those involving two or more spin states
[9–11], is essential for understanding superfluids with a
vectorial order parameter and for applications in atom
interferometry [12,13]. Persistent flow in a two-component
Bose gas has been studied theoretically [14–17] but many
issues remain open. Even the central question of whether,
and under what conditions, this system supports persistent
currents has not been settled.

In this Letter, we study the stability of supercurrents in a
toroidal two-component gas consisting of 87Rb atoms in
two different spin states. For a large spin-population imbal-
ance we observe superflow persisting for over two minutes
and limited only by the atom-number decay. However at a
small population imbalance the onset of supercurrent
decay occurs within a few seconds. We demonstrate the
existence of a well-defined critical spin polarization sepa-
rating the stable- and unstable-current regimes. We also
study the connection between spin coherence and super-
flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
stability of the supercurrent. The existence of a critical
population imbalance was anticipated in Refs. [15–17], but
quantitative comparison with our measurements will
require further theoretical work.

Our setup is outlined in Fig. 1(a). We load a BEC of
N " 105 atoms into an optical ring trap of radius 12 !m,

created by intersecting a 1070 nm ‘‘sheet’’ laser beam and
an 805 nm ‘‘tube’’ beam [7]. The sheet beam confines the
atoms to the horizontal plane with a trapping frequency of
350 Hz. In plane, the tube beam confines the atoms to the
ring with a trapping frequency of 50 Hz. The trap depth is
about twice the BEC chemical potential,!0=h " 0:6 kHz,
and varies azimuthally by <10%.
Our tube trapping beam is a Laguerre-Gauss LG3 laser

mode in which each photon carries orbital angular
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.

PRL 110, 025301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

0031-9007=13=110(2)=025301(5) 025301-1 ! 2013 American Physical Society

Persistent Currents in Spinor Condensates

Scott Beattie, Stuart Moulder, Richard J. Fletcher, and Zoran Hadzibabic
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 18 October 2012; published 9 January 2013)

We create and study persistent currents in a toroidal two-component Bose gas, consisting of 87Rb atoms

in two different spin states. For a large spin-population imbalance we observe supercurrents persisting for

over two minutes. However, we find that the supercurrent is unstable for spin polarization below a well-

defined critical value. We also investigate the role of phase coherence between the two spin components

and show that only the magnitude of the spin-polarization vector, rather than its orientation in spin space,

is relevant for supercurrent stability.

DOI: 10.1103/PhysRevLett.110.025301 PACS numbers: 67.85.!d, 03.75.Kk

Persistent currents are a hallmark of superfluidity and
superconductivity, and have been studied in liquid helium
and solid state systems for decades. More recently, it
has become possible to trap an atomic Bose-Einstein
condensate (BEC) in a ring geometry [1–8] and induce
rotational superflow in this system [3,5,7,8]. This offers
new possibilities for fundamental studies of superfluidity in
a flexible experimental setting. Both long-lived superflow
[5,7] and quantized phase slips corresponding to singly
charged vortices crossing the superfluid annulus have
been observed [7,8].

So far experiments on persistent currents in atomic
BECs were limited to spinless, single-component conden-
sates. Extending such studies to multicomponent systems,
in particular those involving two or more spin states
[9–11], is essential for understanding superfluids with a
vectorial order parameter and for applications in atom
interferometry [12,13]. Persistent flow in a two-component
Bose gas has been studied theoretically [14–17] but many
issues remain open. Even the central question of whether,
and under what conditions, this system supports persistent
currents has not been settled.

In this Letter, we study the stability of supercurrents in a
toroidal two-component gas consisting of 87Rb atoms in
two different spin states. For a large spin-population imbal-
ance we observe superflow persisting for over two minutes
and limited only by the atom-number decay. However at a
small population imbalance the onset of supercurrent
decay occurs within a few seconds. We demonstrate the
existence of a well-defined critical spin polarization sepa-
rating the stable- and unstable-current regimes. We also
study the connection between spin coherence and super-
flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
stability of the supercurrent. The existence of a critical
population imbalance was anticipated in Refs. [15–17], but
quantitative comparison with our measurements will
require further theoretical work.

Our setup is outlined in Fig. 1(a). We load a BEC of
N " 105 atoms into an optical ring trap of radius 12 !m,

created by intersecting a 1070 nm ‘‘sheet’’ laser beam and
an 805 nm ‘‘tube’’ beam [7]. The sheet beam confines the
atoms to the horizontal plane with a trapping frequency of
350 Hz. In plane, the tube beam confines the atoms to the
ring with a trapping frequency of 50 Hz. The trap depth is
about twice the BEC chemical potential,!0=h " 0:6 kHz,
and varies azimuthally by <10%.
Our tube trapping beam is a Laguerre-Gauss LG3 laser

mode in which each photon carries orbital angular
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.

PRL 110, 025301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

0031-9007=13=110(2)=025301(5) 025301-1 ! 2013 American Physical Society

momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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FIG. 2 (color online). Single- versus two-component super-
current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
(open symbols) and Pz ¼ 0 (solid symbols). Dashed lines are
double-exponential fits.
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FIG. 3 (color online). Supercurrent stability in a partially spin-
polarized gas. The statistically averaged supercurrent state, hqi,
of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on '1600
measurements of qðPz; tÞ. The transition between stable- and
unstable-current regimes occurs at 0:6<Pz < 0:7. In the stable
regime the current eventually decays due to the atom-number
decay.
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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FIG. 2 (color online). Single- versus two-component super-
current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
(open symbols) and Pz ¼ 0 (solid symbols). Dashed lines are
double-exponential fits.
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FIG. 3 (color online). Supercurrent stability in a partially spin-
polarized gas. The statistically averaged supercurrent state, hqi,
of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on '1600
measurements of qðPz; tÞ. The transition between stable- and
unstable-current regimes occurs at 0:6<Pz < 0:7. In the stable
regime the current eventually decays due to the atom-number
decay.
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and where we have defined hσ = !2k2/(2m) + gσnσ , with
σ = a,b. Diagonalization of L gives four eigenvalues and
four corresponding eigenvectors. Notice that since the linear
operator is not Hermitian the frequencies might be complex
(indeed, when they become complex they give rise to a
dynamical instability, which is further discussed in Sec. III C).
In general, two of the eigenvalues have a positive norm,
defined as |Ua|2 − |Va|2 + |Ub|2 − |Vb|2, while the other two
have a negative norm. The relative sign of the amplitudes Ua

and Ub (and correspondingly Va and Vb) determines whether
the modes are in phase (density mode) or out of phase
(spin-density mode). For real frequencies, both modes are
gapless and soundlike at low k and are characterized by the
density and the spin speeds of sound. The full spectrum of (8)
has been solved in several references [21–24], with different
scopes, and the general expression is cumbersome.

Let us review here two physical situations where the
frequencies acquire a simple analytical form (the general
solutions are discussed in Secs. III B and III C). The first case
corresponds to vσ = 0, that is the binary mixture at rest, and
the dispersion relation takes the well-known form [25]

!ωd(s) =

√
!2k2

2m

(
!2k2

2m
+ 2mc2

d(s)

)
, (9)

where the density (d) and spin (s) speeds of sound are given
by

c2
d(s) =

gana + gbnb ±
√

(gana − gbnb)2 + 4nanbg
2
ab

2m
, (10)

where nσ = |#σ |2 are the equilibrium densities of the two
components σ = a,b, and the + and − signs correspond
to cd and cs , respectively. From Eq. (9) one sees that,
as already mentioned above, the excitation frequencies of
both modes assume a linear dispersion ωd(s) = cd(s)k at low
quasimomentum k. For repulsive interactions, which is the
case under consideration, we have cd ! cs . Figure 1 shows the
behavior of cd and cs as a function of Pz. For completeness
the single-component speeds of sound, cσ =

√
gσnσ /m, for

σ = a,b, are also shown. To plot these velocities, the densities
entering Eq. (10) have been calculated using a Thomas-Fermi
approximation (see Appendix). In the limit of Pz → 1 the

FIG. 1. (Color online) Spin, density, and single-component
speeds of sound. For concreteness, the densities have been calculated
in Thomas-Fermi approximation (see the Appendix).

FIG. 2. (Color online) Bogoliubov excitation spectrum for den-
sity (ωd ) and spin (ωs) modes. The symbols correspond to the
discretized values of k (see text) arising from the ring geometry. For
concreteness, the densities have been calculated in Thomas-Fermi
approximation (see the Appendix).

density mode is dominated by the majority component and
ca → cd , while the spin mode is dominated by the minority
component and cb → cs . Notice also from Eq. (10) that at
the demixing transition point, i.e., gab = gc

ab, the spin speed
of sound vanishes for any polarization Pz, or equivalently the
susceptibility of the mixture diverges. Stability of persistent
currents in this critical regime has been addressed in Refs. [6,8]
for a 1D ring and in Ref. [7] in two dimensions.

The second case is for va = vb = v. It is easy to see this
gives rise to a shift in the frequencies by the quantity v · k,
which has the role of a classical Doppler shift. An example of
the behavior of the dispersion relations in this case is shown
in Fig. 2, calculated for Thomas-Fermi density profiles (see
the Appendix). It can be seen that since the density mode
is higher in energy, the effect of a nonzero velocity is small
for our close-to-critical situation. In contrast, the dispersion
relation of the spin mode is much more sensitive, and adding a
nonzero velocity has strong consequences. In particular, for a
large-enough velocity the energy of the excitation can become
negative, leading to an energetic instability, which as shown
in Sec. III is responsible to a great extent for the decay of
the persistent currents. Notice that in Fig. 2, for convenience,
we show the spectrum for velocity values |v| = v = 2πκ!/m,
corresponding to the quanta of circulation, κ , one would have
in a ring geometry.

B. Corrections to the speed of sound due to confinement

In the last paragraph we derived the speeds of sound for a
uniform medium. When the system is confined the excitations
still have a soundlike character provided the width of the cloud
is large enough in the propagation direction and small enough
in the transverse directions [26,27]. In this section we discuss
the corrections to the frequencies [Eq. (9)] that arise from a
2D ring geometry.

The first correction comes from the discretization of
quasimomentum due to the multiply connected geometry,
according to k = ℓ/R0, with ℓ the quantization number of the
quasimomentum (k = ℓ/R0) and R0 the radius of the ring. To
exemplify this correction, the discrete values of k accessible to
the system are represented as symbols in Fig. 2. The effect of
this correction on the stability criterion for persistent currents
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FIG. 5. (Color online) (Left panel) Time dependence of angular momentum of components a (dashed line) and b (solid line) in real-time
dynamics in the partially stable region. (Right panels) Density snapshots of components a (top row) and b (bottom row) at times t = 260ω−1
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⊥ ) is represented in the
color scale. For this case Pz = 0.8 and κ = 7.

in component b decay. This decay is indeed induced by the
crossing of vortices across the ring, as can be seen in the
density snapshots of Fig. 5, for the majority (upper row) and
the minority (lower row) components. These snapshots show
the dynamical process explained above very clearly: First, the
spin instability kicks in as out-of-phase density oscillations in
the azimuthal direction, as seen in panels (a) and (b); since the
minority component is more sensitive to this perturbation, its
density oscillations grow enough to allow the penetration of
vortices inside the ring, panels (c) and (d); finally, after losing
angular momentum, the system is stabilized through the new
stability criterion shown in Fig. 4, panels (e) and (f).

Before ending our discussion of the partially stable region,
let us comment on the 1D limit. In this case the solutions of
Eq. (7) are exact, in the sense that there is no renormalization
factor accounting for the external degrees of freedom. The
effect of going to the 1D limit is to increase the width of the
partially stable region. This can be seen in Table I, where we
compare the width obtained from numerical simulations of the
1D GP equations with that of the 2D GP equations (in units of
the corresponding sound velocities at Pz = 0). Therefore, the
partially stable region is not a feature of an extended geometry,
but it is present also in 1D systems. The universality of the 1D
limit makes this result relevant to coupled Luttinger liquids
(see, e.g., [35,36]).

C. Dynamical instability

The energetic instability discussed above, although being
the relevant one when the two superfluids have the same

TABLE I. Width of the partially stable region.

Pz #1D/c1D
s #/cs

0.10 0.2398 0.0000
0.20 0.2398 0.0000
0.30 0.4797 0.1911
0.60 0.9594 0.5734
0.90 1.4391 0.9557
0.95 1.6789 1.5291

velocity, is not the only mechanism that can trigger decay of
persistent currents in a binary mixture. Indeed, when |va − vb|
exceeds some threshold the eigenfrequencies corresponding to
the spin-density mode acquire an imaginary part, leading to an
exponential growth of the spin excitations that makes the flow
dynamically unstable. The existence of a dynamical instability
for different flow velocities is a more general result and it is due
to the breaking of Galilean invariance. This has been recently
discussed in spin-orbit coupled condensates [37]. In the context
of binary mixtures, this instability is known as counterflow
instability and has been addressed both experimentally [38,39]
and theoretically [21–24]. The structure of the complex eigen-
frequencies is illustrated in the top panels of Fig. 6: The real
part (left panel) is nonzero in the limit of small k, in contrast
to the case of the demixing instability driven by interspecies
interaction.

To better characterize how the dynamical instability appears
in a toroidal trap, we have performed real-time simulations of
Eqs. (1) and (2), imposing initial winding numbers κa = 20,
κb = 0, which correspond to a velocity va much larger than the
critical velocity (Fig. 3, dashed line). The initial state consists
of the converged solutions of the GP equations describing the
mixture at rest, to which we have added an initial vortexlike
phase following Eq. (17).

Selected snapshots of the majority component density
are shown in Fig. 6, showing three different regimes: a
first stage, with radial breathing (as recently discussed in
[16] for a one-component BEC); a second stage, where
the spin instability kicks in and deforms the condensates;
and a third stage, in which vortices enter the BECs and
stabilize the angular momentum at L(a)

z = L(b)
z = Lz/2. The

maxima in the density of one component coincide with the
minima in the other, thus confirming that the instability is
driven by the spin-density mode. Notice that in absence
of dissipation the total angular momentum is conserved;
however, adding a small imaginary term in the left-hand side
of Eqs. (1) and (2) we obtain dissipative dynamics where
both energy and angular momentum decrease in time and
vortices are then able to fully cross the torus (after a certain
time).
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phase slips due to vortices in the minority component  
(spin dominated)

[M. Abad, A. Sartori, S. Finazzi,, and AR, PRA (2014)].



Magnetic Topological Defect
It is obvious that if a defect (vortex, soliton) is created in one component the other  
component tries to fill it due to the repulsive mean-field interspecies interaction. 

For the case of very soft spin excitations the defect  
does not (essentially) coupled to the total density since it can be considered 

almost incompressible: magnetic defect
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in component b decay. This decay is indeed induced by the
crossing of vortices across the ring, as can be seen in the
density snapshots of Fig. 5, for the majority (upper row) and
the minority (lower row) components. These snapshots show
the dynamical process explained above very clearly: First, the
spin instability kicks in as out-of-phase density oscillations in
the azimuthal direction, as seen in panels (a) and (b); since the
minority component is more sensitive to this perturbation, its
density oscillations grow enough to allow the penetration of
vortices inside the ring, panels (c) and (d); finally, after losing
angular momentum, the system is stabilized through the new
stability criterion shown in Fig. 4, panels (e) and (f).

Before ending our discussion of the partially stable region,
let us comment on the 1D limit. In this case the solutions of
Eq. (7) are exact, in the sense that there is no renormalization
factor accounting for the external degrees of freedom. The
effect of going to the 1D limit is to increase the width of the
partially stable region. This can be seen in Table I, where we
compare the width obtained from numerical simulations of the
1D GP equations with that of the 2D GP equations (in units of
the corresponding sound velocities at Pz = 0). Therefore, the
partially stable region is not a feature of an extended geometry,
but it is present also in 1D systems. The universality of the 1D
limit makes this result relevant to coupled Luttinger liquids
(see, e.g., [35,36]).

C. Dynamical instability

The energetic instability discussed above, although being
the relevant one when the two superfluids have the same

TABLE I. Width of the partially stable region.

Pz #1D/c1D
s #/cs

0.10 0.2398 0.0000
0.20 0.2398 0.0000
0.30 0.4797 0.1911
0.60 0.9594 0.5734
0.90 1.4391 0.9557
0.95 1.6789 1.5291

velocity, is not the only mechanism that can trigger decay of
persistent currents in a binary mixture. Indeed, when |va − vb|
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minima in the other, thus confirming that the instability is
driven by the spin-density mode. Notice that in absence
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In the present work we are interested in systems close
to fulfilling the incompressiblity condition. Assuming this
condition, the authors of Ref. [15] were able to obtain analytical
solutions for the case of moving magnetic solitons in balanced
mixtures. In the present work the incompressibility assumption
is tested against the numerical solution of the two-component
Gross-Pitaevskii equations, both in the homogeneous case
and in the presence of a harmonic trap. We show that in
relevant available experimental regimes, incompressibility is
an excellent approximation. We also detail the implication
of having nonequal intraspecies interaction strengths and the
appearance of the buoyancy effect in the presence of a harmonic
trap (see Sec. VII for further details).

The paper is organized as follows: In Sec. II we will
adopt the incompressibility assumption, which corresponds
to assuming that the total density of the system, differently
from the spin density, is not affected by the topological defect.
This assumption will allow us to derive a variational energy
functional that we then use in Sec. III to describe the magnetic
vortex. In the same section we will also calculate the energy
cost associated with the magnetic vortex and compare it with
the one of a vortex line in a single-component condensate.
We will also discuss the case when the incompressibility
condition breaks down and bound states of the minority
component within the quantum defect emerge. In Sec. IV we
carry out numerical solutions of the coupled Gross-Pitaveskii
equations in the presence of harmonic trapping. Since the
incompressibility condition cannot be satisfied when there are
too few atoms in the second component, we study in detail
the crossover between bound atoms in the vortex core to the
magnetic vortex in Sec. V. In Sec. VI we focus on the case of a
magnetic dark soliton, for which analytical expressions for any
polarization can be obtained, extending the work of Ref. [15].
In Sec. VII we compare the magnetic vortex scenario in a trap
with the case of unequal intraspecies interactions, which is
known to give rise to buoyancy and phase separation between
the two components even if the mixture is miscible in uniform
matter [6]. Finally, we present our conclusions in Sec. VIII.
We also provide some future perspectives and comment about
possible experimental feasibility.

II. MAGNETIC TOPOLOGICAL DEFECTS IN
HOMOGENEOUS MATTER

We consider a mixture of atomic Bose gases in two different
hyperfine levels. The mixture is characterized by two order
parameters !1 and !2. At the mean-field level, the stationary
solutions are obtained by minimizing with respect to the order
parameters the Gross-Pitaevskii (GP) energy functional EGP =∫

dV εGP, with the energy density given by

εGP =
∑

i=1,2

[
h̄2

2m
|∇!i |2 + (Vext − µi)|!i |2 + gii

2
|!i |4

]

+ g12|!1|2|!2|2, (1)

where m is the atomic mass, µi are the chemical potentials, and
Vext is a possible external trapping potential. The interaction
strengths gii = 4π h̄2aii/m and g12 = 4π h̄2a12/m are given
in terms of the intraspecies aii and interspecies a12 s-wave
scattering lengths, respectively. The mixture is stable against

phase separation as long as

δg ≡ √
g11g22 − g12 > 0. (2)

As mentioned in the introduction, we are interested in the
magnetic aspects of solitons and vortices, and we assume a11 =
a22 = a, i.e., g11 = g22 = g. The condition g ≫ δg = g −
g12 > 0 ensures that the total density will be almost unaffected
by the presence of the magnetic defect [15] (incompressibility
condition). Such a regime can be experimentally realized by
using 23Na in the two hyperfine states |F = 1,mF = ±1⟩ for
which the scattering lengths are a11 = a22 = 54.54 aB and
a12 = 50.78 aB , where aB is the Bohr radius, and this system
has been shown to exhibit spin superfluidity [28,29].

