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Introduction: BCS-BEC crossover in ultracold atoms

» consider Fermionic atoms, two spin
states (T, ]), contact interaction

> scattering length a can be tuned

(Feshbach resonance)

> on resonance: unitary limit a — oo

» fermionic atoms < molecules

> at zero temperature: crossover
from BCS superfluid (Cooper pairs)

to BEC (molecules)

To /Eg

1k
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> Nozieres-Schmitt-Rink (NSR) theory includes non-condensed pairs above Tc

— interpolates between BCS and BEC limits

> at unitarity (1/kra = 0):
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» discrepancy NSR vs. exp. explained by screening [e.g. Pisani et al. PRB 97 (2018)]



BCS-BEC crossover in neutron matter?

>

v

No nn bound state — BEC side of crossover cannot be realized

Unitary limit in cold atoms: ‘ 1/|a| < kF < 1/[" (r = interaction range)

nn scattering in the Sy channel: a =~ —18 fm, r ~ 2.7 fm

— one can realize ‘ 1/]al S ke < 1/r‘

Neutron matter with kg ~ 0.05 — 0.4 fm~! similar to unitary Fermi gas
Crossover physics (e.g., NSR) important for n ~ 10~% — 0.002 fm~3

Weak-coupling regime kg|a| < 1 at densities below 1075 fm=3 is only of
academic interest

At densities above 0.002 fm~3, A/Ef gets smaller again because of finite
range (momentum dependence) of the nn interaction (A = pairing gap)



Digression: Neutron stars

> Neutron star formed at the end of the “life” of an
intermediate-mass star (supernova)

» M ~1—-2 Mg in a radius of R ~ 10 — 15 km
— average density ~ 5 x 10'* g/cm?3
(~ 2% nuclear matter saturation density)

> Cools down rapidly by neutrino emission
within ~ 1 month: T 5 10° K ~ 100 keV RCW103 [Chandra X-ray telescope]

» Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich
nuclei in a degenerate electron gas

f1—2 km

inner crust: unbound neutrons form a

neutron gas between the nuclei (clusters)

— ~10 km
outer core: homogeneous matter (n, p, )

inner core: new degrees of freedom:
hyperons? quark matter?



Relevance of superfluidity in dilute neutron matter

» Upper layers of the inner crust (close to neutron-drip density ~ 2.5 x 10™* fm_3)
[Negele & Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]
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— In spite of its low density, the neutron gas is relevant because it occupies a much larger volume than the clusters
> Deeper in the crust: ng,s increases up to ~ ng/2 = 0.08 fm—3

» Examples for observable manifestations of superfluidity in the crust:

Cooling of accreting neutron stars Pulsar glitches ]
[Deibel et al., ApJ 839 (2017)] [Radhakrishnan e - F
& Manchester, /

Nature 222 (1969)] A
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Pairing in neutron matter: existing literature

» Throughout this talk: consider uniform neutron matter
» Compilation of results [Chamel and Haensel, Liv. Rev. Relativity (2008)]
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> Literature more or less agrees on the BCS result
(except moderate uncertainty due to density of states oc m*)

» Large corrections beyond BCS, but no consensus



Zoom on low densities: QMC vs. screening
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DQMC: Abe and Seki, PRC 79 (2009)

AFDMC: Gandolfi et al., PRL 101 (2008)

GFMC: Gezerlis and Carlson, PRC 81 (2010)

screened: Cao, Lombardo, and Schuck, PRC 74 (2006)

» No screening at low density? — Third part of the talk



Screening of the pairing interaction

» Diagrams (analogous to screening of Coulomb interaction)

Vissholy .
(V = anti-
Vis, SR 5 symmetrized
7 7 matrix
. element)
Visiht;
P G e @ '

> As interaction V, we use Vigw.x derived from AVig, with cutoff A =2 fm™!

