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Nuclear many-body problem
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i.e. 24 (;1) complex coupled second-order differential equations



Nuclear many-body methods

Phenomenological (fit to A-body experiment)

Ab initio (fit to few-body experiment)



Nuclear many-body methods

Phenomenological (fit to A-body experiment)

 Hartree-Fock/Hartree-Fock-Bogoliubov (HF/HFB)
mean-field theory, a prior1 inapplicable, unreasonably effective

* Energy-density functionals (EDF)
like mean-field but with wider applicability



Nuclear many-body methods

Ab initio (fit to few-body experiment)

® Quantum Monte Carlo (QMC)
stochastically solve the many-body problem “exactly”

e Perturbative Theories (PT)
first few diagrams only (though no small expansion parameter present)

 Resummation schemes (e.g. SCGF)
selected class of diagrams up to infinite order

e Coupled cluster (CC)
generate np-nh excitations of a reference state
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Nuclear pasta provides further motivation
to study 2D cold gases




Neutron star crusts inhomogeneous
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2D history

Theory Experiment

- The atomic Fermi gas can be
restricted to quasi-2D geometries
in the lab

Mean-field BCS calculation for a 2D Fermi
gas was done in the 1980s (extending
earlier work on 3D systems done
independently by Eagles and Leggett)

- There has been a large amount of
interest in these gases recently
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Bound States, Cooper Pairing, and Bose Condensation in Two Dimensions

Mohit Randeria, Ji-Min Duan, and Lih-Yir Shich
Department of Physics and Materials Research Laboratory, University of [llinois at Urbana-Champaign,
1110 West Green Street, Urbana, IHlinois 61801
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For a dilute gas of fermions interacting via an arbitrary pair potential in =2 dimensions, we show
that the many-body ground state is unstable to s-wave pairing if and only if a two-body bound state ex-
ists. We further obtain, within a variational pairing Ansatz, a smooth crossover from a Cooper-paired
state (Egkr 1) to a Bose condensed state of tightly bound pairs (Soks << 1). We briefly discuss non-s-
wave superconductors. Insofar as this model is applicable to the high-T. materials, they are in the in-
teresting regime with the coherence length & comparable to the interparticle spacing k¢ .
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M. Ries et al,, Phys. Rev. Lett. 114, 230401 (2015).



2D present

Several experimental groups probing
homogeneous case, dynamics, etc.

See other talks at this workshop



Two-body Schrodinger equation
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Scattering length and eff. range
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2D notation

scattering length
- n = In(kza)
coupling \

“density”



Equation of State
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ATOMS I
A. Galea, H. Dawkins, S. Gandolfi, and A. Gezerlis,

Phys. Rev. A 93, 023602 (2016)




Equation of State

0.7~ | o optimized Jastrow-BCS
A Jastrow-Slater

* We subtract the binding energy per
particle eb/2 (which is a two- body
quantity)

* Clear signature of pairing effects
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ATOMS I
A. Galea, H. Dawkins, S. Gandolfi, and A. Gezerlis,

Phys. Rev. A 93, 023602 (2016)

A. Galea, T. Zielinski, S. Gandolfi, and A. Gezerlis,
J Low Temp Phys 189, 451 (2017)
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A. Galea, H. Dawkins, S. Gandolfi, and A. Gezerlis,
Phys. Rev. A 93, 023602 (2016)

A. Galea, T. Zielinski, S. Gandolfi, and A. Gezerlis,
J Low Temp Phys 189, 451 (2017)

Equation of State

* We subtract the binding energy per
particle eb/2 (which is a two- body
quantity)

* Red - first DMC calculations of the
strongly interacting Fermi gas (2011)

* Blue - our DMC results, giving a tighter
upper bound to the true ground state
energy

* Green - exact AFQMC calculations

(2015)
ATOMS I




2D results: comparison to experiment

0.8; . //" Chemical Potential
w 0.6f /} } { ’ * Our DMC result (maroon) is very
% % | similar to AFQMC (orange)
@ 0.4 % - * Experimental results (and figure)
.y ﬁ / ; : provided by Tilman Enss
- 0_2:_ /,,/ /s (Universitat Heidelberg)

ATOMS I




120 . . . . . Pairing gap
y ] ] ] ] T ]
100 T - 3 i -
o~ 08 I E N * We calculate the pairing gap
— 80 206 1 based on odd-even energy
&, 504 F A 7 staggerin
co0r N\ Boaly bd - egering
B < 0.2 ‘EI O ] * The gap becomes very large when
40 0 . pairs are tightly bound
-2-15-1-05 0 0.5 _
o0 | mean field e A suppression compared to the
mean-field result can be seen
0 ' when adding the binding energy

per particle eb/2

ATOMS I

Bertaina & Giorgini, Phys. Rev. Lett. 106, 110403 (2011)




O  this work
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A. Galea, H. Dawkins, S. Gandolfi, and A. Gezerlis,
Phys. Rev. A 93, 023602 (2016)

Pairing gap

e We calculate the pairing gap
based on odd-even energy
staggering

* The gap becomes very large when
pairs are tightly bound

* A suppression compared to the
mean-field result can be seen
when adding the binding energy
per particle eb/2

ATOMS I




Conclusions

e Rich connections between physics of nucle1, compact
stars, and cold atoms

* Exciting time in terms of interplay between nuclear
interactions, QCD, and many-body approaches

e Ab initio and phenomenology are mutually beneficial
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