Let us first consider the homogenoues case (Vext = 0). The
presence of a trapping potential will be analyzed in Sec. IV,
but we anticipate here that our conclusions remain valid also
in that case, provided the width of the defect is much smaller
than the size of the atomic cloud.

Our ansatz for the topological excitations exploits the in-
compressibility of the density with respect to the spin channel,
i.e., we constrain the densities ni = |!i |2 in the variational
calculation by asking

n = n1(r) + n2(r), (3)

which is equivalent to set the total density of the magnetic
vortex equal to the total density of the ground state. Writing
the condensate wave functions as !i = √

ni,0fi(r)eiφi (r), i =
1, 2, with ni,0 = ni(r → ∞) the asymptotic values of the
condensate densities, the energy functional (1) can be written
as

εGP

4δgn2
1,0

= 1
4
f 2

1

(
f 2

1 − 2
)
+ 1

2

{
n(∇ηf1)2

n − n1,0f
2
1

+ f 2
1 [(∇ηφ1)2 − (∇ηφ2)2] + n

n1,0
(∇ηφ2)2

}
, (4)

where we have absorbed the constant terms in the definition of
the energy density and rescaled r → η = r/ξs by introducing
the in-medium spin healing length

ξs = h̄
√

4m δg n1,0
. (5)

When a topological defect is considered only in component
1, i.e., if φ2 is constant, the previous equation reduces to an
energy functional (4) for component 1 alone, with a parametric
dependence on the density n1,0 due to the density contribution
of the kinetic energy (first term of the second line). Such a
dependence disappears in the limit n1,0 ≪ n2,0. The energy
density (4) then reduces to the energy density of a single-
component condensate with a renormalized healing length ξs ,
which provides the only length scale of the problem. In analogy
with light propagation in-medium from Maxwell equation,
we call the obtained equation the in-medium Gross-Pitaevskii
equation. Indeed, one can check that in the same limit n1,0 ≪
n2,0, ξs fixes also the spin speed of sound cs [30] via the relation
mcsξs = h̄/

√
2 of a homogeneous mixture.

The length scale characterizing the new equation is
deeply modified with respect to the density healing length
ξd = h̄/

√
2mgn0 that appears in a single-component Gross-

Pitaevskii equation for the same asymptotic value of the
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is tested against the numerical solution of the two-component
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relevant available experimental regimes, incompressibility is
an excellent approximation. We also detail the implication
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appearance of the buoyancy effect in the presence of a harmonic
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The paper is organized as follows: In Sec. II we will
adopt the incompressibility assumption, which corresponds
to assuming that the total density of the system, differently
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This assumption will allow us to derive a variational energy
functional that we then use in Sec. III to describe the magnetic
vortex. In the same section we will also calculate the energy
cost associated with the magnetic vortex and compare it with
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the in-medium spin healing length
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When a topological defect is considered only in component
1, i.e., if φ2 is constant, the previous equation reduces to an
energy functional (4) for component 1 alone, with a parametric
dependence on the density n1,0 due to the density contribution
of the kinetic energy (first term of the second line). Such a
dependence disappears in the limit n1,0 ≪ n2,0. The energy
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we call the obtained equation the in-medium Gross-Pitaevskii
equation. Indeed, one can check that in the same limit n1,0 ≪
n2,0, ξs fixes also the spin speed of sound cs [30] via the relation
mcsξs = h̄/

√
2 of a homogeneous mixture.

The length scale characterizing the new equation is
deeply modified with respect to the density healing length
ξd = h̄/

√
2mgn0 that appears in a single-component Gross-

Pitaevskii equation for the same asymptotic value of the

063615-2

GALLEMÍ, PITAEVSKII, STRINGARI, AND RECATI PHYSICAL REVIEW A 97, 063615 (2018)
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condition, the authors of Ref. [15] were able to obtain analytical
solutions for the case of moving magnetic solitons in balanced
mixtures. In the present work the incompressibility assumption
is tested against the numerical solution of the two-component
Gross-Pitaevskii equations, both in the homogeneous case
and in the presence of a harmonic trap. We show that in
relevant available experimental regimes, incompressibility is
an excellent approximation. We also detail the implication
of having nonequal intraspecies interaction strengths and the
appearance of the buoyancy effect in the presence of a harmonic
trap (see Sec. VII for further details).

The paper is organized as follows: In Sec. II we will
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to assuming that the total density of the system, differently
from the spin density, is not affected by the topological defect.
This assumption will allow us to derive a variational energy
functional that we then use in Sec. III to describe the magnetic
vortex. In the same section we will also calculate the energy
cost associated with the magnetic vortex and compare it with
the one of a vortex line in a single-component condensate.
We will also discuss the case when the incompressibility
condition breaks down and bound states of the minority
component within the quantum defect emerge. In Sec. IV we
carry out numerical solutions of the coupled Gross-Pitaveskii
equations in the presence of harmonic trapping. Since the
incompressibility condition cannot be satisfied when there are
too few atoms in the second component, we study in detail
the crossover between bound atoms in the vortex core to the
magnetic vortex in Sec. V. In Sec. VI we focus on the case of a
magnetic dark soliton, for which analytical expressions for any
polarization can be obtained, extending the work of Ref. [15].
In Sec. VII we compare the magnetic vortex scenario in a trap
with the case of unequal intraspecies interactions, which is
known to give rise to buoyancy and phase separation between
the two components even if the mixture is miscible in uniform
matter [6]. Finally, we present our conclusions in Sec. VIII.
We also provide some future perspectives and comment about
possible experimental feasibility.
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where m is the atomic mass, µi are the chemical potentials, and
Vext is a possible external trapping potential. The interaction
strengths gii = 4π h̄2aii/m and g12 = 4π h̄2a12/m are given
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condition). Such a regime can be experimentally realized by
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a12 = 50.78 aB , where aB is the Bohr radius, and this system
has been shown to exhibit spin superfluidity [28,29].

Let us first consider the homogenoues case (Vext = 0). The
presence of a trapping potential will be analyzed in Sec. IV,
but we anticipate here that our conclusions remain valid also
in that case, provided the width of the defect is much smaller
than the size of the atomic cloud.

Our ansatz for the topological excitations exploits the in-
compressibility of the density with respect to the spin channel,
i.e., we constrain the densities ni = |!i |2 in the variational
calculation by asking

n = n1(r) + n2(r), (3)

which is equivalent to set the total density of the magnetic
vortex equal to the total density of the ground state. Writing
the condensate wave functions as !i = √
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1, 2, with ni,0 = ni(r → ∞) the asymptotic values of the
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where we have absorbed the constant terms in the definition of
the energy density and rescaled r → η = r/ξs by introducing
the in-medium spin healing length
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√
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When a topological defect is considered only in component
1, i.e., if φ2 is constant, the previous equation reduces to an
energy functional (4) for component 1 alone, with a parametric
dependence on the density n1,0 due to the density contribution
of the kinetic energy (first term of the second line). Such a
dependence disappears in the limit n1,0 ≪ n2,0. The energy
density (4) then reduces to the energy density of a single-
component condensate with a renormalized healing length ξs ,
which provides the only length scale of the problem. In analogy
with light propagation in-medium from Maxwell equation,
we call the obtained equation the in-medium Gross-Pitaevskii
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For a vortex configuration the equation for the f’s reads: 
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density. In fact in order to have incompressibility, δg should
be significantly smaller than the coupling constant g. As a
consequence, the core size of a magnetic vortex, i.e., the
vortex solution of Eq. (4), near the demixing transition δg → 0
can become significantly large. For instance, for the states
|F = 1,mF = ±1⟩ of 23Na one has ξs/ξd =

√
g/2δg = 2.69.

In the opposite limit, n1,0 ≫ n2,0 the incompressibility con-
dition cannot be satisfied. In this limit the defect in component
1 is essentially unaffected by the presence of the minority
component that will be trapped forming a bound state.

III. MAGNETIC VORTICES IN HOMOGENEOUS MATTER

In this section we will specialize Eq. (4) to the case in which
only component 1 has a vortex,

#1(r,θ ) = √
n1,0 f1(r) exp(iθ ), (6)

and φ2 = 0. For the sake of simplicity we study a two-
dimensional (2D) case with polar coordinates (r,θ ). The equa-
tion that f1 must satisfy is obtained by imposing δεGP/δf1 = 0,
which leads to

∂2
ηf1 +

(
1 − 1

η2

)
f1 − f 3

1

+ n1,0f1

n − n1,0f
2
1

[
f1∂

2
ηf1 + n

n − n1,0f
2
1

(∂ηf1)2
]

= 0. (7)

The first line of Eq. (7) is formally the same as the vortex
equation for a single component (see, e.g., Ref. [30]) with
healing length ξs . The second line is a term that appears due
to the presence of the second component. This correction
vanishes as n ≫ n1,0, when the incompressibility condition
becomes more and more accurate. In this limit the vortical
solution is then formally identical to the one of a single-
component condensate but with a width which is fixed by ξs ,
increased [see Eq. (5)] as a consequence of the interaction with
the second component. We have verified the validity of the
incompressibility assumption for 23Na by numerically solving
the two coupled Gross-Pitaevskii equations:

− h̄2

2m
∇2#1 + g11|#1|2#1 + g12|#2|2#1 = µ1#1,

− h̄2

2m
∇2#2 + g22|#2|2#2 + g12|#1|2#2 = µ2#2. (8)

The vortical solution is obtained using the imaginary time step
method starting from an ansatz that captures both the phase
pattern of the wave functions and the increase of the healing
length in the case of magnetic defects. The results for the
balanced case (n1,0 = n2,0) are reported in Fig. 1 [31]. In this
case the magnetization n1 − n2, is localized in a small region
of the order of ξs . Indeed, we numerically find that the healing
length of the magnetic vortex is very close to the value (5)
predicted in the incompressible regime (see Fig. 5), a feature
which we can prove more explicitly for dark solitons in Sec. VI,
where analytic results are available for all values of n1 and n2.
In the case of the magnetic vortex for a balanced mixture the
numerical solution reveals the occurrence of a small dip in the
total density at the position of the core of the magnetic vortex,
caused by the finite compressibility of the mixture. We will
later show that this dip disappears as δg → 0 or if n2,0 ≫ n1,0.
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FIG. 1. The dot-dashed red (dot-dot-dashed blue) line represents
the density (normalized to the total background density) along the x

axis of component 1 (2) in a magnetic vortex. The solid (dashed) black
line shows the total density along the x axis of the magnetic vortex
(ground state). a11 = a22 = 54.54 aB and a12 = 50.78 aB . The total
number of particles is N = 105, and the mass is that of 23Na. The
insets pictorically display the case where the density in the second
component is small enough to avoid fulfilling the incompressibility
condition. In this case, one obtains a bound state in the core of the
vortex.

A. Energy of magnetic vortices

The energy of the magnetic vortex can be computed through
the energy functional by substracting the ground state energy
εGS = − 1

2gn2 + δgn1n2 from the energy of the magnetic
vortex. It leads to EMV =

∫
εMV dr, where

εMV = h̄2n1,0n

2m

(∇f1)2

n − n1,0f
2
1

+ h̄2n1,0

2mr2
f 2

1 + δgn2
1,0

(
f 2

1 − 1
)2

,

(9)
and the integral extends over a disk of radius R. The calculation
of the energy of the vortex is important because it gives
access to the value of the rotational frequency required to
make the vortical configuration energetically favorable [30]
(see discussion below).

In order to evaluate the energy we make use of the approx-
imate ansatz

f1(r) =

⎧
⎨

⎩

1
2

r
ξs

if r !
√

2 ξs√
1 − ξ 2

s

r2 if r >
√

2 ξs

(10)

for the vortex profile, which captures the main physics of
a single-component vortex line [32] with a rescaled healing
length ξs . By using the ansatz (10) the magnetic vortex energy
can be written as

EMV = E1V +
∫

h̄2n1,0

2m

n(∇f1)2

n − n1,0f
2
1

dr

= E1V + π h̄2n1,0

m

[(
1 − n

n1,0

)
ln

(
2n − n1,0

2n − 2n1,0

)

− n

n1,0
ln

(
1 − n1,0

2n

)]
, (11)
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In the present work we are interested in systems close
to fulfilling the incompressiblity condition. Assuming this
condition, the authors of Ref. [15] were able to obtain analytical
solutions for the case of moving magnetic solitons in balanced
mixtures. In the present work the incompressibility assumption
is tested against the numerical solution of the two-component
Gross-Pitaevskii equations, both in the homogeneous case
and in the presence of a harmonic trap. We show that in
relevant available experimental regimes, incompressibility is
an excellent approximation. We also detail the implication
of having nonequal intraspecies interaction strengths and the
appearance of the buoyancy effect in the presence of a harmonic
trap (see Sec. VII for further details).

The paper is organized as follows: In Sec. II we will
adopt the incompressibility assumption, which corresponds
to assuming that the total density of the system, differently
from the spin density, is not affected by the topological defect.
This assumption will allow us to derive a variational energy
functional that we then use in Sec. III to describe the magnetic
vortex. In the same section we will also calculate the energy
cost associated with the magnetic vortex and compare it with
the one of a vortex line in a single-component condensate.
We will also discuss the case when the incompressibility
condition breaks down and bound states of the minority
component within the quantum defect emerge. In Sec. IV we
carry out numerical solutions of the coupled Gross-Pitaveskii
equations in the presence of harmonic trapping. Since the
incompressibility condition cannot be satisfied when there are
too few atoms in the second component, we study in detail
the crossover between bound atoms in the vortex core to the
magnetic vortex in Sec. V. In Sec. VI we focus on the case of a
magnetic dark soliton, for which analytical expressions for any
polarization can be obtained, extending the work of Ref. [15].
In Sec. VII we compare the magnetic vortex scenario in a trap
with the case of unequal intraspecies interactions, which is
known to give rise to buoyancy and phase separation between
the two components even if the mixture is miscible in uniform
matter [6]. Finally, we present our conclusions in Sec. VIII.
We also provide some future perspectives and comment about
possible experimental feasibility.

II. MAGNETIC TOPOLOGICAL DEFECTS IN
HOMOGENEOUS MATTER

We consider a mixture of atomic Bose gases in two different
hyperfine levels. The mixture is characterized by two order
parameters !1 and !2. At the mean-field level, the stationary
solutions are obtained by minimizing with respect to the order
parameters the Gross-Pitaevskii (GP) energy functional EGP =∫

dV εGP, with the energy density given by

εGP =
∑

i=1,2

[
h̄2

2m
|∇!i |2 + (Vext − µi)|!i |2 + gii

2
|!i |4

]

+ g12|!1|2|!2|2, (1)

where m is the atomic mass, µi are the chemical potentials, and
Vext is a possible external trapping potential. The interaction
strengths gii = 4π h̄2aii/m and g12 = 4π h̄2a12/m are given
in terms of the intraspecies aii and interspecies a12 s-wave
scattering lengths, respectively. The mixture is stable against

phase separation as long as

δg ≡ √
g11g22 − g12 > 0. (2)

As mentioned in the introduction, we are interested in the
magnetic aspects of solitons and vortices, and we assume a11 =
a22 = a, i.e., g11 = g22 = g. The condition g ≫ δg = g −
g12 > 0 ensures that the total density will be almost unaffected
by the presence of the magnetic defect [15] (incompressibility
condition). Such a regime can be experimentally realized by
using 23Na in the two hyperfine states |F = 1,mF = ±1⟩ for
which the scattering lengths are a11 = a22 = 54.54 aB and
a12 = 50.78 aB , where aB is the Bohr radius, and this system
has been shown to exhibit spin superfluidity [28,29].

Let us first consider the homogenoues case (Vext = 0). The
presence of a trapping potential will be analyzed in Sec. IV,
but we anticipate here that our conclusions remain valid also
in that case, provided the width of the defect is much smaller
than the size of the atomic cloud.

Our ansatz for the topological excitations exploits the in-
compressibility of the density with respect to the spin channel,
i.e., we constrain the densities ni = |!i |2 in the variational
calculation by asking

n = n1(r) + n2(r), (3)

which is equivalent to set the total density of the magnetic
vortex equal to the total density of the ground state. Writing
the condensate wave functions as !i = √

ni,0fi(r)eiφi (r), i =
1, 2, with ni,0 = ni(r → ∞) the asymptotic values of the
condensate densities, the energy functional (1) can be written
as

εGP

4δgn2
1,0

= 1
4
f 2

1

(
f 2

1 − 2
)
+ 1

2

{
n(∇ηf1)2

n − n1,0f
2
1

+ f 2
1 [(∇ηφ1)2 − (∇ηφ2)2] + n

n1,0
(∇ηφ2)2

}
, (4)

where we have absorbed the constant terms in the definition of
the energy density and rescaled r → η = r/ξs by introducing
the in-medium spin healing length

ξs = h̄
√

4m δg n1,0
. (5)

When a topological defect is considered only in component
1, i.e., if φ2 is constant, the previous equation reduces to an
energy functional (4) for component 1 alone, with a parametric
dependence on the density n1,0 due to the density contribution
of the kinetic energy (first term of the second line). Such a
dependence disappears in the limit n1,0 ≪ n2,0. The energy
density (4) then reduces to the energy density of a single-
component condensate with a renormalized healing length ξs ,
which provides the only length scale of the problem. In analogy
with light propagation in-medium from Maxwell equation,
we call the obtained equation the in-medium Gross-Pitaevskii
equation. Indeed, one can check that in the same limit n1,0 ≪
n2,0, ξs fixes also the spin speed of sound cs [30] via the relation
mcsξs = h̄/

√
2 of a homogeneous mixture.

The length scale characterizing the new equation is
deeply modified with respect to the density healing length
ξd = h̄/

√
2mgn0 that appears in a single-component Gross-

Pitaevskii equation for the same asymptotic value of the
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to fulfilling the incompressiblity condition. Assuming this
condition, the authors of Ref. [15] were able to obtain analytical
solutions for the case of moving magnetic solitons in balanced
mixtures. In the present work the incompressibility assumption
is tested against the numerical solution of the two-component
Gross-Pitaevskii equations, both in the homogeneous case
and in the presence of a harmonic trap. We show that in
relevant available experimental regimes, incompressibility is
an excellent approximation. We also detail the implication
of having nonequal intraspecies interaction strengths and the
appearance of the buoyancy effect in the presence of a harmonic
trap (see Sec. VII for further details).

