Cold Atoms and Nuclei
J. Carlson - LANL

Cold Atoms:
o Junable interactions
» Bosons, SU(2) fermions
» Amazing control

» Density, lemperature, Dimensionality,
Particle #, ...

Nuclei:
o Fixed, complicated interactions, ~ SU(4)
» Nuclel: Fixed density
» Matter: Density, temperature variable
Shell structure / superfluid pairing




Cold Atoms and Nuclei:
(some) scientific questions

Nuclear Physics

D

Limits of existence (# of n, p), clustering

Equation of state (vs. density, I, proton fraction, ...

o Weak interactions and Nuclear Response

o Exotic phases: e.g. high-density transitions to quark matter

D

Cold Atom Physics

Recent cold atom work
In collaboration with

Stefano Gandolf
Alex Gezerlis

Bira van Kolck
Kevin Schmidt
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Equation of State
Finite vs. Bulk Systems
Density, Spin Response
‘Exotic’ SuperﬂUId Phases C.Regal et al. PRL 2004 Silvio Vitiello

| ;i Bira v. Kold
Dimensionality Shiwe Zoh;;g
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From few to many in Cold Atoms

Bosons
SU(2) Fermions ' ‘ . .

[ or SU(N) fermions
Similarities:

o0 O aT=0]

Homogeneous bulk properties incorporated into DFT
gradient expansion, ...
Differences:
Nuclel and Bosons are self-bound,
electrons and SU(2) fermions are not
Nuclei are superfluid - pairing in finite systems




Homogeneous Unrtary Fermi Gas

i eamoe iuned across BCS (| Vo | ~ 0) to BEC (- Viei=—EH

Concentrate on unitarity : zero energy bound state
infinrte scattering length
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‘Exact’ T=0 Algorithm: Auxiliary Field Monte Carlo
exact for unpolarized systems
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One step of the algorithm:
multiply by exp [ -T dt/ 2 ]
momentum space
Auxiliary field for exp [ -V dt ]
coordinate space (W|BCS) = detA,
tlipheDyexp [ - at /2 |
momentum space
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Use importance sampling with
BCS wave function



Homogeneous Gas: € and effective range S
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Spin excitations are high energy

Spin up, down densities in a trap
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Density Functional for unpolarized systems
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Rupak and Schaefer Nucl.Phys. A816:52-64,2009
arXiv:0804.26/8
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Epsilon expansion at unitarity ¢z 0

n(ffﬁ 40.022 (ZZQ ((’;)))2

E(x) = n(x)V(x) +1.364 +0(V*n)

compare to free fermions

n(x)*? 40.014 (Vn()” 40.167 Vin(x)

“n
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Eerr(x) =n(x)V(x)+2.871

Note increase in coefficient of gradient term at unitarity
compared to free Fermi gas



Change notation:

S () o(r) + £ (3m2)%30%3 Ly Vptl2 iph EEES

) = 1l

miesNiermions (BCS limit) oy — (0l
Free bosons (BEC limit M = 2m) €2 0.5

The gradient term Is exactly like
the kinetic term in the Gross—Prtaevskii equation (BECs).
The density functional is scale invariant:  |/length-

see also M. Forbes arXiv:[211.3779
for treatment with Superfluid Local Density Approximation

VWe use only bosonic degrees of freedom
no single-particle orbrtal summation for the density.



Computing the static response from weak external potentials
V(r) = Vo Ep cos(k-r)

> OV (r)|f){fIV(r)|0)
i T,
) — EO—/dw S(k,w)/w

E(Vy) = Ey—

At low g, E(Vo) determined by compressibility (& )
Next order in g determined by ¢g

Use AFMC to compute the energy for weak/moderate external potentials



Static Response for BCS and BEC limits
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Calculation of ¢ from weak external potential
N=66, kikr = 0.5, Vo = 0.25
AFMCE=0291(4) = g =037 (0.07)

DMC E=0307(1) = ¢, =033 (0.02)

Larger external potentials at g = ke / 2
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Higher-order gradients

Include calculations at higher q: g/kr ~ |
Lowest order gradient correction no longer sufficient
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Can apply density functional to arbitrary external potentials:
Vo/Er=0 0.25 0.40 0.80




What about finite systems!?
Consider a small number of particles trapped in a harmonic oscillator:
The density functional makes a unique prediction:
No knowledge of (fermionic) shell closures.
Pairing dominates - effectively bosonic DOF only.
Clear approach to the bulk limit.