The paper is organized as follows: In Sec. II we will
adopt the incompressibility assumption, which corresponds
to assuming that the total density of the system, differently
from the spin density, is not affected by the topological defect.
This assumption will allow us to derive a variational energy
functional that we then use in Sec. III to describe the magnetic
vortex. In the same section we will also calculate the energy
cost associated with the magnetic vortex and compare it with
the one of a vortex line in a single-component condensate.
We will also discuss the case when the incompressibility
condition breaks down and bound states of the minority
component within the quantum defect emerge. In Sec. IV we
carry out numerical solutions of the coupled Gross-Pitaveskii
equations in the presence of harmonic trapping. Since the
incompressibility condition cannot be satisfied when there are
too few atoms in the second component, we study in detail
the crossover between bound atoms in the vortex core to the
magnetic vortex in Sec. V. In Sec. VI we focus on the case of a
magnetic dark soliton, for which analytical expressions for any
polarization can be obtained, extending the work of Ref. [15].
In Sec. VII we compare the magnetic vortex scenario in a trap
with the case of unequal intraspecies interactions, which is
known to give rise to buoyancy and phase separation between
the two components even if the mixture is miscible in uniform
matter [6]. Finally, we present our conclusions in Sec. VIII.
We also provide some future perspectives and comment about
possible experimental feasibility.

II. MAGNETIC TOPOLOGICAL DEFECTS IN
HOMOGENEOUS MATTER

We consider a mixture of atomic Bose gases in two different
hyperfine levels. The mixture is characterized by two order
parameters !1 and !2. At the mean-field level, the stationary
solutions are obtained by minimizing with respect to the order
parameters the Gross-Pitaevskii (GP) energy functional EGP =∫

dV εGP, with the energy density given by

εGP =
∑

i=1,2

[
h̄2

2m
|∇!i |2 + (Vext − µi)|!i |2 + gii

2
|!i |4

]

+ g12|!1|2|!2|2, (1)

where m is the atomic mass, µi are the chemical potentials, and
Vext is a possible external trapping potential. The interaction
strengths gii = 4π h̄2aii/m and g12 = 4π h̄2a12/m are given
in terms of the intraspecies aii and interspecies a12 s-wave
scattering lengths, respectively. The mixture is stable against

phase separation as long as

δg ≡ √
g11g22 − g12 > 0. (2)

As mentioned in the introduction, we are interested in the
magnetic aspects of solitons and vortices, and we assume a11 =
a22 = a, i.e., g11 = g22 = g. The condition g ≫ δg = g −
g12 > 0 ensures that the total density will be almost unaffected
by the presence of the magnetic defect [15] (incompressibility
condition). Such a regime can be experimentally realized by
using 23Na in the two hyperfine states |F = 1,mF = ±1⟩ for
which the scattering lengths are a11 = a22 = 54.54 aB and
a12 = 50.78 aB , where aB is the Bohr radius, and this system
has been shown to exhibit spin superfluidity [28,29].

Let us first consider the homogenoues case (Vext = 0). The
presence of a trapping potential will be analyzed in Sec. IV,
but we anticipate here that our conclusions remain valid also
in that case, provided the width of the defect is much smaller
than the size of the atomic cloud.

Our ansatz for the topological excitations exploits the in-
compressibility of the density with respect to the spin channel,
i.e., we constrain the densities ni = |!i |2 in the variational
calculation by asking

n = n1(r) + n2(r), (3)

which is equivalent to set the total density of the magnetic
vortex equal to the total density of the ground state. Writing
the condensate wave functions as !i = √

ni,0fi(r)eiφi (r), i =
1, 2, with ni,0 = ni(r → ∞) the asymptotic values of the
condensate densities, the energy functional (1) can be written
as
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where we have absorbed the constant terms in the definition of
the energy density and rescaled r → η = r/ξs by introducing
the in-medium spin healing length

ξs = h̄
√

4m δg n1,0
. (5)

When a topological defect is considered only in component
1, i.e., if φ2 is constant, the previous equation reduces to an
energy functional (4) for component 1 alone, with a parametric
dependence on the density n1,0 due to the density contribution
of the kinetic energy (first term of the second line). Such a
dependence disappears in the limit n1,0 ≪ n2,0. The energy
density (4) then reduces to the energy density of a single-
component condensate with a renormalized healing length ξs ,
which provides the only length scale of the problem. In analogy
with light propagation in-medium from Maxwell equation,
we call the obtained equation the in-medium Gross-Pitaevskii
equation. Indeed, one can check that in the same limit n1,0 ≪
n2,0, ξs fixes also the spin speed of sound cs [30] via the relation
mcsξs = h̄/

√
2 of a homogeneous mixture.

The length scale characterizing the new equation is
deeply modified with respect to the density healing length
ξd = h̄/
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2mgn0 that appears in a single-component Gross-

Pitaevskii equation for the same asymptotic value of the
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FIG. 5. (Color online) (Left panel) Time dependence of angular momentum of components a (dashed line) and b (solid line) in real-time
dynamics in the partially stable region. (Right panels) Density snapshots of components a (top row) and b (bottom row) at times t = 260ω−1

⊥
in panels (a) and (b), t = 305ω−1

⊥ in panels (c) and (d), and t = 560ω−1
⊥ in panels (e) and (f). The density (in units of a−2

⊥ ) is represented in the
color scale. For this case Pz = 0.8 and κ = 7.

in component b decay. This decay is indeed induced by the
crossing of vortices across the ring, as can be seen in the
density snapshots of Fig. 5, for the majority (upper row) and
the minority (lower row) components. These snapshots show
the dynamical process explained above very clearly: First, the
spin instability kicks in as out-of-phase density oscillations in
the azimuthal direction, as seen in panels (a) and (b); since the
minority component is more sensitive to this perturbation, its
density oscillations grow enough to allow the penetration of
vortices inside the ring, panels (c) and (d); finally, after losing
angular momentum, the system is stabilized through the new
stability criterion shown in Fig. 4, panels (e) and (f).

Before ending our discussion of the partially stable region,
let us comment on the 1D limit. In this case the solutions of
Eq. (7) are exact, in the sense that there is no renormalization
factor accounting for the external degrees of freedom. The
effect of going to the 1D limit is to increase the width of the
partially stable region. This can be seen in Table I, where we
compare the width obtained from numerical simulations of the
1D GP equations with that of the 2D GP equations (in units of
the corresponding sound velocities at Pz = 0). Therefore, the
partially stable region is not a feature of an extended geometry,
but it is present also in 1D systems. The universality of the 1D
limit makes this result relevant to coupled Luttinger liquids
(see, e.g., [35,36]).

C. Dynamical instability

The energetic instability discussed above, although being
the relevant one when the two superfluids have the same

TABLE I. Width of the partially stable region.

Pz #1D/c1D
s #/cs

0.10 0.2398 0.0000
0.20 0.2398 0.0000
0.30 0.4797 0.1911
0.60 0.9594 0.5734
0.90 1.4391 0.9557
0.95 1.6789 1.5291

velocity, is not the only mechanism that can trigger decay of
persistent currents in a binary mixture. Indeed, when |va − vb|
exceeds some threshold the eigenfrequencies corresponding to
the spin-density mode acquire an imaginary part, leading to an
exponential growth of the spin excitations that makes the flow
dynamically unstable. The existence of a dynamical instability
for different flow velocities is a more general result and it is due
to the breaking of Galilean invariance. This has been recently
discussed in spin-orbit coupled condensates [37]. In the context
of binary mixtures, this instability is known as counterflow
instability and has been addressed both experimentally [38,39]
and theoretically [21–24]. The structure of the complex eigen-
frequencies is illustrated in the top panels of Fig. 6: The real
part (left panel) is nonzero in the limit of small k, in contrast
to the case of the demixing instability driven by interspecies
interaction.

To better characterize how the dynamical instability appears
in a toroidal trap, we have performed real-time simulations of
Eqs. (1) and (2), imposing initial winding numbers κa = 20,
κb = 0, which correspond to a velocity va much larger than the
critical velocity (Fig. 3, dashed line). The initial state consists
of the converged solutions of the GP equations describing the
mixture at rest, to which we have added an initial vortexlike
phase following Eq. (17).

Selected snapshots of the majority component density
are shown in Fig. 6, showing three different regimes: a
first stage, with radial breathing (as recently discussed in
[16] for a one-component BEC); a second stage, where
the spin instability kicks in and deforms the condensates;
and a third stage, in which vortices enter the BECs and
stabilize the angular momentum at L(a)

z = L(b)
z = Lz/2. The

maxima in the density of one component coincide with the
minima in the other, thus confirming that the instability is
driven by the spin-density mode. Notice that in absence
of dissipation the total angular momentum is conserved;
however, adding a small imaginary term in the left-hand side
of Eqs. (1) and (2) we obtain dissipative dynamics where
both energy and angular momentum decrease in time and
vortices are then able to fully cross the torus (after a certain
time).
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where E1V = π h̄2n1,0/m ln (1.46 R/ξs) is the energy of a
single-component vortex [30] with a rescaled healing length
ξs . From Eq. (11) one can check that for δg small enough
the magnetic vortex has a smaller energy cost than the single-
component one. In the limit n2,0 → n, the correction vanishes
and the magnetic vortex has a lower energy for any value
δg < g. We will later show that this conclusion is verified
numerically also in the presence of a trap and without imposing
explicitly the incompressibility condition.

One can also notice an increasing of the energy whenn1,0 →
n, i.e., n2,0 → 0, a regime in which the incompressibility
condition is no longer fulfilled. In this case the system cannot
be described as a magnetic vortex, but as a single (or a
few-particle) state bound in the core of the quantum vortex.

B. Single impurity trapped in the core of a vortex

In the limit of extreme diluteness of the second component
of the mixture, the system must be described as a single
particle in an effective potential given by the interaction with
the density of the majority component which hosts the defect.
Therefore from Eq. (8) one can write a Schrödinger equation
for the wave function $2 of the impurity in the form

− h̄2

2m
∇2$2 + g12|$1|2$2 = µ2$2. (12)

For the order parameter $1(r,θ ) = √
n1,0 f1(r) exp(iθ ) we

assume the known solution for a single-component vortex with
healing length equal to ξd , since in this limit $1 is not affected
by the interaction with the impurity. In this configuration, the
impurity sees the vortex core as a trapping potential as shown
in the inset of Fig. 1.

When we add more atoms of the minority component the
width of $2 is enlarged due to the repulsive intraspecies inter-
action and the width of the vortex is enlarged. An important
question is what will be the fate of the filling of the vortex
core when the number of atoms of the minority component
becomes larger and larger. We will show numerically in
Sec. V that the localized state evolves into the magnetic vortex
discussed above. We also derive a simple model to estimate the
threshold between the two regimes in terms of the atoms of the
minority component. Indeed, as long as the number of atoms in
component 2 is small, they can be hosted in the vortical region,
while after a certain critical number they will diffuse outside
the vortex core, constituting, at large distances, a uniform gas
with density n2,0.

IV. MAGNETIC VORTICES IN A TWO-DIMENSIONAL
HARMONIC TRAP

The calculation of magnetic vortices in the presence of
harmonic trapping is motivated by several reasons. Experi-
mentally, harmonically trapped gases are in fact well suited to
produce vortical configurations, and, consequently, their study
represents a topic of primary interest. Moreover, the presence
of harmonic trapping is particularly useful to investigate the
buoyancy effect in the case of unequal intraspecies interactions,
as we will discuss in Sec. VII. In the following, we will consider
Bose gases hosted by an axially symmetric harmonic trap
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FIG. 2. (a) Density along the radial axis of component 2 for
different values of the population of each component: N1 = 2 × 104

and N2 = 8 × 104 (solid black line), N1 = 5 × 104 and N2 = 5 × 104

(dashed red line), N1 = 8 × 104 and N2 = 2 × 104 (dot-dashed blue
line). Panels (b), (c), and (d) represent density of component 1 and
the total density and the spin magnetization n2 − n1, respectively,
following the same legends for the curves. The rest of the parameters
of the system are a11 = a22 = 54.54 aB , N = 105 (total number of
23Na atoms), and ω = 2π × 15.92 Hz. The densities are written in
harmonic oscillator units.

with r2 = x2 + y2. We also assume ωz ≫ ω, in such a way
that the z degree of freedom is frozen in the ground state
and a 2D simulation is enough. We consider in the numerics
the parameters for the 23Na discussed at the beginning and
renormalize the three-dimensional interaction strength to the
2D values by integrating along z, i.e., using in the simulation
the scattering lengths a → a/

√
2π lz with lz =

√
h̄/mωz.

The results are shown in Fig. 2. Figures 2(a) and 2(b)
show the density along the x axis for components 2 and 1,
respectively, for different values of N1 and N2, keeping the total
number of particles constant. It is interesting to observe that the
size of the core of the magnetic vortex, which is of the order of
the spin healing length, decreases when N1 increases, a clear
signature of the 1/

√
N1 dependence of ξs , as discussed for the

homogeneous case. Figure 2(c) displays the total density for the
same values of the global polarization. For a small dip, the latter
coincides with the total density profile of the ground state (i.e.,
without the vortex) of an interacting mixture due to the quasi-
incompressibility of the density channel with respect to the spin
channel. The inset in Fig. 2(c) shows that as expected from the
general discussion, the larger the ratio N2/N1, the smaller the
dip in the total density. The same would occur by decreasing
δg, which, however, will also make the vortex core larger and
eventually comparable with the size of the trapped gas.

Finally Fig. 2(d) shows that the magnetization change
is localized within the vortex core with a maximum spin
magnetization (at the position of the vortical axis) independent
of the global polarization for a fixed total number of particles
N . It is also worth mention that at distances larger than the spin
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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For p close to 1 it reduces to the well-known Tsuzuki  
solution but with a renormalised healing length.
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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FIG. 5. (Color online) (Left panel) Time dependence of angular momentum of components a (dashed line) and b (solid line) in real-time
dynamics in the partially stable region. (Right panels) Density snapshots of components a (top row) and b (bottom row) at times t = 260ω−1

⊥
in panels (a) and (b), t = 305ω−1

⊥ in panels (c) and (d), and t = 560ω−1
⊥ in panels (e) and (f). The density (in units of a−2

⊥ ) is represented in the
color scale. For this case Pz = 0.8 and κ = 7.

in component b decay. This decay is indeed induced by the
crossing of vortices across the ring, as can be seen in the
density snapshots of Fig. 5, for the majority (upper row) and
the minority (lower row) components. These snapshots show
the dynamical process explained above very clearly: First, the
spin instability kicks in as out-of-phase density oscillations in
the azimuthal direction, as seen in panels (a) and (b); since the
minority component is more sensitive to this perturbation, its
density oscillations grow enough to allow the penetration of
vortices inside the ring, panels (c) and (d); finally, after losing
angular momentum, the system is stabilized through the new
stability criterion shown in Fig. 4, panels (e) and (f).

Before ending our discussion of the partially stable region,
let us comment on the 1D limit. In this case the solutions of
Eq. (7) are exact, in the sense that there is no renormalization
factor accounting for the external degrees of freedom. The
effect of going to the 1D limit is to increase the width of the
partially stable region. This can be seen in Table I, where we
compare the width obtained from numerical simulations of the
1D GP equations with that of the 2D GP equations (in units of
the corresponding sound velocities at Pz = 0). Therefore, the
partially stable region is not a feature of an extended geometry,
but it is present also in 1D systems. The universality of the 1D
limit makes this result relevant to coupled Luttinger liquids
(see, e.g., [35,36]).

C. Dynamical instability

The energetic instability discussed above, although being
the relevant one when the two superfluids have the same

TABLE I. Width of the partially stable region.

Pz #1D/c1D
s #/cs

0.10 0.2398 0.0000
0.20 0.2398 0.0000
0.30 0.4797 0.1911
0.60 0.9594 0.5734
0.90 1.4391 0.9557
0.95 1.6789 1.5291

velocity, is not the only mechanism that can trigger decay of
persistent currents in a binary mixture. Indeed, when |va − vb|
exceeds some threshold the eigenfrequencies corresponding to
the spin-density mode acquire an imaginary part, leading to an
exponential growth of the spin excitations that makes the flow
dynamically unstable. The existence of a dynamical instability
for different flow velocities is a more general result and it is due
to the breaking of Galilean invariance. This has been recently
discussed in spin-orbit coupled condensates [37]. In the context
of binary mixtures, this instability is known as counterflow
instability and has been addressed both experimentally [38,39]
and theoretically [21–24]. The structure of the complex eigen-
frequencies is illustrated in the top panels of Fig. 6: The real
part (left panel) is nonzero in the limit of small k, in contrast
to the case of the demixing instability driven by interspecies
interaction.

To better characterize how the dynamical instability appears
in a toroidal trap, we have performed real-time simulations of
Eqs. (1) and (2), imposing initial winding numbers κa = 20,
κb = 0, which correspond to a velocity va much larger than the
critical velocity (Fig. 3, dashed line). The initial state consists
of the converged solutions of the GP equations describing the
mixture at rest, to which we have added an initial vortexlike
phase following Eq. (17).

Selected snapshots of the majority component density
are shown in Fig. 6, showing three different regimes: a
first stage, with radial breathing (as recently discussed in
[16] for a one-component BEC); a second stage, where
the spin instability kicks in and deforms the condensates;
and a third stage, in which vortices enter the BECs and
stabilize the angular momentum at L(a)

z = L(b)
z = Lz/2. The

maxima in the density of one component coincide with the
minima in the other, thus confirming that the instability is
driven by the spin-density mode. Notice that in absence
of dissipation the total angular momentum is conserved;
however, adding a small imaginary term in the left-hand side
of Eqs. (1) and (2) we obtain dissipative dynamics where
both energy and angular momentum decrease in time and
vortices are then able to fully cross the torus (after a certain
time).
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where E1V = π h̄2n1,0/m ln (1.46 R/ξs) is the energy of a
single-component vortex [30] with a rescaled healing length
ξs . From Eq. (11) one can check that for δg small enough
the magnetic vortex has a smaller energy cost than the single-
component one. In the limit n2,0 → n, the correction vanishes
and the magnetic vortex has a lower energy for any value
δg < g. We will later show that this conclusion is verified
numerically also in the presence of a trap and without imposing
explicitly the incompressibility condition.

One can also notice an increasing of the energy whenn1,0 →
n, i.e., n2,0 → 0, a regime in which the incompressibility
condition is no longer fulfilled. In this case the system cannot
be described as a magnetic vortex, but as a single (or a
few-particle) state bound in the core of the quantum vortex.

B. Single impurity trapped in the core of a vortex

In the limit of extreme diluteness of the second component
of the mixture, the system must be described as a single
particle in an effective potential given by the interaction with
the density of the majority component which hosts the defect.
Therefore from Eq. (8) one can write a Schrödinger equation
for the wave function $2 of the impurity in the form

− h̄2

2m
∇2$2 + g12|$1|2$2 = µ2$2. (12)

For the order parameter $1(r,θ ) = √
n1,0 f1(r) exp(iθ ) we

assume the known solution for a single-component vortex with
healing length equal to ξd , since in this limit $1 is not affected
by the interaction with the impurity. In this configuration, the
impurity sees the vortex core as a trapping potential as shown
in the inset of Fig. 1.

When we add more atoms of the minority component the
width of $2 is enlarged due to the repulsive intraspecies inter-
action and the width of the vortex is enlarged. An important
question is what will be the fate of the filling of the vortex
core when the number of atoms of the minority component
becomes larger and larger. We will show numerically in
Sec. V that the localized state evolves into the magnetic vortex
discussed above. We also derive a simple model to estimate the
threshold between the two regimes in terms of the atoms of the
minority component. Indeed, as long as the number of atoms in
component 2 is small, they can be hosted in the vortical region,
while after a certain critical number they will diffuse outside
the vortex core, constituting, at large distances, a uniform gas
with density n2,0.

IV. MAGNETIC VORTICES IN A TWO-DIMENSIONAL
HARMONIC TRAP

The calculation of magnetic vortices in the presence of
harmonic trapping is motivated by several reasons. Experi-
mentally, harmonically trapped gases are in fact well suited to
produce vortical configurations, and, consequently, their study
represents a topic of primary interest. Moreover, the presence
of harmonic trapping is particularly useful to investigate the
buoyancy effect in the case of unequal intraspecies interactions,
as we will discuss in Sec. VII. In the following, we will consider
Bose gases hosted by an axially symmetric harmonic trap
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FIG. 2. (a) Density along the radial axis of component 2 for
different values of the population of each component: N1 = 2 × 104

and N2 = 8 × 104 (solid black line), N1 = 5 × 104 and N2 = 5 × 104

(dashed red line), N1 = 8 × 104 and N2 = 2 × 104 (dot-dashed blue
line). Panels (b), (c), and (d) represent density of component 1 and
the total density and the spin magnetization n2 − n1, respectively,
following the same legends for the curves. The rest of the parameters
of the system are a11 = a22 = 54.54 aB , N = 105 (total number of
23Na atoms), and ω = 2π × 15.92 Hz. The densities are written in
harmonic oscillator units.

with r2 = x2 + y2. We also assume ωz ≫ ω, in such a way
that the z degree of freedom is frozen in the ground state
and a 2D simulation is enough. We consider in the numerics
the parameters for the 23Na discussed at the beginning and
renormalize the three-dimensional interaction strength to the
2D values by integrating along z, i.e., using in the simulation
the scattering lengths a → a/

√
2π lz with lz =

√
h̄/mωz.

The results are shown in Fig. 2. Figures 2(a) and 2(b)
show the density along the x axis for components 2 and 1,
respectively, for different values of N1 and N2, keeping the total
number of particles constant. It is interesting to observe that the
size of the core of the magnetic vortex, which is of the order of
the spin healing length, decreases when N1 increases, a clear
signature of the 1/

√
N1 dependence of ξs , as discussed for the

homogeneous case. Figure 2(c) displays the total density for the
same values of the global polarization. For a small dip, the latter
coincides with the total density profile of the ground state (i.e.,
without the vortex) of an interacting mixture due to the quasi-
incompressibility of the density channel with respect to the spin
channel. The inset in Fig. 2(c) shows that as expected from the
general discussion, the larger the ratio N2/N1, the smaller the
dip in the total density. The same would occur by decreasing
δg, which, however, will also make the vortex core larger and
eventually comparable with the size of the trapped gas.

Finally Fig. 2(d) shows that the magnetization change
is localized within the vortex core with a maximum spin
magnetization (at the position of the vortical axis) independent
of the global polarization for a fixed total number of particles
N . It is also worth mention that at distances larger than the spin
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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For p close to 1 it reduces to the well-known Tsuzuki  
solution but with a renormalised healing length.
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FIG. 5. (a) The healing length of the vortex component as a
function of the number of particles N2 of the other component (black
filled circles), in the case in which the system is harmonically trapped.
(b, c) The density of component 1 (left, linear scale) and 2 (right, in
logarithmic scale), as a function of x, for different values of N2, each
curve corresponding to a different point in panel (a), in increasing
order, following the brown arrow. The solid line corresponds to the
point surrounded by a red circle. The parameters are those of sodium,
with a trapping frequency ω = 2π × 15.92 Hz, and N1 = 105. For
comparison, we also plot in panel (a) the dependence of the healing
length as a function of N2 for a box trap with radius R = 64 µm, in
terms of the harmonic oscillator length (black open circles) of the
first case. The densities are written in harmonic oscillator units. We
can see that in the limit of small N2 the healing length of the vortex
tends to the density healing length, and for large N2 it tends to the
spin healing length. In the magnetic vortex limit, the main features of
the total density are depicted in Fig. 2(c).

The above effects can be clearly seen in Fig. 5, where we
report the results for the harmonic oscillator potential with
frequency ω = 2π × 15.92 Hz, and for a box potential with
radius R = 64 µm. Figure 5(a) shows how the width of the
vortex, represented by ξ , increases when N2 increases, to reach
a saturated value with N2 (notice the logarithmic scale in the
horizontal axis), which coincides with the in-medium spin
healing length ξs . The width has been calculated by fitting
the ansatz of Eq. (10) to the wave function found numerically.
In the figure we have also plotted the density of components
1 [Fig. 5(b)] and 2 [Fig. 5(c)] for different values of N2.
Figure 5(c) explicitly reveals the exponential decay (note the
logarithmic scale in the vertical axis) of the density for small
enough values of N2, corresponding to the solid thin curves.
There is actually a visible change of the decay, starting from
the solid thick line (corresponding to the circled point in the
top figure). For larger values of N2 the clear deviations from
the exponential decay reveal the onset of the formation of
the magnetic vortex. It is also important to observe that the
ratio between the healing length at large and small values of
N2 provides a result very close to the value

√
g/2δg = 2.69

predicted in Sec. II.
A simple estimate of the value of the number of atoms

N2 providing the onset of the diffusive nature of particles 2

outside the vortical region and the consequent formation of the
magnetic vortex can be obtained by imposing that the average
value of the density of the trapped condensate inside the vortex
equals the density n1,0 of the first component. Such a condition
leads to the estimate

N2 ∼ N1

(
ξs

R

)D

,

where D is the dimensionality of the system and R gives the
size of the system (of the order of the Thomas-Fermi radius).
As an example, the typical ratio between the spin healing length
and the Thomas-Fermi radius ranges from 1/10 to 1/50, which
yields a ratio between N2 and N1 on the order of 10−2–10−4.
These numbers are compatible with the result given in Fig. 5.

VI. MAGNETIC DARK SOLITONS
IN HOMOGENEOUS MATTER

In this section we consider the case where component 1
is hosting a dark soliton. We show that assuming the incom-
pressibility condition (3), it is possible to find a solution of
the coupled Gross-Pitaevskii equations that exhibits important
analogies with the case of the magnetic vortex. A peculiar
feature is that in the case of solitons we are able to obtain
systematic analytical results for all values of the polarization.
The magnetic soliton for a balanced mixture was introduced in
Ref. [15]. We generalize the results for the dark soliton in the
imbalanced case and show how by increasing the atom number
of the second component one can eventually reach the solitonic
solution in the incompressibility limit where the width of the
soliton is exactly given by the renormalized healing length (5).
Our result explains also the observed insensitivity with respect
to the polarization in the emergence of magnetic-like solitons,
as reported in the recent experiment carried out in Ref. [21].

The magnetic dark soliton is obtained by considering the
one-dimensional version of Eq. (4). Let us consider a soliton
at rest along the z direction with the soliton plane at z = 0 and
φi = 0. We can use the ansatz

√
n1,0f1(z) =

√
n cos [θ (z)/2]

in Eq. (4) to obtain the expression

εMS(θ )
δgn2

= 1 − p

4
(∂ηθ )2 + cos2(θ/2)[cos2(θ/2) − 1 + p]

(13)

for the energy density, where we have defined the polarization
p = (n2,0 − n1,0)/(n2,0 + n1,0). By minimizing the energy
with respect to the function θ (z), one finds the following
differential equation:

∂2
ηθ + sin(θ )

cos(θ ) + p

1 − p
= 0, (14)

which admits the ground state uniform solution (absence of
the soliton), setting θ (z) = 0. Equation (14) also admits a
nontrivial solitonic solution, yielding the result

n1(z) = n1,0
cosh(

√
1 + p z/ξs) − 1

cosh(
√

1 + p z/ξs) + p
(15)

for the density of component 1 hosting the soliton, for any
value of the polarization p. In the case n1,0 = n2,0 = n/2,
i.e., p = 0, the solution reduces to the magnetic dark soliton
solution of Ref. [15], while for p → 1 gives the Tsuzuki
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with an example of an experimental realization in a BEC
that confirms that dark-antidark states are straightforward to
create and observe the dynamics of in current experimental
settings.

The fundamental rationale behind such states is reminiscent
of that of the DB entities. For a single-component system, an
extensive discussion of the existence and stability of excited
states such as dark solitons or vortices can be found in the
respective one-dimensional (1D) and 2D chapters of Ref. [2].
In a two-component system with intercomponent repulsion,
a dark soliton or a vortex (or a ring) in one component
will induce an effective potential, through the intercomponent
nonlinearity, on the second component. If now atoms of
the second (“bright”) component are added solely within
this effective potential, the density suppression in the first
component will get filled by atoms of the second component
and a DB, a vortex-bright [23,24], or a ring-DB solitary
wave [25] will emerge. If, now, the second component features
a (spatially extended) ground state profile in the miscible
regime, the presence of intercomponent repulsion will produce
an effective additional potential which will attract atoms of
the second component into the dip of the first one. This
generates a bright solitary wave on top of the existing nontrivial
background, forming an antidark solitary wave. An additional
constraint in this case is that the two components need to
coexist outside of the dark-antidark (DA), vortex-antidark
(VA), or ring-antidark-ring (RAR) structure. This imposes the
condition of miscibility between the two species [26–28], i.e.,
the condition that the intercomponent repulsion should be less
than the square root of the product of the intracomponent ones,
0 ! g12 <

√
g11g22. We note in passing here that this condition

is derived in the context of homogeneous BECs and is only
slightly affected by the presence of weak trapping conditions
as in the case examples considered herein [29].

Based on the discussion above, there is a straightforward
path that one can follow in order to establish such states (at
least, numerically) involving an antidark component. One can
start at the uncoupled limit of g12 = 0 with an excited state
(e.g., a dark soliton in one dimension, or a vortex or a ring
dark soliton in two dimensions) in one component and a
fundamental (ground) state in the second component. Then,
after turning on the intercomponent coupling, the dip of the
excited state in the first component will induce an effective
attracting potential (due to the intercomponent repulsion) in
the second component, attracting some atoms into the dip
while maintaining (due to miscibility) the background of the
second component. By construction, an antidark structure will
be formed.

Such a state, as we will see in detail below, will continue
to exist for values of g12 up to the miscibility-immiscibility
threshold. To discuss these types of states, we will proceed
as follows: in Sec. II we will provide an example of an
experimental realization of a dark-antidark solitary wave
that will serve as a key motivation for the corresponding
theoretical more in-depth study. In Sec. III we will explore the
relevant states numerically, using numerical continuation and
bifurcation theory, starting from the uncoupled limit described
above. Finally, in Sec. IV we will summarize our conclusions
and present some intriguing possibilities for future work.

II. EXPERIMENTAL RESULTS

To motivate our discussion, we begin by presenting exper-
imental evidence for the existence, stability, and dynamics
of a dark-antidark solitary wave, shown in Fig. 1. In our
experiments we observe these features in two-component
BECs confined in an elongated dipole trap. The experiments
begin by creating a BEC of approximately 0.8 × 106 87Rb

(a) (b)

1,-1

1,0

2,-2

1,-1

(c)

FIG. 1. Experimental realization of dark-antidark solitary waves. (a) Absorption images (upper two panels) and corresponding integrated
cross sections (lower two panels) of a dark-antidark solitary wave. The dark soliton component resides in a cloud of |F,mF ⟩ = |2,−2⟩ atoms
(upper and third panel), while the bright component consists of atoms in the |F,mF ⟩ = |1,−1⟩ state (second and fourth panel from top).
(b) Experimentally observed oscillation of the dark-antidark solitary wave in the trap. The position is measured along the x axis, i.e., along the
weakly confining axis of the trap. The time is measured starting from the initial microwave pulse that creates the two-component mixture. The
blue dots are experimental data, while the red line is a sine function fit to the data. (c) Comparison between a DB soliton in a mixture of atoms
in the |F,mF ⟩ = |1,−1⟩ and |F,mF ⟩ = |1,0⟩ states (left image) and a dark-antidark structure in a mixture of atoms in the |F,mF ⟩ = |2,−2⟩
and |F,mF ⟩ = |1,−1⟩ states (right image).
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Superfluid Drag
At the mean-field level the kinetic energy associated to a superfluid flow is simply  

with a superfluid density which 
coincides with the total density 

and superfluid currents

If quantum fluctuations are important also the so called superfluid drag  
(a.k.a. Andreev-Bashkin effect, a.k.a. entrainment) must be considered.  

In this case the superfluid current is related to the order parameter phase via  
a matrix

ji = mnir�i
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~2
2m

ni(r�i)
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and for a Galilean invariant system (T=0): mn =
X

ij

⇢ij
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Such an effect has been introduced to study He-3/He-4 superfluid mixtures (1975), 
has been studied for mesoscopic rings, superconducting systems, neutron stars… 

For a weakly interacting Bose-Bose mixtures the drag  can be easily computed 
and for symmetric mixtures it reads

[D. V. Fil and S. I. Schevchenko, PRA (2005)]⇢12 ' mn
p
na3

g212
g2
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quantum depletion



Superfluid Drag & spin channel
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hydrodynamics

In other word the sum-rule for spin channel is not exhausted by the phonons and 
the Bijl-Feynman’s relation does not hold [1].

[1] J. Nespolo, G. Astracharchik and AR, NJP (2017)

- Therefore an independent measure of the susceptibility and of the spin speed of sound could 
provide a direct measurement of the superfluid drag.

On the other hand numerically one has access to all the six properties and check 
hydrodynamic prediction. 

2

via Bethe ansatz for any value of the coupling constant g.
In particular, for very strong repulsion (g → ∞) corre-
sponding to the so-called Tonks-Girardeau (TG) regime,
the LL model describes a gas of impenetrable bosons
which is equivalent to a gas of non-interacting spinless
fermions [24]. The full Hamiltonian (2) consists of two LL
gases, with the same interaction strength g, coupled via
a contact repulsive force. One should point out that this
full Hamiltonian also admits exact solutions, but only
when it enjoys SU(2) symmetry, i. e. if g̃ = g or when
both components are in the TG regime (g = ∞). In
the first case the ground state is ferromagnetic [25, 26]
and the equation of state can be calculated using the
LL model of a single-component gas. In the latter case,
the system corresponds to a mixture of interacting Fermi
gases and the solution is provided by the Yang-Gaudin
model [27, 28] yielding a paramagnetic ground state for
any value of the repulsive coupling g̃. In all other cases,
for which the Bethe ansatz approach is no longer appli-
cable, only numerical solutions are available by means,
for example, of QMC methods.
A population balanced system, where Na = Nb = N/2,

can be fully characterized by the following two dimen-
sionless parameters

γ =
gm

h̄2n
η =

g̃m

h̄2n
. (2)

These are fixed by the values of interaction strength and
by the total density n = na + nb of the gas, where
na = Na/L and nb = Nb/L are the densities of the
two components in terms of the size L of the 1D box.
In unbalanced configurations, an additional parameter is
needed to describe the polarization P = (na − nb)/n.
In Refs. [29, 30] the ground-state energy of the Hamilto-
nian (2) was calculated in the extreme case of one impu-
rity immersed in a LL gas (Nb = 1). Here we make use
of the same QMC techniques extended to any configura-
tion Nb ≤ Na with periodic boundary conditions (p.b.c.).
The trial wave function of the multi-component position
vector X = (x1, . . . , xNa

;x1, . . . , xNb
) is chosen as

ψT (X) =
∏

i<j

f(xi − xj)
∏

α<β

f(xα − xβ)
∏

i,α

h(xi − xα) ,

(3)
where the functions f(x) and h(x) correspond, re-
spectively, to intra-species and inter-species correlation
terms. Both functions are built from the exact solu-
tion of the two-body problem with the contact poten-
tial up to a matching point Xm as well as many-body
correlations typical of Luttinger liquids. More specifi-
cally, we write f(x) = sin(k|x| + ϕ(k)) if |x| < Xm and
f(x) = sinβ(π|x|/L) if Xm < |x| < L/2. The param-
eters k and β are fixed by the continuity condition of
the function f(x) and its first derivative at the match-
ing point Xm. For |x| > Xm the Jastrow function takes
into account long-range correlations due to phonon ex-
citations [31] and f(x) = 1 at |x| = L/2 in compliance

with the p.b.c. of the system. The phase shift results
from the Bethe-Peierls contact condition imposed by the
interatomic potential and is given by ϕ(k) = arctan 2kh̄2

mg .
The definition of the inter-species correlation function
h(x) is the same as the one above, the only difference be-
ing that in this case the phase shift is determined by the
coupling constant g̃. The matching points Xm < L/2 for
both correlation terms are optimized by minimizing the
variational energy obtained from ⟨ψT |H |ψT ⟩. We notice
that the correlation terms f and h encode the contact
boundary conditions imposed by the δ-function poten-
tials in the Hamiltonian (2). With this choice of ψT one
runs the simulation of the interacting gas in terms of a
system of free particles subject to proper bondary con-
ditions [29, 32]. Simulations are carried out using the
diffusion Monte Carlo method [33] which provides exact
results for the ground-state energy E(γ, η, P ) within sta-
tistical uncertainty.

Phase Separation: The first question we address con-
cerns the condition of miscibility of the mixture at T = 0
and of its eventual phase separation. This latter is sig-
nalled by the divergence of the magnetic susceptibility
χ, whose inverse is related to the curvature of the en-
ergy increase as the system is polarized away from the

P = 0 balanced configuration: 1
χ = ∂2E/L

n2∂P 2 . In the weak-
coupling regime, corresponding to γ ≪ 1 and η ≪ 1,
one can use the mean-field theory yielding the analytical
result 1

χ = g−g̃
2 . Based on this approach the mixture is

miscible for g̃ < g and phase separation occurs as soon
as g̃ > g. On the other hand, in the Yang-Gaudin model
where both components are in the fermionic TG limit,
the homogenous mixture is known to be stable for any
value of the inter-species coupling strength g̃. There-
fore, a question worth addressing concerns the determi-
nation of the critical parameter for phase separation in
the regime of intermediate values of the coupling strength
γ. To this purpose we calculate the ground-state energy
for fixed values of γ and η and varying polarization P .
The characteristic dependencies, obtained for γ = 2 and
γ = 20, are shown in Fig. 1. We find that the energy
of the P = 0 state is lower than the one of the fully
polarized (P = 1) state provided that η < γ. For η
slightly larger than γ the energy lies above the P = 1
threshold signalling the instability against the formation
of two fully polarized domains [34]. From the equation
of state as a function of the polarization P we extract
the inverse magnetic susceptibility 1/χ which we report
in Fig. 2 for various values of γ. We see that for γ = 0.04
the results of 1/χ are well reproduced by the mean-field
prediction whereas, for larger values of γ, deviations are
visible away from the critical point. Close to the point
of phase separation, however, we notice that the suscep-
tibility of both γ = 2 and γ = 20 is well described by
the linear dependence 1/χ ∝ (γ − η) of the mean-field
prediction. Finally, for γ = ∞, our results reproduce

Susceptibility:

Superfluid densities [1]:

Static Structure factors:

different quantities are consistent with one another.Manifestly, it is not the case for parameter range
h r0.35 0.601 1 , which still corresponds to a gapless phase but is in the vicinity of the transition point. In this

region there is no consistency between the speeds of sound obtainedwith differentmethods and, importantly,
the f-sum rule is not satisfied. The reason for this is appearance of the superfluid dragwhichwe analyse inmore
details below. It is interesting to note that the finite-size effects aremore pronounced in the densitymode
compared to the spinmode. Oneway to understand this is that the spinmode probes the response to the
polarisation, which does not change the system volume, while the density (compression)mode is the response to
a change in volume. The tail correction, being sensitive to the change of the volume, is able to account for the
finite-size discrepancy.