Does this work and for what N?

Compare DFT prediction to AFMC calculations.
Simple dimensional analysis for large N: (E/ Etr)2 = §



AFMC results for trapped fermions
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Fourth order density functional gives excellent predictions for N ~ 10 and larger.

Correct approach to bulk €,
No evidence of shell gaps - isolated fermions cannot propagate across the system.
Works for much smaller N than typical nuclear density functionals.



Summary of Fermions at Unitarity

Low-Energy degrees of freedom are phonons in UFG

Scale invariance ties linear response to complete functional

cg = 0.3-04
compared to O.1 | | for BCS (free fermions)
0.50 for BEC (free bosons of mass 2m)

Quadratic corrections important for trapped fermions

No evidence for significant shell structure (large pairing gap)
in the unrtary Fermi Gas, even for small systems



Unitary Bosons

2-body attractive interaction
tuned to unitarity

3-body repulsive interaction
tuned to very weakly bound
(Efimov) trimer: binding energy k3

Ground state can be solved for
exactly with DMC




Hamiltonian for Bosons

h’ E
) 1<J 1<g<k
Ohé
Vij = Vo' —pj expl—(parij)”/2],

R 2 2 2 \1/2
Rijr = (T’ij ALy At Tjk) i
X, = p3/p2 = 0.5, 0.75 and 1.0.

Many previous calculations use a zero-range 2-body
interaction plus a hard-core 3-body binding energy:
this fixes the trimer binding for a given radius.

Potential for right angle vs. r12 and ry3

The above interaction can be tuned to arbitrarily small
3-body binding energies with very small ranges.

Rs=(2mIEsl /h2) 12



Cluster Binding Energy vs. # of Bosons
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(E/N) / (IE;l/3)

Homogeneous Matter Equation of State
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2- and 3-body distribution functions
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Cohielas:

QMC contacts analysis of rapid gquench experiments:
as = 17(3) ag = 22(1)
B3 = 0.9(1) e i)
. Smith, Braaten, Kang, Platter PRL 2014
Condensate Fraction analysis of Jin experiment
n = 0.92(1) EENGCROR -
© ,‘»(P() ©
Cluster binding vs. N 00000 - \"‘g» — 00000
roughly similar to AL t
iquid 4He, °

but 4He has only
/% condensate

MIT group: Fletcher, et al, PRL 2016



Conclusions:
SU(2) Fermions and SU(N=0) Bosons

o Unrtary Bosons and Fermions are scale-invariant
o SU(2) Fermions are a superfluid gas

© SU(00) ‘Bosons' are self-bound into clusters

o Comparatively simple DFTs

o Can predict properties of small finite systems
from calculations of iInhomogeneous matter

o Experimentally testable



Outlook: what about SU(N) for N = 3,4, 5...

o 2- and 3-body Interactions will stabilize all systems
o [ransition from gas to self-bound clusters
o When are clusters of size > N bound for SU(N)
at unitarity (Born-Oppenheimer arguments) !
o What about finrte range - eg. SU(4) EFTs for nuclei
o Can we learn about resonances / phase structure of
matter from simulations with small N

Beyond unitary gases: systems of a few nucleons

Low density: 4 neutron resonances
High density: phase structure of QCD



Outlook: can we test dynamics !

o Significant information on dynamics can be
obtained through path integral simulations:
o density, spin response
o low-lying collective excitations
o |[n nuclear physics neutrino and
electron scattering

o Contacts are interesting, relate EOS to
high-momentum talls: EOS can be obtained
from a DFT, but high momentum talls!

o At what energies and momenta does DFT
start to break down!?



Important Problems in Nuclear Dynamics

Neutrino Scattering (FNAL, J-PARK, Electron Scattering (JLAB)
Kamiokande)
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'2C EM response
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Longer Term: Quantum Computing (¢)
Alessandro Roggero; arXiV 1804.01505 (2018)

Simple Toy problem on 3D lattice
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- Algorithms exist to calculate ground state

- QCs can implementexp[- 1 H 1]

- Implemement linear response with
Unitary operators

Similar ideas may be useful for
High-energy scattering (short
Real time propagation) on
Standard (classical) computers



Summary and Outlook

» Many similarities and synergies between
cold atom physics and physics of nuclel

» Great opportunity for nuclear physicists to expand
their outlook and (hopefully) contribute across fields

» | look forward to an exciting and diverse program.
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