Finally, in order to directly probe the superfluidity properties of the system,we introduce thewinding
number related to speciesα,
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where i a( ) indexes particles belonging to speciesα only. Taking the limit of long propagation time, the statistics
of thewinding numbers are related to the superfluid densities. In particular, we evaluate the symmetric and
antisymmetric combinations
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According to equation (22), when the plus sign is considered, the quantity above is an estimator of the total
superfluid density of the system, Tr . In our zero temperature simulation, this quantity is always compatible with
the totalmass density, as it should be in continuous space, and in contrast with the low total superfluidity
observed in lattice simulations.When theminus sign is considered, on the other hand, we directly probe the
magnitude of the superfluid drag. This observable asymptotically attains the value Tr in the non interacting
(h l ¥) limit. In the symmetricmixture case, borrowing the same notations of section 3, this quantity reduces
to nm12r r-( ) , and is reported infigure 3. For low interactions (large h), it is compatible with unity and drops
to zero as interactions are ramped up. This corresponds to 4T12r r= , i.e., with bound (23). Itmust be noted
that, for h h r0.35c 0< » [32], the system enters themolecular phase, so that not all the drop in 12r r- can be
ascribed to an increase of the drag, but onemust also keep into account the emergence of themolecular
condensate. Indeed, the descriptionwe put forward holds only as long as the system is still in the atomic phase.
Interestingly, the saturation of the bound (23) (or, alternatively m m2*l ) appears to coincide with the
transition to themolecular phase inwhich bound state physics start dominating.

By independentlymeasuring Ss(k), sc and sw (hence cs), we can show that the usual Bijl–Feynman
approximation is not applicable to systems in the presence of the superfluid drag. To this end, we use
equations (12), (13) to express 12r r-( ) in terms of the observables listed above, and then compare it with the

Figure 2. Speeds of sound as a function of interlayer spacing h for nr 10
2 = , as extracted fromdifferent observables. (a) Speed of sound

of the densitymode, cd. (b) Speed of sound of the spinmode, cs. The Feynmanmethodmakes use of the static structure factor
S k k mc2�=( ) ( ), computed at the smallest k compatible with periodic boundary conditions. The speeds c S ka a[ ( )], with d s,a = { }
the channel index, are computedwith thismethod. The data show that the f-sum rule is exhausted by the phononmode in the density
channel, whereas this does not hold in the spin channel, the arrow indicating the divergence of c S ks s[ ( )]. The speeds c wa a( ), computed
from the excitation spectrum, assume a linear phononic dispersion relation k ckw =( ) with kwa ( ) obtained from equation (29). The
speeds cd dk( ) and cs sc( ) are computed from mc nd d

2 1k= - and mc ns s
2 1c= - , with dk and sc obtained from equations (26) and (25),

respectively. The speed of sound in the atomic limit coincides in the two channels. It is obtained from standard thermodynamic
relations using the equation of state E nr0

2( ) (taken from [41]) of a single layer systemwith half the density of the bilayer system.
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experimentally accessible range of values of h r0, albeit it is not of easy implementation for dipolarmolecules.
Therefore, experimental realisation of a bilayer systemof strongly interacting dipolar superfluids is reasonably
within reach of current or near-future technology.

We study the systembymeans of diffusionQMC,which allows us to extract both the thermodynamics and
the low energy spectrumof the system.DiffusionQMC is based on solving the Schrödinger equation in
imaginary time, thus projecting out the ground state of the system (for a general introduction on themethod see,
e.g., [38]). The contributions of the excited states are exponentially suppressed and the ground-state energy is
recovered in the limit of long propagation time. The simulations are performed for 60 particles with the same
parameters as in [32, 33]. For some quantities, this number of particles is sufficiently large to be close to the
thermodynamic limit; for some others, residual finite-size correctionsmust be taken into account, as it will be
explained inmore details later.

In this framework, a number of observables of interest can be obtained in a straightforwardway. The value of
the gapΔ and of the spin susceptibility sc are obtained from the dependence of the ground-state energy on the
polarisation P N N N1 2= -( ) . The latter is tuned bymoving particles from layer 1 to layer 2while keeping the
total number of particles N N N1 2= + constant. In the limit of small polarisation P, the energy can be
expanded as

E P E N P N
n

P0
2

. 25
s

2

c
= + D +( ) ( ) · · ( )

In the gapless phase ( 0D = ) the dependence on the polarisation is quadratic, while in the gapped phase it is
linear. Similarly, the compressibility dk atT=0 can be obtained from the volume dependence of the energy for
an unpolarised gas,

E
, 26d
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2

2
.

.
k = -

¶
¶

- ⎛
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⎞
⎠⎟ ( )

where . is theD dimensional volume of the system ( L2. = in the 2D geometry at hand).
The study of structure factors provides away of accessing the dynamic properties of the system.Weuse the

technique of pure estimators [39, 40] to compute the intermediate scattering function

S
N

k k k,
1

, , 0 , 27t r t r= á - ñab a b( ) ( ) ( ) ( )

with k k r, exp ij
N

jr t t= å -a aa( ) { · ( )}and rja the position of particle j in layerα. The intermediate scattering
function provides information on the correlations in imaginary time τ and is themain ingredient to compute the
static structure factor S Sk k, 0ºab ab( ) ( ).We consider a balanced systemwithNA=NB and study the
symmetric and antisymmetric structure factors,

S k S k S k , 28d s 11 12= o( ) ( ) ( ) ( )( )

corresponding to the density and spin channels of the discussion above, respectively. The compressibility and
the spin susceptibility can be compared to the respective static structure factors in the lowmomentum limit, in
order to verify the sum rules. The structure factors further provide information on the excitation spectra: their
long imaginary time asymptotic behaviour can befitted to an exponential decay of the form

S Zk, e . 29d s
kd st t~ l ¥w t-( ) ( ) ( )( ) ( )( )

Whenphononic excitations are present, kd sw ( )( ) is linear for smallmomenta, with the slope directly related to
the speeds of sound of the density and spin channels, respectively, through k c kd s d s�w �( )( ) ( ) .

It is instructive to show that, in a gapless systemwithout the drag, exactly the same information on the speeds
of sound can be recovered from the static structure factors S kd s, ( ), the low-momentum excitation spectra

kd s,w ( ), the compressibility dk and the susceptibility sc . The speeds of sound obtained from the different
methods are shown infigure 2 for the density(a) and spin(b)modes. The densitymode is gapless for any value
of the interlayer separation h. The speed of sound of this channel, as obtained from structural, energetic and
thermodynamic quantities, always yields compatible values throughout the explored range of h. Finite-size
effects reduce the speed of sound, which for large h (decoupled layers) appears to lie below its asymptotic value.
The latter is obtained from the equation of state of amodel with a single species at half the density (so called
‘atomic’ limit). In the computations, the dipolar interaction potential was truncated at a distance equal to half
the size of the simulation box. By adding themissing ‘tail’ correction to the compressibility, it is possible to
recover correct atomic limit asymptotics, as shown in the figure. The situation is quite different for the spin
channel, where the gap opens for h r 0.350 1 and differentmethods cannot be consistent in that parameter
range. For large values of the interlayer separation, h r 0.60 2 , we recover once again the atomic limit and
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Themagnitude of the superfluid drag, normalised by the total superfluid density, spans thewhole range
allowed by bound (23). However, onemust point out that the presence of the lattice causes the depletion of the
total superfluid density; in particular, on a lattice, it is no longer true that the total superfluid density coincides
with the total particle density at zero temperature [19]. In this context, it is noteworthy tomention the analytical
results of [17], which compute the superfluid drag starting from the physical parameters of the lattice in aweak
coupling approximation. The authors report a superfluid drag nm12r , normalised to the totalmass density, of
the order of 10−5–10−4 for weak tomoderate intercomponent scattering amplitude. Quantitatively similar
QMC results are reported in [18]. It is important to keep inmind that these low values are primarily due to the
small total superfluid density on the lattice.

In the following, we focus on a systemof dipolar Bose gases confined in a bilayer geometry in continuous
space, with the dipole orientation pinned perpendicular to the planes, as sketched infigure 1. This system is
similar to the one studied in [30], which pointed out the presence of entrainment between the superfluid
currents of two charged superfluids in a bilayer configuration. The relative strength of interspecies interactions
as compared to intraspecies ones can be tuned by changing the distance between the two layers. As it will be
shown later infigure 3, for an extended range of this control parameter, the superfluid drag can reach very large
values. Dipolar particles in a bilayer configuration are particularly advantageous under a variety of aspects.
Confining themolecules in a two-dimensional geometry and imposing a repulsive dipolar interaction strongly
reduces the detrimental two-body chemical reactions [31]. At the same time it allows to exploit the anisotropy of
the dipolar interaction, which is partially attractive between particles on different layers. Introducing the
distance h between the two layers, the interaction between two particle ofmassm and dipolemoment d on
different layers can bewritten as
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where r is the relative distance in the plane ofmotion. For dipolar gases, it is very useful to introduce the
characteristic length r md0

2 2�= . The various regimes of the system are characterised by the interlayer
parameter h r0 and the in-layer parameter n ri 0

2, with ni the single layer density. Static and dynamic properties of
this systemwere recently investigated in [32, 33]. In particular, it has been found that a transition from two
coupled superfluid (atomic phase) to a pair superfluid (molecular phase) takes placewhen the attractive
interaction is strong enough.Wewill show that, by approaching the transition point while remaining in the
atomic phase, the drag superfluidity becomes prominent.

To recover the description of equation (5), we point out thatmiscibility is here to be intendedwith respect to
the position of the particles projected in the direction orthogonal to the layers’ planes. Dipolar Bose gases in a
double layer configuration do not show any phase separation [32]. This is intuitive, since any potential with
V q 0q 0 -=( )∣ (inmomentum space) admits a bound state in two dimensions. The interlayer potential (24) has
the peculiarity to haveV q 0q 0 ==( )∣ , whichmakes the bound and scattering states of the system atweak
coupling rather peculiar [34]. The dipolar bilayer Bose gas was found to be the first example of a two component
Bose gas which can formpairs without collapsing (i.e., forming clusters) [32] as it occurs, e.g., inmixtures with
contact interaction only.

Besides serving as a testbed for the numerical study of the superfluid drag in a homogeneous geometry and
being a new system showing theAB physics, the dipolar bilayer configuration can represent one of the best-case
scenarios for the experimental observation of the presence of superfluid drag. Recent experiments using dipolar
molecules consisting of two atoms of Erbium-168 demonstrated the availability of condensates with large
magneticmoments, up to r 1600 a0 0» , with a0 the Bohr radius [35]. This value is still almost one order of
magnitude smaller with respect to the typical wavelength of the lasers used to confine the Er2molecules in arrays
of 2D layers. Experiments on stable polarNa–Kmolecules [36], which sportmuch larger r0,may help in
overcoming this problem. The recent proposal of sub-wavelength confinement [37]may further stretch the

Figure 1. Schematic representation of the bilayer dipolar bosonicmodel. Particles obeying Bose–Einstein statistics are confined in two
parallel layers. The dipoles are pinned perpendicularly to the layers’ planes and parallel to each other, yielding entirely repulsive on-
plane interactions and partially attractive out-of-plane interactions.
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direct winding numbermeasurement. Figure 3 reports the data corresponding to the three independent
expressions
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wherewe are indicating by cs sw( ) the speed of sound in the spin channel as extracted from thefit to equation (29).
The data show fair agreement among the above expressions and between them and the directmeasurement of

12r r- . A notable exception are the data for c S ks s s
2 c[ ( )] , where c S ks s[ ( )] is the speed of sound in the spin

channel, computed as if Bijl–Feynman relation held.We observe that this expression leads to thewrong
behaviour in the regionwhere 12r r- differs fromone, i.e., where the drag effect ismore prominent.

In bothfigures 2 and 3, the errobars in the quantities extracted from the static structure factor and the
winding number come from statistical averaging. Spectral frequency, compressibility and susceptibility have
additional contributions to the error due to the use offitting procedures, equations (25) and(29). The errors are
effectively increased in some of the results, due to cancellation of opposite trends as a function of h. Thefinite-
size effects are important for a quantitative agreement, as can be seen fromfigure 2(a). It is not obvious that
different quantities have similar finite-size correction, whichmight eventually be responsible for some
remaining differences between various estimations in figure 3.

5.Dynamic stability

Given the recent advances inmeasuring the spin superfluidity and its critical dynamics, we devote thefinal
section to explore the consequences of the presence of a superfluid drag termon such phenomena. Both long
living spin oscillations [42] and critical spin superflow [43] for Bose–Bosemixtures as well as for Fermi–Bose
superfluidmixtures [44] have beenmeasured in theweakly interacting regime. The agreement with the available
estimates [45, 46] is reasonable but rather far frombeing quantitative.

In the following, we determine the critical relative velocity required to trigger the dynamical instability of a
binarymixture of superfluids at zero temperature. To this end, we generalise equations (2) and(5) and the
results of [46, 47] by considering the energy functional
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with e n n,1 2( ) the internal energy density.We subtracted 12r from the diagonal kinetic terms, so that the
condition (3) on the total density is automatically satisfied. Considering nα and fa as conjugate variables, the

Figure 3.The quantity 12r r-( ), extracted fromdiffusionQMCdata using different estimators. The direct winding number
estimator (diamonds and dashed line to guide the eye) is comparedwith indirect estimators. The lattermake use of the relations
derived in the quantumhydrodynamicmodel of section 3 (see also equation (32)). The data sets are in satisfactory agreement with one
another, with the exception of the estimator c S ks s s

2 c[ ( )] , which tends to diverge as themolecular phase is approached (shaded region).
The origin of the errorbars and of remaining finite-size effects are discussed in themain text.
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Themagnitude of the superfluid drag, normalised by the total superfluid density, spans thewhole range
allowed by bound (23). However, onemust point out that the presence of the lattice causes the depletion of the
total superfluid density; in particular, on a lattice, it is no longer true that the total superfluid density coincides
with the total particle density at zero temperature [19]. In this context, it is noteworthy tomention the analytical
results of [17], which compute the superfluid drag starting from the physical parameters of the lattice in aweak
coupling approximation. The authors report a superfluid drag nm12r , normalised to the totalmass density, of
the order of 10−5–10−4 for weak tomoderate intercomponent scattering amplitude. Quantitatively similar
QMC results are reported in [18]. It is important to keep inmind that these low values are primarily due to the
small total superfluid density on the lattice.

In the following, we focus on a systemof dipolar Bose gases confined in a bilayer geometry in continuous
space, with the dipole orientation pinned perpendicular to the planes, as sketched infigure 1. This system is
similar to the one studied in [30], which pointed out the presence of entrainment between the superfluid
currents of two charged superfluids in a bilayer configuration. The relative strength of interspecies interactions
as compared to intraspecies ones can be tuned by changing the distance between the two layers. As it will be
shown later infigure 3, for an extended range of this control parameter, the superfluid drag can reach very large
values. Dipolar particles in a bilayer configuration are particularly advantageous under a variety of aspects.
Confining themolecules in a two-dimensional geometry and imposing a repulsive dipolar interaction strongly
reduces the detrimental two-body chemical reactions [31]. At the same time it allows to exploit the anisotropy of
the dipolar interaction, which is partially attractive between particles on different layers. Introducing the
distance h between the two layers, the interaction between two particle ofmassm and dipolemoment d on
different layers can bewritten as

V r h d
r h

r h
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where r is the relative distance in the plane ofmotion. For dipolar gases, it is very useful to introduce the
characteristic length r md0

2 2�= . The various regimes of the system are characterised by the interlayer
parameter h r0 and the in-layer parameter n ri 0

2, with ni the single layer density. Static and dynamic properties of
this systemwere recently investigated in [32, 33]. In particular, it has been found that a transition from two
coupled superfluid (atomic phase) to a pair superfluid (molecular phase) takes placewhen the attractive
interaction is strong enough.Wewill show that, by approaching the transition point while remaining in the
atomic phase, the drag superfluidity becomes prominent.

To recover the description of equation (5), we point out thatmiscibility is here to be intendedwith respect to
the position of the particles projected in the direction orthogonal to the layers’ planes. Dipolar Bose gases in a
double layer configuration do not show any phase separation [32]. This is intuitive, since any potential with
V q 0q 0 -=( )∣ (inmomentum space) admits a bound state in two dimensions. The interlayer potential (24) has
the peculiarity to haveV q 0q 0 ==( )∣ , whichmakes the bound and scattering states of the system atweak
coupling rather peculiar [34]. The dipolar bilayer Bose gas was found to be the first example of a two component
Bose gas which can formpairs without collapsing (i.e., forming clusters) [32] as it occurs, e.g., inmixtures with
contact interaction only.

Besides serving as a testbed for the numerical study of the superfluid drag in a homogeneous geometry and
being a new system showing theAB physics, the dipolar bilayer configuration can represent one of the best-case
scenarios for the experimental observation of the presence of superfluid drag. Recent experiments using dipolar
molecules consisting of two atoms of Erbium-168 demonstrated the availability of condensates with large
magneticmoments, up to r 1600 a0 0» , with a0 the Bohr radius [35]. This value is still almost one order of
magnitude smaller with respect to the typical wavelength of the lasers used to confine the Er2molecules in arrays
of 2D layers. Experiments on stable polarNa–Kmolecules [36], which sportmuch larger r0,may help in
overcoming this problem. The recent proposal of sub-wavelength confinement [37]may further stretch the

Figure 1. Schematic representation of the bilayer dipolar bosonicmodel. Particles obeying Bose–Einstein statistics are confined in two
parallel layers. The dipoles are pinned perpendicularly to the layers’ planes and parallel to each other, yielding entirely repulsive on-
plane interactions and partially attractive out-of-plane interactions.

6

New J. Phys. 19 (2017) 125005 JNespolo et al

Bi-layer dipolar gases [1]1)



Superfluid Drag & spin channel
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FIG. 3: (color online). Superfluid drag as a function of η for
different values of γ. Dashed lines correspond to the weak-
coupling result (5) for γ = 2 and γ = 20. The solid line refers
to γ = ∞ and is obtained by inverting Eq. (10) with both χ
and vs from the exact solution of the Yang-Gaudin model.

∑Na

i=1

∫ τ
0 dτ ′ dxi(τ

′)
dτ ′ of the first component and, analo-

gously, Wb(τ) of the second component are obtained by
integrating the corresponding particle trajectories. In the
absence of inter-species coupling, the winding numbers
Wa and Wb are independent and, being normalized as

Na(b) = limτ→∞
⟨W 2

a(b)(τ)⟩
4Dτ , result in ρD = 0. In Fig. 3

we report the results for the superfluid drag calculated
as a function of η for different values of the interaction
parameter γ. We find that 4ρD/ρ approaches unity in
the limit of both γ = ∞ and η = ∞. However, already
for γ = 20, ρD reaches ∼ 0.7 of its maximum value in the
vicinity of η = γ.
In order to determine the spin-wave velocity vs,

we consider the magnetic fluctuation operator ρsq =
∑

i,α(e
iqxi − eiqxα) and the frequency-weighted moments

mk =
∫

dω (h̄ω)kSs(q,ω) of the associated dynamic
structure factor Ss(q,ω). In particular, for the follow-
ing three moments one finds

m−1 = N
χs(q)

2n
→
q→0

N
χ

2n
, (7)

m0 = ⟨ρs−qρ
s
q⟩ = Ss(q) , (8)

m1 =
1

2
⟨[ρs−q, [H, ρsq]]⟩ = N

h̄2q2

2m
. (9)

Here, Eq. (7) is the susceptibility sum rule involving the
static spin-spin response function χs(q). Equation (8)
defines the static spin-spin structure factor and Eq. (9)
corresponds to the f-sum rule in the spin channel. One
can show that in the q → 0 limit both the m−1 and
m0 sum rules are exhausted by the spin-wave excitation
with energy ϵs(q) = vsh̄q. In fact, multiphonon excita-
tions contribute to the two sum rules with higher pow-
ers of q [42]. On the contrary, since spin current is not
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FIG. 4: (color online). Spin-wave velocity vs as a function
of η for different values of γ. The units are provided by
v0s =

√

ρ/m2χ0, the spin-wave velocity in the absence of inter-

species interactions. Open symbols refer to
√

(m1)sw/m−1

and solid symbols to m0/m−1. The dashed line corresponds
to the mean-field prediction vs =

√

n(g − g̃)/2m and the solid
line to the exact solution in the Yang-Gaudin model [36].

conserved, the contribution of the spin wave does not ex-
haust the f-sum rule at low momenta and it is given by
(m1)sw = m1(1−4 ρD

ρ ), multi-phonon contributions being
responsible for the remaining strength [22, 42, 43]. On
the basis of the above analysis the low-lying spin-wave
excitations can be obtained from the ratios of sum rules
calculated in the q → 0 limit

h̄qvs =
m0

m−1
=

√

(m1)sw
m−1

. (10)

We obtain a first determination of the spin-wave veloc-
ity by calculating the static spin-spin structure factor
Ss(q) and by extracting the coefficient of its low-q linear
dependence Ss(q)/N = vsχ

2n h̄q. This yields directly vs
once divided by the magnetic susceptibility χ calculated
above. A second estimate is obtained by using (m1)sw
with 4ρD/ρ as calculated from Eq. (6). Both estimates
of vs, which are found to agree within statistical errors,
are shown in Fig. 4. When γ = ∞ we also find agree-
ment with the exact result of vs from the Yang-Gaudin
model [36, 41]. By increasing the inter-species interac-
tion strength, the spin-wave velocity decreases due to the
combined effect of the susceptibility, which raises from
the non-interacting value χ0, and of the drag density ρD
until it vanishes at the critical point of phase separation.
In conclusion, we provide exact predictions for the ve-

locity of spin waves in repulsive 1D Bose mixtures. These
results show the strong effect of the Andreev-Bashkin su-
perfluid drag, which could be experimentally observed by
means of independent measurements of the spin-wave ve-
locity and of the magnetic susceptibility.
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different values of γ. Dashed lines correspond to the weak-
coupling result (5) for γ = 2 and γ = 20. The solid line refers
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∫
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m−1 = N
χs(q)

2n
→
q→0

N
χ

2n
, (7)

m0 = ⟨ρs−qρ
s
q⟩ = Ss(q) , (8)

m1 =
1

2
⟨[ρs−q, [H, ρsq]]⟩ = N

h̄2q2

2m
. (9)

Here, Eq. (7) is the susceptibility sum rule involving the
static spin-spin response function χs(q). Equation (8)
defines the static spin-spin structure factor and Eq. (9)
corresponds to the f-sum rule in the spin channel. One
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m0 sum rules are exhausted by the spin-wave excitation
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ers of q [42]. On the contrary, since spin current is not
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conserved, the contribution of the spin wave does not ex-
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(m1)sw = m1(1−4 ρD

ρ ), multi-phonon contributions being
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m−1
=
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(m1)sw
m−1
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We obtain a first determination of the spin-wave veloc-
ity by calculating the static spin-spin structure factor
Ss(q) and by extracting the coefficient of its low-q linear
dependence Ss(q)/N = vsχ

2n h̄q. This yields directly vs
once divided by the magnetic susceptibility χ calculated
above. A second estimate is obtained by using (m1)sw
with 4ρD/ρ as calculated from Eq. (6). Both estimates
of vs, which are found to agree within statistical errors,
are shown in Fig. 4. When γ = ∞ we also find agree-
ment with the exact result of vs from the Yang-Gaudin
model [36, 41]. By increasing the inter-species interac-
tion strength, the spin-wave velocity decreases due to the
combined effect of the susceptibility, which raises from
the non-interacting value χ0, and of the drag density ρD
until it vanishes at the critical point of phase separation.
In conclusion, we provide exact predictions for the ve-

locity of spin waves in repulsive 1D Bose mixtures. These
results show the strong effect of the Andreev-Bashkin su-
perfluid drag, which could be experimentally observed by
means of independent measurements of the spin-wave ve-
locity and of the magnetic susceptibility.
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Spin dynamics and Andreev-Bashkin effect in mixtures of one-dimensional Bose gases
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2 Departament de F́ısica i Enginyeria Nuclear, Universitat Politècnica de Catalunya,
Campus Nord B4-B5, E-08034, Barcelona, Spain

We investigate the propagation of spin waves in two-component mixtures of one-dimensional Bose
gases interacting through repulsive contact potentials. By using quantum Monte Carlo methods we
calculate static ground-state properties, such as the spin susceptibility and the spin structure factor,
as a function of both the intra-species and inter-species coupling strength and we determine the
critical parameters for phase separation. In homogeneous mixtures, results of the velocity of spin
waves and of its softening close to the critical point of phase separation are obtained by means of a
sum-rule approach. We quantify the non-dissipative drag effect, resulting from the Andreev-Bashkin
current-current interaction between the two components of the gas, and we show that in the regime
of strong coupling it causes a significant suppression of the spin-wave velocity.

PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss

The problem of dissipationless spin transport is a
widely studied topic in condensed matter physics with
important applications to electron-hole superfluidity, su-
perfluid 3He and spintronic devices [1]. Ultracold gases,
with the possibility they offer to realize quantum de-
generate mixtures, open new interesting perspectives for
the investigation of spin dynamics. Spin diffusion in a
strongly interacting two-component Fermi gas has been
observed and characterized in a series of recent experi-
ments [2–4], whereas the existence of spin supercurrents
in Bose mixtures has been demonstrated both at very
low temperatures [5–10] and in the presence of a large
thermal component [11]. In this respect one-dimensional
(1D) mixtures are particularly interesting for several rea-
sons: i) the low-energy dynamics is universal and de-
scribed by the Luttinger liquid model [12]; ii) spin and
charge degrees of freedom are expected to be completely
decoupled at low energy [13, 14]; and, finally, iii) regimes
of strong interactions can be achieved in long-lived sam-
ples [15–18].

The undamped propagation of spin waves is an im-
portant signature of spin superfluidity and an unbiased
determination of the spin-sound velocity is a crucial ele-
ment to understand the dynamics of two-component Bose
mixtures at ultralow temperatures. Notably, for such
mixtures, the propagation of sound in the spin channel
depends not only on the static magnetic susceptibility,
but also on a purely dynamic quantity known as the
Andreev-Bashkin non-dissipative drag [19]. This intrigu-
ing effect, never observed so far, involves two coupled
superfluids and entails that a superflow in one compo-
nent can induce a supercurrent in the second component
which is dragged without energy dissipation. In its orig-
inal form, the Andreev-Bashkin effect was discussed in
connection with possible superfluid mixtures of 3He in
4He. However, due to the limited solubility of the two
isotopes [20], such superfluid mixtures have never been
realized. In the context of ultracold atoms the Andreev-

Bashkin effect was studied using a perturbative approach
based on the Bogoliubov theory [21] and, more recently,
its consequences on the propagation of spin waves were
analyzed using the hydrodynamic theory [22].
In the present work we investigate spin dynamics and

the effect of the Andreev-Bashkin superfluid drag in 1D
repulsive mixtures of Bose gases. To this aim we use
quantum Monte-Carlo (QMC) methods first to estab-
lish the critical condition for the miscibility of the two
gases and second to calculate the entraiment effect from
the coupled superfluid response and the spin-wave ve-
locity via a sum-rule approach. On the basis of simu-
lations performed by varying both the intra-species and
the inter-species coupling strength, we find that the su-
perfluid drag can be large if the inter-species coupling is
strong, and it contributes to the softening of spin waves
on approaching the critical point of phase separation.
We consider Bose-Bose mixtures in a 1D geometry de-

scribed by the following Hamiltonian

H = −
h̄2

2m

Na
∑

i=1

∂2

∂x2
i

+ g
∑

i<j

δ(xi − xj) (1)

−
h̄2

2m

Nb
∑

α=1

∂2

∂x2
α
+ g

∑

α<β

δ(xα − xβ) + g̃
∑

i,α

δ(xi − xα) ,

which includes, in addition to the kinetic energy terms
of the two components with Na and Nb particles, equal
intra-species interactions modeled by the contact cou-
pling constant g > 0 and a contact inter-species repulsive
potential of strength g̃ > 0. Here xi with i = 1, . . . , Na

and xα with α = 1, . . . , Nb denote, respectively, the posi-
tions of particles belonging to component a and b of the
mixture. We also consider mass balanced mixtures, be-
ing m the mass of particles of both components. In the
absence of inter-species interactions, the above Hamilto-
nian for each component separately yields the well-known
Lieb-Liniger (LL) model [23], which can be solved exactly
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Persistent currents are a hallmark of superfluidity and
superconductivity, and have been studied in liquid helium
and solid state systems for decades. More recently, it
has become possible to trap an atomic Bose-Einstein
condensate (BEC) in a ring geometry [1–8] and induce
rotational superflow in this system [3,5,7,8]. This offers
new possibilities for fundamental studies of superfluidity in
a flexible experimental setting. Both long-lived superflow
[5,7] and quantized phase slips corresponding to singly
charged vortices crossing the superfluid annulus have
been observed [7,8].

So far experiments on persistent currents in atomic
BECs were limited to spinless, single-component conden-
sates. Extending such studies to multicomponent systems,
in particular those involving two or more spin states
[9–11], is essential for understanding superfluids with a
vectorial order parameter and for applications in atom
interferometry [12,13]. Persistent flow in a two-component
Bose gas has been studied theoretically [14–17] but many
issues remain open. Even the central question of whether,
and under what conditions, this system supports persistent
currents has not been settled.

In this Letter, we study the stability of supercurrents in a
toroidal two-component gas consisting of 87Rb atoms in
two different spin states. For a large spin-population imbal-
ance we observe superflow persisting for over two minutes
and limited only by the atom-number decay. However at a
small population imbalance the onset of supercurrent
decay occurs within a few seconds. We demonstrate the
existence of a well-defined critical spin polarization sepa-
rating the stable- and unstable-current regimes. We also
study the connection between spin coherence and super-
flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
stability of the supercurrent. The existence of a critical
population imbalance was anticipated in Refs. [15–17], but
quantitative comparison with our measurements will
require further theoretical work.

Our setup is outlined in Fig. 1(a). We load a BEC of
N " 105 atoms into an optical ring trap of radius 12 !m,

created by intersecting a 1070 nm ‘‘sheet’’ laser beam and
an 805 nm ‘‘tube’’ beam [7]. The sheet beam confines the
atoms to the horizontal plane with a trapping frequency of
350 Hz. In plane, the tube beam confines the atoms to the
ring with a trapping frequency of 50 Hz. The trap depth is
about twice the BEC chemical potential,!0=h " 0:6 kHz,
and varies azimuthally by <10%.
Our tube trapping beam is a Laguerre-Gauss LG3 laser

mode in which each photon carries orbital angular
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.
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flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
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quantitative comparison with our measurements will
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
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T=0 coherently coupled Bose gases

We consider a two component Bose gas with an interconversion term (Rabi coupling)
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are then studied in detail within a Bogoliubov approach
in Section 3.2.

The knowledge of the the spectrum allows us to cal-
culate in Section 4 the density and spin structure factors.
Such quantities can be measured experimentally also in
the trapped case, being related to the local fluctuations of
the density and of the polarisation.

The case of trapped gases is discussed in Section 5.
First, we address the case where the potentials acting on
the two species are the same (Sec. 5.1). In Section 5.2, we
concentrate on the case of an optical lattice acting only
on one component.

2 Ground state of homogeneous
spinor condensates

We consider a homogeneous spinor condensate whose two
components a and b interact both via s-wave contact in-
teractions and via a coherent coupling. Within the mean-
field framework the system is described by coupled Gross-
Pitaevskii equations for the spinor components Ψa(r, t)
and Ψb(r, t)

i! ∂
∂t
Ψa =

[
−!2∇2

2m
+ Va + ga|Ψa|2 + gab|Ψb|2

]
Ψa +ΩΨb

(1)

i! ∂
∂t
Ψb =

[
−!2∇2

2m
+ Vb + gb|Ψb|2 + gab|Ψa|2

]
Ψb +Ω∗Ψa,

(2)

where m is the atomic mass. The contact interaction
coupling constants are given by gi = 4π!2ai/m, with
i = a, b, ab, where aa and ab are the s-wave scattering
lengths for components a and b, and aab that associated
to the interaction between a and b. The term Ω intro-
duces a coherent coupling between the two components,
which gives rise to phase correlations between the two flu-
ids, in contrast to the density-density correlations coming
from the interspecies interaction gab. Depending on the
physical system, this term can have its origin on either a
two-photon (Raman) process or a direct Rabi coupling be-
tween the components. For the homogeneous system, the
external potentials are Va = Vb = 0, which is the situation
we consider in this article except in Section 5.

Due to the flipping term only the total number of par-
ticles (total density in the uniform system) n = na + nb is
conserved. Thus, the chemical potential µ is the same for
both components and the stationary states evolve as:

Ψσ(t) = e−iµt/!ψσ, σ = a, b. (3)

It is convenient to write the spinor components in terms
of the density nσ and the phase φσ

ψσ =
√

nσeiφσ . (4)

The ground state of the system has been described in ref-
erences [15,16,19,20], but here we revisit it introducing a
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Fig. 1. Different ground states (GS1 and GS2) exhibited by
the two-component spinor system as a function of gab/ḡab. In
solid: ga = gb; in dashed: δg = 0.1g (see text). In dotted:
unstable solutions. In all cases Ω = 0.1 gn.

new convenient notation. The ground state is given by the
values of densities and phases which minimize the energy
per unit volume

e(na, nb) =
1
2
gan2

a +
1
2
gbn

2
b + gabnanb

+ 2|Ω| cosφ
√

nanb − µ(na + nb), (5)

where we have introduced the phase φ ≡ φba + φΩ, in
terms of the phase difference φba = φb −φa and the phase
of the Rabi coupling, given by Ω = |Ω|eiφΩ . The configu-
ration with minimum energy corresponds to cosφ = −1.
For Ω real (φΩ = 0,π) this means φba = π for Ω > 0 and
φba = 0 for Ω < 0; for Ω complex, the equilibrium value
of φba is such that it satisfies φba + φΩ = (2n + 1)π with
n ∈ Z. Notice that the condition cosφ = +1 can give rise
to an extremum of the energy [13–15], but it will never
be the global minimum (in fact it is a saddle-point in the
energy landscape).

The equilibrium configuration is then characterised by
the density difference na−nb. The structure of the ground
state is better understood in the symmetric case ga =
gb ≡ g, when the equilibrium solutions must satisfy the
equation

(
g − gab +

|Ω|
√

nanb

)
(na − nb) = 0. (6)

This equation admits the following solutions

(GS1) na − nb = 0; (7)

(GS2) (na − nb)± = ±n

√

1 −
(

2|Ω|
(g − gab)n

)2

, (8)

corresponding to neutral (GS1) and polarised (GS2)
ground states. Introducing the parameter ḡab = g + 2Ω/n
one finds that GS1 (GS2) has the minimum energy pro-
vided gab < ḡab (gab > ḡab). In Figure 1 we report the
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are then studied in detail within a Bogoliubov approach
in Section 3.2.

The knowledge of the the spectrum allows us to cal-
culate in Section 4 the density and spin structure factors.
Such quantities can be measured experimentally also in
the trapped case, being related to the local fluctuations of
the density and of the polarisation.

The case of trapped gases is discussed in Section 5.
First, we address the case where the potentials acting on
the two species are the same (Sec. 5.1). In Section 5.2, we
concentrate on the case of an optical lattice acting only
on one component.

2 Ground state of homogeneous
spinor condensates

We consider a homogeneous spinor condensate whose two
components a and b interact both via s-wave contact in-
teractions and via a coherent coupling. Within the mean-
field framework the system is described by coupled Gross-
Pitaevskii equations for the spinor components Ψa(r, t)
and Ψb(r, t)
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]
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(2)

where m is the atomic mass. The contact interaction
coupling constants are given by gi = 4π!2ai/m, with
i = a, b, ab, where aa and ab are the s-wave scattering
lengths for components a and b, and aab that associated
to the interaction between a and b. The term Ω intro-
duces a coherent coupling between the two components,
which gives rise to phase correlations between the two flu-
ids, in contrast to the density-density correlations coming
from the interspecies interaction gab. Depending on the
physical system, this term can have its origin on either a
two-photon (Raman) process or a direct Rabi coupling be-
tween the components. For the homogeneous system, the
external potentials are Va = Vb = 0, which is the situation
we consider in this article except in Section 5.

Due to the flipping term only the total number of par-
ticles (total density in the uniform system) n = na + nb is
conserved. Thus, the chemical potential µ is the same for
both components and the stationary states evolve as:

Ψσ(t) = e−iµt/!ψσ, σ = a, b. (3)

It is convenient to write the spinor components in terms
of the density nσ and the phase φσ

ψσ =
√

nσeiφσ . (4)

The ground state of the system has been described in ref-
erences [15,16,19,20], but here we revisit it introducing a
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new convenient notation. The ground state is given by the
values of densities and phases which minimize the energy
per unit volume
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+ 2|Ω| cosφ
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nanb − µ(na + nb), (5)

where we have introduced the phase φ ≡ φba + φΩ, in
terms of the phase difference φba = φb −φa and the phase
of the Rabi coupling, given by Ω = |Ω|eiφΩ . The configu-
ration with minimum energy corresponds to cosφ = −1.
For Ω real (φΩ = 0,π) this means φba = π for Ω > 0 and
φba = 0 for Ω < 0; for Ω complex, the equilibrium value
of φba is such that it satisfies φba + φΩ = (2n + 1)π with
n ∈ Z. Notice that the condition cosφ = +1 can give rise
to an extremum of the energy [13–15], but it will never
be the global minimum (in fact it is a saddle-point in the
energy landscape).

The equilibrium configuration is then characterised by
the density difference na−nb. The structure of the ground
state is better understood in the symmetric case ga =
gb ≡ g, when the equilibrium solutions must satisfy the
equation

(
g − gab +

|Ω|
√

nanb

)
(na − nb) = 0. (6)

This equation admits the following solutions

(GS1) na − nb = 0; (7)

(GS2) (na − nb)± = ±n

√

1 −
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2|Ω|
(g − gab)n

)2

, (8)

corresponding to neutral (GS1) and polarised (GS2)
ground states. Introducing the parameter ḡab = g + 2Ω/n
one finds that GS1 (GS2) has the minimum energy pro-
vided gab < ḡab (gab > ḡab). In Figure 1 we report the
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FIG. 1. (a) With the trap parameters adjusted for high spatial
uniformity in Veff, we drive the coupling transition and record
a streak-camera image of 60 Rabi oscillations between the j1!
(white) and j2! (black) states. The vertical dimension of the
figure is 80 mm. (b) The value of dN , the total number of
atoms in j2! minus the total in j1!, is extracted from the image
in part (a). The contrast ratio remains near unity; the observed
loss of signal is due to overall shrinkage of the condensate
through collisional decay.

The coupling field has a detuning d from the local j1! to
j2! resonance. If z0 is nonzero, d depends on the axial
position z, with d"z# 2 d"z ! 0# linear in z and in z0.
The strength, characterized by the Rabi frequency V, of
the coupling field also varies with an axial gradient [13].
We are able to measure the population of both spin states

nondestructively using phase-contrast microscopy [14,15].
We tune the probe laser between the resonant optical fre-
quencies for the j1! and j2! states. Since the probe de-
tuning has an opposite sign for the two states, the resulting
phase shift imposed on the probe light has an opposite sign,
such that the j1! atoms appear white and the j2! atoms ap-
pear black against a gray background on the CCD array.
We can acquire multiple, nondestructive images of the spa-
tial distribution of the j1! and j2! atoms at various discrete
moments in time, or we can acquire a quasicontinuous time
record (streak image) of the difference of the populations
in the j1! and j2! states, integrated across the spatial extent
of the cloud.

The effect of the coupling drive is to induce a precession
of the order parameter at the local effective Rabi frequency
Veff"z# $ %V"z#2 1 d"z#2&1'2. In a preliminary experi-
ment, we chose parameters so as to make Veff nearly uni-
form, with vz ! 2p 3 63 Hz, vr ! 2p 3 23 Hz,V (
2p 3 340 Hz, and d"z# ( 0. A condensate at near-zero
temperature was prepared in the pure j1! state. The cou-
pling drive was then turned on suddenly, inducing an ex-
tended series of oscillations of the total population from
the j1! to the j2! state (“Rabi oscillations”) [Fig. 1]. The
robustness of the Rabi oscillations is proof that our imag-
ing does not significantly perturb the quantum phase of the
sample [16] (population transfer via Rabi oscillations is
phase sensitive).
If there is an axial gradient toVeff, then a relative torque

is applied to the order parameter across the condensate,
which can cause a twist to develop along the axial direc-
tion. If we naively model the sample as a collection of
individual atoms, each held fixed at its respective location,
then the order parameter at each point in space rotates

FIG. 2. (a) We represent the polar-vector order parameter as
an arrow in these simulations. The angle u from the vertical
axis determines the relative population, and the azimuthal angle
f is the relative phase of states j1! and j2! [see Eqs. (1)].
Each column in the arrow array is at fixed time, and each row
at fixed axial location. V̂ is perpendicular to the plane of the
page, so that a uniform, on-resonance Rabi oscillation would
correspond to all the arrows rotating in unison, in the plane
of the image. The tips of all the arrows are (on the relatively
fast time scale of Veff) tracing out circles nearly parallel to the
plane of the page (in our rotating-frame representation, small
excursions out of the page are a consequence of finite detuning).
In the figures, we “strobe” the motion just as the central arrow
approaches vertical, to emphasize the more slowly evolving
“textural” behavior. (b) The total density of the condensate
nt maintains a Thomas-Fermi distribution (integrated through
one dimension, as imaged) and changes only slightly during the
evolution of the cloud. (c) In a simple model of individual,
fixed atoms, a continuous inhomogeneity in Veff will cause the
Rabi oscillations in dN to wash out. (d) When a condensate
is simulated [19], the kinetic energy causes the order parameter
to precess through the full SU(2) space, coming out of the
page to cast off the winding and thus reduce its kinetic energy.
(e) The corresponding plot of dN shows that, when the arrows
are once more aligned, the Rabi oscillations recur.
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A numerical calculation of the three-dimensional, coupled
Gross-Pitaevskii !GP" equations Eq. !1" !below" describing
the system in the zero temperature limit agrees, at least quali-
tatively, with the outcome of the experiment, as shown in
Fig. 1. Of course, the agreement between the numerical in-
tegration of Eq. !1" and the laboratory data does not in itself
provide an intuitive explanation of the underlying physical
mechanism responsible for the collapse-revival behavior. In
this paper, we present a detailed analysis of this problem,
and arrive at a rather simple model that explains the major
features of the system’s behavior.
Before presenting the details of our analysis, it is useful to

first give an overview of the results. There are two main
concepts that play key roles in obtaining an intuitive under-
standing of this problem. First, there is a clear separation of
time scales: the period of Rabi oscillations between internal
states is much shorter than the period of the trap. That is, the
internal dynamics occur on a much shorter time scale than
the motional dynamics of the system. It is therefore useful to
go to a frame rotating at the effective Rabi frequency. In this
rotating frame, we show that there exists a weak coupling
between the low lying motional states which is proportional
to the offset between the two traps. This weak coupling has
the effect of modulating the amplitude of the fast Rabi oscil-
lations in the lab frame.
The second key point is to understand exactly which mo-

tional states are excited. They are not the linear response
collective excitations !normal modes" that have been studied
frequently in the BEC literature #41–43$. Instead, they are
many-particle topological states determined by the self-
consistent solutions to the two-component GP equations Eq.
!14". The well known vortex state #44–47$ is one example of
such an excitation in which phase continuity requires quan-
tized circulation around a vortex core. The related excitation
which plays a key role in this paper does not exhibit circu-
lation but has a node in the wave function amplitude and
exhibits odd-parity behavior characteristic of such a dipole
state. For a single component in the limit of the uniform gas,

the exact solution of this state is known as a dark soliton
#39$. In that case the scale of the density perturbation around
the node is the healing length and is determined by a balance
of kinetic and mean-field interaction energies. In the problem
we consider here, however, it is necessary to account for the
mean field of the the remaining population in the condensate
ground state. Consequently the two states—the ground state
and the dipole state—are inextricably linked and must be
determined self-consistently.
We first present a detailed theoretical analysis in Sec. II.

After making several reasonable approximations, we arrive
in Sec. II E at the two-state model—a simplified description
that encapsulates the essential properties of the system. In
Sec. III we present results of numerical calculations that il-
lustrate the behavior of the system and we compare our
model with the exact numerical solution of the coupled GP
equations. We finally summarize our work in Sec. IV and
suggest further studies based on our understanding of this
phenomenon.

II. THEORETICAL DESCRIPTION

The following theoretical development was motivated by
the experiment described in Ref. #25$. Therefore, we have
not tried to keep our calculations general, but instead have
made several assumptions based on that particular situation.
However, our approach could easily be extended to treat a
broader class of systems. We give a brief discussion in the
conclusion of the paper about possible extensions of this
work to other interesting systems.
We begin this section by writing down the coupled mean-

field equations, valid for zero temperature, that describe this
driven, two-component BEC. In Sec. II B we rewrite the
mean-field equation in a direct-product representation that
clearly separates out the external and internal dynamics. We
then go to a frame rotating at the effective Rabi frequency in
Sec. II C in order to focus on the slower motional dynamics
of the system. After making some approximations in Sec.
II D, we finally arrive at the main result of our study in Sec.
II E, the two-state model.

A. Coupled mean-field equations

A mean-field description of this many-body system that
includes the atom-field interaction has been developed,
which generalizes the standard Gross-Pitaevskii !GP" equa-
tion to treat systems with internal state coupling #22,23,48$.
The resulting time-dependent GP equation describing the
driven, two-component condensate is
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FIG. 1. This plot shows the modulation of the fractional popu-
lation in the (1,#1) state. The top line is experimental data #25$
while the bottom line is the result of a numerical calculation of the
three-dimensional, two-component Gross-Pitaevskii equation Eq.
!1" !below". The coupling strength and detuning were chosen for
the calculation to be '!350 Hz and &!#188 Hz, respectively.
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FIG. 1. (a) With the trap parameters adjusted for high spatial
uniformity in Veff, we drive the coupling transition and record
a streak-camera image of 60 Rabi oscillations between the j1!
(white) and j2! (black) states. The vertical dimension of the
figure is 80 mm. (b) The value of dN , the total number of
atoms in j2! minus the total in j1!, is extracted from the image
in part (a). The contrast ratio remains near unity; the observed
loss of signal is due to overall shrinkage of the condensate
through collisional decay.

The coupling field has a detuning d from the local j1! to
j2! resonance. If z0 is nonzero, d depends on the axial
position z, with d"z# 2 d"z ! 0# linear in z and in z0.
The strength, characterized by the Rabi frequency V, of
the coupling field also varies with an axial gradient [13].
We are able to measure the population of both spin states

nondestructively using phase-contrast microscopy [14,15].
We tune the probe laser between the resonant optical fre-
quencies for the j1! and j2! states. Since the probe de-
tuning has an opposite sign for the two states, the resulting
phase shift imposed on the probe light has an opposite sign,
such that the j1! atoms appear white and the j2! atoms ap-
pear black against a gray background on the CCD array.
We can acquire multiple, nondestructive images of the spa-
tial distribution of the j1! and j2! atoms at various discrete
moments in time, or we can acquire a quasicontinuous time
record (streak image) of the difference of the populations
in the j1! and j2! states, integrated across the spatial extent
of the cloud.

The effect of the coupling drive is to induce a precession
of the order parameter at the local effective Rabi frequency
Veff"z# $ %V"z#2 1 d"z#2&1'2. In a preliminary experi-
ment, we chose parameters so as to make Veff nearly uni-
form, with vz ! 2p 3 63 Hz, vr ! 2p 3 23 Hz,V (
2p 3 340 Hz, and d"z# ( 0. A condensate at near-zero
temperature was prepared in the pure j1! state. The cou-
pling drive was then turned on suddenly, inducing an ex-
tended series of oscillations of the total population from
the j1! to the j2! state (“Rabi oscillations”) [Fig. 1]. The
robustness of the Rabi oscillations is proof that our imag-
ing does not significantly perturb the quantum phase of the
sample [16] (population transfer via Rabi oscillations is
phase sensitive).
If there is an axial gradient toVeff, then a relative torque

is applied to the order parameter across the condensate,
which can cause a twist to develop along the axial direc-
tion. If we naively model the sample as a collection of
individual atoms, each held fixed at its respective location,
then the order parameter at each point in space rotates

FIG. 2. (a) We represent the polar-vector order parameter as
an arrow in these simulations. The angle u from the vertical
axis determines the relative population, and the azimuthal angle
f is the relative phase of states j1! and j2! [see Eqs. (1)].
Each column in the arrow array is at fixed time, and each row
at fixed axial location. V̂ is perpendicular to the plane of the
page, so that a uniform, on-resonance Rabi oscillation would
correspond to all the arrows rotating in unison, in the plane
of the image. The tips of all the arrows are (on the relatively
fast time scale of Veff) tracing out circles nearly parallel to the
plane of the page (in our rotating-frame representation, small
excursions out of the page are a consequence of finite detuning).
In the figures, we “strobe” the motion just as the central arrow
approaches vertical, to emphasize the more slowly evolving
“textural” behavior. (b) The total density of the condensate
nt maintains a Thomas-Fermi distribution (integrated through
one dimension, as imaged) and changes only slightly during the
evolution of the cloud. (c) In a simple model of individual,
fixed atoms, a continuous inhomogeneity in Veff will cause the
Rabi oscillations in dN to wash out. (d) When a condensate
is simulated [19], the kinetic energy causes the order parameter
to precess through the full SU(2) space, coming out of the
page to cast off the winding and thus reduce its kinetic energy.
(e) The corresponding plot of dN shows that, when the arrows
are once more aligned, the Rabi oscillations recur.
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FIG. 1. (a) With the trap parameters adjusted for high spatial
uniformity in Veff, we drive the coupling transition and record
a streak-camera image of 60 Rabi oscillations between the j1!
(white) and j2! (black) states. The vertical dimension of the
figure is 80 mm. (b) The value of dN , the total number of
atoms in j2! minus the total in j1!, is extracted from the image
in part (a). The contrast ratio remains near unity; the observed
loss of signal is due to overall shrinkage of the condensate
through collisional decay.

The coupling field has a detuning d from the local j1! to
j2! resonance. If z0 is nonzero, d depends on the axial
position z, with d"z# 2 d"z ! 0# linear in z and in z0.
The strength, characterized by the Rabi frequency V, of
the coupling field also varies with an axial gradient [13].
We are able to measure the population of both spin states

nondestructively using phase-contrast microscopy [14,15].
We tune the probe laser between the resonant optical fre-
quencies for the j1! and j2! states. Since the probe de-
tuning has an opposite sign for the two states, the resulting
phase shift imposed on the probe light has an opposite sign,
such that the j1! atoms appear white and the j2! atoms ap-
pear black against a gray background on the CCD array.
We can acquire multiple, nondestructive images of the spa-
tial distribution of the j1! and j2! atoms at various discrete
moments in time, or we can acquire a quasicontinuous time
record (streak image) of the difference of the populations
in the j1! and j2! states, integrated across the spatial extent
of the cloud.

The effect of the coupling drive is to induce a precession
of the order parameter at the local effective Rabi frequency
Veff"z# $ %V"z#2 1 d"z#2&1'2. In a preliminary experi-
ment, we chose parameters so as to make Veff nearly uni-
form, with vz ! 2p 3 63 Hz, vr ! 2p 3 23 Hz,V (
2p 3 340 Hz, and d"z# ( 0. A condensate at near-zero
temperature was prepared in the pure j1! state. The cou-
pling drive was then turned on suddenly, inducing an ex-
tended series of oscillations of the total population from
the j1! to the j2! state (“Rabi oscillations”) [Fig. 1]. The
robustness of the Rabi oscillations is proof that our imag-
ing does not significantly perturb the quantum phase of the
sample [16] (population transfer via Rabi oscillations is
phase sensitive).
If there is an axial gradient toVeff, then a relative torque

is applied to the order parameter across the condensate,
which can cause a twist to develop along the axial direc-
tion. If we naively model the sample as a collection of
individual atoms, each held fixed at its respective location,
then the order parameter at each point in space rotates

FIG. 2. (a) We represent the polar-vector order parameter as
an arrow in these simulations. The angle u from the vertical
axis determines the relative population, and the azimuthal angle
f is the relative phase of states j1! and j2! [see Eqs. (1)].
Each column in the arrow array is at fixed time, and each row
at fixed axial location. V̂ is perpendicular to the plane of the
page, so that a uniform, on-resonance Rabi oscillation would
correspond to all the arrows rotating in unison, in the plane
of the image. The tips of all the arrows are (on the relatively
fast time scale of Veff) tracing out circles nearly parallel to the
plane of the page (in our rotating-frame representation, small
excursions out of the page are a consequence of finite detuning).
In the figures, we “strobe” the motion just as the central arrow
approaches vertical, to emphasize the more slowly evolving
“textural” behavior. (b) The total density of the condensate
nt maintains a Thomas-Fermi distribution (integrated through
one dimension, as imaged) and changes only slightly during the
evolution of the cloud. (c) In a simple model of individual,
fixed atoms, a continuous inhomogeneity in Veff will cause the
Rabi oscillations in dN to wash out. (d) When a condensate
is simulated [19], the kinetic energy causes the order parameter
to precess through the full SU(2) space, coming out of the
page to cast off the winding and thus reduce its kinetic energy.
(e) The corresponding plot of dN shows that, when the arrows
are once more aligned, the Rabi oscillations recur.
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(white) and j2! (black) states. The vertical dimension of the
figure is 80 mm. (b) The value of dN , the total number of
atoms in j2! minus the total in j1!, is extracted from the image
in part (a). The contrast ratio remains near unity; the observed
loss of signal is due to overall shrinkage of the condensate
through collisional decay.

The coupling field has a detuning d from the local j1! to
j2! resonance. If z0 is nonzero, d depends on the axial
position z, with d"z# 2 d"z ! 0# linear in z and in z0.
The strength, characterized by the Rabi frequency V, of
the coupling field also varies with an axial gradient [13].
We are able to measure the population of both spin states

nondestructively using phase-contrast microscopy [14,15].
We tune the probe laser between the resonant optical fre-
quencies for the j1! and j2! states. Since the probe de-
tuning has an opposite sign for the two states, the resulting
phase shift imposed on the probe light has an opposite sign,
such that the j1! atoms appear white and the j2! atoms ap-
pear black against a gray background on the CCD array.
We can acquire multiple, nondestructive images of the spa-
tial distribution of the j1! and j2! atoms at various discrete
moments in time, or we can acquire a quasicontinuous time
record (streak image) of the difference of the populations
in the j1! and j2! states, integrated across the spatial extent
of the cloud.

The effect of the coupling drive is to induce a precession
of the order parameter at the local effective Rabi frequency
Veff"z# $ %V"z#2 1 d"z#2&1'2. In a preliminary experi-
ment, we chose parameters so as to make Veff nearly uni-
form, with vz ! 2p 3 63 Hz, vr ! 2p 3 23 Hz,V (
2p 3 340 Hz, and d"z# ( 0. A condensate at near-zero
temperature was prepared in the pure j1! state. The cou-
pling drive was then turned on suddenly, inducing an ex-
tended series of oscillations of the total population from
the j1! to the j2! state (“Rabi oscillations”) [Fig. 1]. The
robustness of the Rabi oscillations is proof that our imag-
ing does not significantly perturb the quantum phase of the
sample [16] (population transfer via Rabi oscillations is
phase sensitive).
If there is an axial gradient toVeff, then a relative torque

is applied to the order parameter across the condensate,
which can cause a twist to develop along the axial direc-
tion. If we naively model the sample as a collection of
individual atoms, each held fixed at its respective location,
then the order parameter at each point in space rotates

FIG. 2. (a) We represent the polar-vector order parameter as
an arrow in these simulations. The angle u from the vertical
axis determines the relative population, and the azimuthal angle
f is the relative phase of states j1! and j2! [see Eqs. (1)].
Each column in the arrow array is at fixed time, and each row
at fixed axial location. V̂ is perpendicular to the plane of the
page, so that a uniform, on-resonance Rabi oscillation would
correspond to all the arrows rotating in unison, in the plane
of the image. The tips of all the arrows are (on the relatively
fast time scale of Veff) tracing out circles nearly parallel to the
plane of the page (in our rotating-frame representation, small
excursions out of the page are a consequence of finite detuning).
In the figures, we “strobe” the motion just as the central arrow
approaches vertical, to emphasize the more slowly evolving
“textural” behavior. (b) The total density of the condensate
nt maintains a Thomas-Fermi distribution (integrated through
one dimension, as imaged) and changes only slightly during the
evolution of the cloud. (c) In a simple model of individual,
fixed atoms, a continuous inhomogeneity in Veff will cause the
Rabi oscillations in dN to wash out. (d) When a condensate
is simulated [19], the kinetic energy causes the order parameter
to precess through the full SU(2) space, coming out of the
page to cast off the winding and thus reduce its kinetic energy.
(e) The corresponding plot of dN shows that, when the arrows
are once more aligned, the Rabi oscillations recur.
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lines in Fig. 1(c). For vanishing interaction between
the particles, ! ¼ 0, this corresponds to resonant Rabi
oscillations of N independent particles. The situation
changes drastically for !> 1 since the F! fixed point
undergoes a supercritical pitchfork bifurcation implying
that F! becomes unstable while two new stable fixed

points F" ¼ ½"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ ð1=!2Þ

p
;!' are formed [Fig. 1(c)].

For our system this implies that a single trajectory around
F! splits up in two distinct trajectories around the new
fixed points F", which are delimited by a separatrix.

For a quantitative experimental study of the bifurcation
phenomenon, we study the temporal mean imbalance for
two fixed initial preparations. In the Rabi regime (!< 1)
initial preparations with " ¼ ! and z ¼ "z0 correspond-
ing to points north or south of the equator (see the inset in
Fig. 2) lead to dynamics with a vanishing temporal mean
population imbalance. This results from the fact that both

preparations share the same trajectory; i.e., no separatrix
exists. This is distinct to the Josephson regime where initial
preparations that are enclosed by the separatrix lead to
different trajectories resulting in nonvanishing mean im-
balances. This is demonstrated quantitatively in Fig. 2,
where the resulting temporal mean imbalances for the
initial preparation points ð"0:454;!Þ are shown. The ex-
perimental data clearly reveal the topological change in the
system’s phase space. It is in quantitative agreement with
the analytical predictions (solid lines) [22] calculated by
using independently measured parameters (see [24]).
To put this bifurcation measurement in a more general

context, we examine the whole phase portrait of the system
for characteristic values of ! across the Rabi to Josephson
transition. The nonlinear interaction # is set by a Feshbach
resonance at 9.1 G [25] and is kept constant for all experi-
ments. Different regimes of ! are explored by changing
the linear coupling strength " adjusted by the intensity of
the radio-frequency radiation. We check the resonant cou-
pling condition by regular reference measurements [24].
The measurement of the dynamics with shot noise limited
precision is feasible in our experiment since we prepare the
initial condition on the quantum mechanical uncertainty
level, i.e., coherent spin states [26]. The initial state prepa-
ration is done in a two-step process. The population im-
balance zðt ¼ 0Þ is controlled by the duration of a short
two-photon pulse applied to the particles in state jai. The
dynamics is initiated by a nonadiabatic change of the

FIG. 2 (color online). Direct observation of the symmetry
breaking in the dynamics due to the bifurcation. Two initial
states symmetric in the upper and lower hemisphere (see the
inset) lead to qualitatively different dynamics in the Rabi and
Josephson regime, respectively. In the Rabi regime both initial
states share the same trajectory around the stable fixed point F!,
and the temporal mean imbalance vanishes in both cases. By
increasing ! exceeding the critical value, a separatrix is formed
and the chosen initial preparations lead to two distinct trajecto-
ries separated by this separatrix. The dynamical modes are
characterized by a nonvanishing mean population imbalance.
The solid line represents the theoretical prediction.

FIG. 1 (color online). Interacting many-particle system as a
model system for bifurcation physics. (a) 87Rb offers two hy-
perfine states jai (blue) and jbi (red) which are linearly coupled
via a two-photon transition with Rabi frequency " and which
allow for adjusting the interparticle interaction # via a Feshbach
resonance. (b) The many-particle state is represented on a
generalized Bloch sphere, and its uncertainty area for our ex-
perimental parameters is shown, revealing that a mean field
description is adequate. Points on the sphere represent popula-
tion difference z (z direction) and relative phase " between the
two internal states in the same spatial mode. (c) Trajectories on
the Bloch sphere below and above the bifurcation value of the
ratio ! ¼ #N=". The typical supercritical pitchfork bifurcation
scenario occurs; i.e., a stable fixed point bifurcates in two new
stable fixed points while the original becomes unstable. The
arrows indicate the direction of flow close to these points.
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FIG. 3. (Color online) Spatial and temporal scaling of the spin-spin correlations. (a) Spatial correlations after quenches to
di↵erent proximities " from the critical point (color-coded), on the immiscible (left panels, at t = 39ms) and miscible side
(right, t = 12ms). Top row: The correlation functions, under a rescaling y ! y"⌫ of the distance dependence with mean-field
exponent ⌫ = 1/2, fall on a universal curve. Bottom row: "-dependence (double-log scale) of the characteristic length scales
deduced from the correlation functions. The straight lines reveal values for the critical exponent ⌫ = 0.51(4) on the immiscible
and ⌫ = 0.51(6) on the miscible side of the transition. (b) Temporal scaling of the spin-spin correlations. The characteristic
time ⌧ for di↵erent " is obtained as the intersection point of the linear fits to the initial rise of ⇠(t) (grey symbols for " = 0.1)
and to the behaviour after ⇠ deviates from this rise. The procedure of determining the intersection is exemplarily shown in the
upper panel for " = 0.23. In the lower panel we compare the extracted ⌧(") to a mean-field scaling with ⌫z = 1/2 (dashed line)
and to the Bogoliubov prediction ⌧ ⇠ 1/�, with gap �(") = ⌦

c

p
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FIG. 4. (Color online) Scaling analysis at short times after
the quench. Correlation length ⇠
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af-
ter the quench. The solid black line marks the Bogoliubov
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") also shown in Fig. 3a. Closer
to the critical point, the open coloured symbols show results
of semi-classical simulations of the quench dynamics. In the
experimental range (" & 0.1) simulation data and Bogoliubov
mean-field prediction agree. For " . 0.1, the simulations
demonstrate a deviation from the mean-field power law and
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[16] J. Kronjäger, C. Becker, P. Soltan-Panahi, K. Bongs,

K. Sengstock, Phys. Rev. Lett. 105, 090402 (2010).
[17] E. Nicklas, et al., Phys. Rev. Lett. 107, 193001 (2011).

Observation of Scaling in the Dynamics of a Strongly Quenched Quantum Gas 
Oberthaler group PRL (2015)

2

(a)

(b)

immiscible

F = 2

F = 1

�

�

linear coupling interaction

0 100 200

5

0

0 100 200

5

0

miscible

200 10

0

1

displacement y � y

0
(µm)

y (µm)

�1

0 100 200

0

1

F = 2
F = 1

immiscible

�

�

miscible

x
y

z

displacement y � y

0
(µm)

0 10 20 30 40 50 60

�1

0

1

0 100 200

�1

0

1

y (µm)

F = 2
F = 1

1

�

=

�

c

=

�g(

� � 1

)

D
e
n
s
i
t
y

c
o
r
r
e
l
a
t
o
r

I
m

b
a
l
a
n
c
e

D
e
n
s
i
t
y

c
o
r
r
e
l
a
t
o
r

I
m

b
a
l
a
n
c
e

FIG. 1. (Color online) Details of the experimental system. (a) Phase diagram, distinguishing miscible and immiscible phases
of the elongated degenerate Bose gas of rubidium atoms in F = 2 (blue) and F = 1 (red) hyperfine states. The state of the
system is controlled by linear coupling of the levels, with Rabi frequency ⌦, and by tuning the collisional interaction between
atoms in the hyperfine states, quantified by the relative strength ↵ = a"#/

p
a""a## of inter- and intra-species scattering lengths

(experimentally fixed to ↵ ⇡ 1.23). A quantum phase transition occurs at ⌦
c

= ⇢g(↵ � 1), with 1D atom density ⇢ and
intra-species coupling constant g. (b) The system is initially prepared far in the miscible regime, and then ⌦ quenched close
to ⌦

c

. After di↵erent evolution times the two species are absorption imaged. Snapshots of the patterns emerging on either
side of the transition are shown, with corresponding normalised density imbalance (n"(y) � n#(y))/⇢ and density correlation
functions between spatially separated points y and y0. The correlations on the miscible side exhibit decay on a characteristic
length scale, while oscillations on the immiscible side reflect domain formation as seen in the density.

dition, a ‘single-ion anisotropy’ [26] term J2

z

appears
which results from the local collisional interaction be-
tween the two components, with ⌦

c

= ⇢g(↵ � 1) propor-
tional to the tunable interaction strength between the
spins. As the scattering lenghts of the respective Rubid-
ium hyperfine scattering channels are very close, we take
a"" = a## = g/(~!?), such that ↵ = ~!?a"#/g. This
system reveals, at zero temperature, a quantum phase
transition at ⌦ = ⌦

c

where the Rabi-induced mixing of
the components cancels the e↵ect of the interspecies scat-
tering. Specifically, for a strong e↵ective magnetic field
⌦ > ⌦

c

the spins in the ground state are polarised in the
x direction, i.e. the two components can not spatially
separate although the bare system (⌦ = 0) is phase-
separating. This is confirmed experimentally (Fig. 1b).

A generic scaling hypothesis which includes dynamics
out of equilibrium implies that the spin-spin correlations
hJ

z

(y)J
z

(y0)i
t,"

= G
zz

(y � y0, t; ") after a sudden quench
of the linear coupling obey

G
zz

(s�⌫y, s�⌫zt; s") = s�⌫�⌘G
zz

(y, t; "), (3)

where " = ⌦/⌦
c

� 1 is determined by the final e↵ec-
tive magnetic field ⌦ after the quench. ⌫ and z are
critical exponents, and ⌘ is known as anomalous expo-
nent. In the experiment we reach this out-of-equilibrium
regime by initially preparing the system with a fast ⇡/2
microwave-radiofrequency pulse in a J

x

spin state which
is the ground state of the system in the infinite-linear-

coupling limit (⌦ � ⌦
c

). Then, the intensity of the
radiofrequency field is quickly reduced, switching " to its
final value. Adjusting the linear coupling during the fol-
lowing evolution compensates for the change of ⌦

c

due to
the loss of particles which was independently determined.
The correlations G

zz

(y, t; ") developing on the misci-
ble side (" > 0) are shown in Fig. 2b, in comparison with
homogeneous Bogoliubov-de Gennes theory predictions
[9], averaged over the density inhomogeneity in the trap
and convoluted with the optical point spread function
of the imaging system. Fitting an exponential to the
short-distance fall-o↵ of the observed correlation func-
tions we extract a correlation length ⇠(t; ") which shows
near-linear growth after the initial quench (Fig. 2c). The
Bogoliubov prediction (solid lines) qualitatively repro-
duces this rise as well as the oscillations seen for larger
". The damping of the oscillations seen at smaller " is
attributed to e↵ects of the transverse trapping potential.
We extract the maximum correlation length for di↵er-

ent " within the first 12ms after the quench, where this
observable is still weakly a↵ected by the atom loss. Using
the theoretically expected exponent of 0.5 for rescaling
the correlation functions at a fixed time (t = 12ms) they
all fall on a universal curve (Fig. 3a, upper panels). Ex-
tracting characteristic length scales as indicated, we find
scaling according to Eq. (1) (lower panels of Fig. 3a). The
exponent extracted from a linear fit of ⇠ on a double-log
scale is ⌫ = 0.51 ± 0.06 (Fig. 3a, lower right panel). The
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S(k) is the Fourier Transform of the density-density correlation function and  
one can write in particular the FLUCTUATIONS IN A REGION as: 

Close to the phase transition the fluctuations in the polarization grow ⇒  
structure factor at k=0 grows (diverges for infinite system)
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FIG. 4: Vortex pair precessing around the centre of the trap. Example with the distance 2d = 5.57

q
h̄

m!?
and ⌦R = 0.5!?.

The left and middle columns (a. - d.) show the density and phase profiles of the precessing vortices at !?t = 6. Density-density

interaction between species g

12

= 0. (e.) The domain wall is seen as a jump in the phase 'A = '

1

� '

2

. The width is of

the order of

p
h̄/m⌦

Rabi

⇠ 1.41⇠. (f.) Interference of the two condensates. Along the domain wall the wave functions have

opposite phases, and the interference is destructive.

FIG. 5: Angular velocity of the precessing vortex pair as a function of the vortex distance. The Rabi coupling ⌦R = 0.5!?.

The angular velocity increases as ⇠ 0.71/2d, as in h̄!

rot

=

�
2nd . The bottom panel presents the angular momentum per particle

hL(i)
z /Ni = �ih̄

R
d

2

x 

⇤
i @' i/N as a function of the distance between the vortex cores. The black dashed line depicts the

theoretical prediction of the Eq (4). Density-density interaction between species g

12

= 0.

density a

density b

phase a

phase b

relative phase
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2d the vortex pair. For example, using the above pa-
rameters, one finds d

wall

/⇠ = 28.3 and d
wall

/2d = 0.54
(blue curve in Fig. 2). The red curve in the same figure
this ratio instead corresponds to d

wall

/2d = 1.52. If the
width d

wall

of the domain wall is much larger than the
size of the vortex pair (corresponding to very small values
of ⌦

R

) the e↵ect of the Rabi coupling should be treated
using a perturbative approach [16].

Numerical results In Fig. 1 we show the typical be-
havior of the relative phase of a vortex pair in the pres-
ence of a 2D harmonic trap, obtained by solving numeri-
cally the coupled Gross-Pitaevskii Eqs. (1), with g

12

= 0.
The structure of the domain wall is clearly visible. The
result shown in the figure is obtained as follows: first, we
symmetrically imprint two vortices, one in each compo-
nent, far away from the trap’s center; then we perform
an imaginary time evolution, during which the domain
wall in the relative phase forms and the vortices start
approaching each other, with the energy of the system
decreasing. We stop the simulation at a certain point, in
order to produce a vortex pair of the desired size. This
configuration serves as the initial condition for a sub-
sequent real time evolution, in which the pair exhibits
precession. The configuration in Fig. 1 shows the phase
after a short precession time, the small asymmetry in the
shape of the wall being caused by the rotation.

FIG. 1: (color online) a) Relative phase ✓
1

�✓
2

of the two com-
ponents near a vortex pair in the presence of Rabi coupling
⌦

R

= 0.5!?. We can see, that the phase jump between the
two vortices is confined along the narrow domain wall, con-
necting the vortices. The dotted line shows the circle around
which the phase is calculated in the right panel. b) Phases
✓
1

(blue solid line) and ✓
2

(red dotted line) along a circle
centered in the vortex of the first component. The phase ✓

1

makes a 2⇡ winding around a vortex, with half of the jump
concentrated in a short interval of the polar angle ↵. The
phase ✓

2

is instead single valued. This phase profile is typical
of an isolated half-vortex in the first component.

Fig. 1 shows explicitly the behavior of the phases of the
two components calculated around the contour shown in
the left panel, around the vortex of the spin component
1. The figure clearly reveals the 2⇡ jump in the relative
phase ✓

2

� ✓
1

near the domain wall.
By solving the Gross-Pitaevskii equation in real time

one can investigate the precession of the vortex pair and
evaluate the precession frequency ⌦

prec

whose depen-

dence on the Rabi coupling ⌦
R

is reported in Fig. 2 for
di↵erent values of the vortex size d. Its dependence on
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FIG. 2: (color online) Dependence of ⌦
prec

on the Rabi cou-
pling ⌦

R

for di↵erent values of the vortex separation 2d. The
numerical solution of the GP equations (component 1 - bul-
lets (�), component 2 - triangles (O)) are in a good agreement
with the analytical expression, Eq. (5), (solid lines) for large
values of 2d. For smaller separations, the data can still be
fitted with the ⇠

p
⌦

R

relation (dashed lines), but the coe�-
cient deviates from the one of Eq. (5). The insert is a zoom
of the figure for small values ⌦

R

, where ⌦
prec

changes sign.

d, for a fixed value of ⌦
R

is instead shown in Fig. 3. The
results of the numerical calculations are found to agree
reasonably well with the predictions (5) of the macro-
scopic model discussed in the first part of the paper (see
full lines in the figures). A expected, the discrepancies
become smaller if the condition d

wall

⌧ d is better sat-
isfied.

In the introduction we have emphasized the fact that,
in the presence of Rabi coupling, vortices cannot exist
as single objects, but only in pairs. This is actually the
case for a uniform gas. In the presence of harmonic trap-
ping, single vortex lines can also exist as the domain wall
will cost a finite amount of energy, fixed by the size of
the atomic cloud. We have explored single vortex con-
figurations by considering a vortex line (corresponding
to the component 1) located at some distance from the
center of the trap. The domain wall which minimizes the
energy than corresponds to the shortest line connecting
the vortex to the external region outside the Thomas-
Fermi radius, where the density of the atomic cloud is
practically vanishing (see Fig. 4). By solving the GP
equations (1) in real time we have found that the vortex
line in component 1 exhibits the precession according to
the macroscopic prediction (2)-(4) with 2E

v

replaced by
E

v

and E
wall

calculated along the domain wall. How-
ever we soon find the appearance of a second vortex in
component 2, attached to the second end of the wall,
emerging from the border, where its energy cost is van-

4
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FIG. 3: (color online) Dependence of the precession frequency
⌦

prec

(component 1 - bullets (�), component 2 - triangles (O))
on 1/2d (in units of

p
m!?/~). The solid lines correspond to

the prediction of Eq. (5). As in the Fig. 2, the agreement is
good as long as the distance 2d separating the two vortices is
su�ciently large.

ishingly small. The two vortices then start rotating one
with respect to the other. Eventually the original vor-
tex of the component 1 reaches the border of the atomic
cloud to disappear and reappear again after a while (see
also Ref. [17]).

The results presented above were obtained under the
assumption g

12

= 0 for the inter-component interac-
tion parameter. If g

12

is small compared to the inter-
component coupling constants g

11

= g
22

= g, we find
that the influence of g

12

on the precession is almost neg-
ligible, the main role being played by the long-range sur-
face tension force. This behavior is consistent with the
fact that stable molecules, even for relatively large val-
ues of g

12

, have a very small size. New features take
instead place for larger values of g

12

. In particular, if g
12

is close to g one can identify a critical value for the Rabi
coupling, given by the expression ⌦

crit

= 1

3

(g
12

� g)n/~
[7]. If ⌦

R

> ⌦
crit

the domain wall becomes unstable, the
solution of the GP equations corresponding to a local
maximum of energy, rather than to a local minimum.
However, even for ⌦

R

< ⌦
crit

a long domain wall is
metastable with respect to decay into smaller fragments,
resulting in the creation of new vortex pairs appearing at
the ends of the new fragments. This fragmentation is the
analog of string breaking in quantum chromodynamics.
The probability of such a fragmentation becomes larger
and larger as one approaches the critical value ⌦

crit

. In
Fig. 5 we show the result of the fragmentation of a do-
main wall obtained at ⌦

R

= 0.6⌦
crit

, with ⌦
crit

calcu-
lated in the center of the trap, starting from a domain
wall initially created symmetrically with respect to the
center of the trap and then allowed to evolve through
the time !?t = 1.7. The figure clearly shows the appear-

ance of fragments of di↵erent size, connecting vortices of
di↵erent components.

FIG. 4: (color online) Relative phase distribution around a
single half-vortex in a two component coherently-coupled sys-
tem. The vortex builds a domain wall that is attached to the
nearest point of the edge of the cloud. The phase distribu-
tion corresponds to the evolution time of !?t = 0.2. Then,
the vortex starts precessing and induces the appearance of a
second vortex in the component 2.

Conclusions We expect that our predictions for the
precession of half-vortex pairs and for the fragmentation
of the corresponding domain wall at large Rabi coupling
will stimulate new measurements on coherently coupled
Bose-Einstein condensates. Experimentally, pairs of half-
vortices, connected by a domain wall, can be created by
the proper imprinting of the relative phase of the two
condensates. The shape of the domain wall connecting
the two vortical lines is in principle observable using het-
erodyne methods giving rise to visible interference in the
domain wall region. The precession e↵ect could be mea-
sured using real time detection techniques (see, for ex-
ample, [18]).
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The Rabi coupling strongly modified the physics of two component 
Bose gas at the few and many body level.

1. ITF-like (or phi^4) Ferromagnetic Transition (2D not-at-all MF)  
2. Vortex dimer and string breaking 
3. LHY corrections from 2.5 to 3-body corrections 
4. Goldstone mode decay at the FM transition 
5. Effective Resonances in the 2-body scattering interactions 
6. Peculiar Repulsive Bound Pairs with an internal spin which depends on 

its motion (lattice) 

….3-body (Petrov), new vortex lattices (Cipriani),                    
Persistent current (Abad), spin-dipole mode and sum-rules (AR), 

Hawking radiation (Carusotto)….   