» Approximation: neglect energy transfer
— (@) and (b) can be treated as a corrections to pairing interaction V

» Contact interaction at very weak coupling [diagram (a) only]:
repulsive exchange of spin fluctuations (S = 1) should reduce T, by ~ 50%
[Gor’kov and Melik-Barkhudarov (1961)]

> Away from weak-coupling limit: necessary to include RPA [diagram (b)]



RPA effect on the S =0 and S = 1 contributions

> diagram (a): S = 0 contribution attractive,
S =1 repulsive and about 3x stronger than S =0

» RPA in Landau approximation: (Mo = Lindhard function) io
fo &o )
R + 51 - 52
o 1—1fMe 1— gollo
08 f ---bro T B
> generally fp <0, go >0 (at least at low density) 0 02 04 06 05 1 12 14
(contact interaction: gy = —fp) ke (im™)

> fy <0 — RPA enhances S = 0 contribution
go >0 — RPA reduces S = 1 contribution

§
> RPA effect (diagram (b)) gets more important with =
increasing density §
> example: at kr = 0.8 fm_l, net result is attractive R B
— antiscreening instead of screening! ol s L 08
0 02 04 06 08 1 12 14

q (")



Gap equation and critical temperature

t h
> gap equation: = —7/ dg g’V (k an ((2)T )A(q)
with  E(q) = v&(9)* + A(q)2,  €&(q) =€(q) — 1
» A — 0for T — T¢: linearize gap equation

> T, can be obtained from the eigenvalue equation

o tanh(g(q))

as the temperature where the largest eigenvalue satisfies n(T.) =1
» T. and the gap at T = 0 are related by the BCS relation
A(ke; T=0) = 1.76 T,

(exact at weak coupling and very good approximation at all densities)



Critical temperature

2.5

- Vlow k+("l)+(b)
Viow-k+ Landau parameters from SLy4: )b Vigw @)

=== Viewk

v

» diagram (a) results in dramatic screening

T, (MeV)

» from kg ~ 0.7 fm™! (n~0.01 fm73),
screening turns into antiscreening 05
— T¢ is increased, not reduced!

0 02 04 06 08 1 12 14

> repeat calculation with Gogny D1 and D1N:
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» T. depends on the choice of the interaction R
. . . . . —— DIN+(a)+(b)
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ke ~ 0.7 — 0.8 fm™! [ D) [ i
S /
> NSR effect not included here 2 15| ]
F‘U 1 |- 4
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! 05 F ]
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The low-density limit: breakdown of “perturbativeness”

>

So far, screening seems to disappear at low density
— contradiction to GMB result (reduction of T, by a factor (4e)~/3 ~ 0.45)

In their original paper, GMB use contact interaction

But: as vertices they use the scattering length a (i.e., the full
T matrix) instead of the coupling constant (~ V)

This corresponds to an (approximate) resummation of ladder
diagrams in the vertices

Back to the nn interaction: scattering length a very large

— even soft potential Vo, x needs to be resummed at low momenta (small kg)

But at low density, the Vjo,._x-cutoff A (typically A =2 fm~') can be lowered
further (down to A ~ 2.5kg) without changing the BCS gap or T,

Using a density-dependent cutoff A = 2.5kg, we have Vig, K20,

— Can we recover the GMB result in this way?



Results with density dependent cutoff

>

Without screening: A =2 fm—3 and
N = 2.5 kr give the same T, at all
densities

With screening: T, with A =2 fm 3
and A = 2.5 kr agree over large range of
ke but cutoff dependence at large and
small densities

Ratio Tc(screened)/Tc(bare) tends towards
the GMB result 0.45 but only at very
low densities

Notice: GMB derived for |kra| < 1, i.e.,
ke < 0.05 fm~! (n< 4-107° fm—3)

At the lowest relevant densities, the
ratio is Tc(screened)/TC(bare) ~ 0.6
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Nozieres-Schmitt-Rink (NSR) correction to the density

» In-medium T matrix and self-energy: ladder approximation

) , 2 .
» density from s.-p. Green's function: n = 3 Z G(k,wn) (wn =Matsubara frequency)

k,wn

» BCS: G=Go — n=nm=2) f(&) (for T > To)
i

» NSR: truncate Dyson equation: G =Go+GiX —  n= nn+ Neowr

> mean-field shift Uy = X(k, &) already T T T T T
included in s.-p. energy & — A=20fm"
[Zimmermann and Stolz (1985)] o i /\:2,5k2 ]

Y (k, iwn) — Z(k,iwn) — Uk

Py (10° ™)
o
o]
T

» approximate Ui by HF self-energy : 04

/ Thinlines: V

Thick lines: Vo +V,
> Neorr/n — 0 at large n 02 ick lines: Vo +V, ,

but slightly cutoff dependent T B Y S oy S—y +

0 -1,
K (fm™)




Critical temperature including screening and NSR
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> NSR effect visible but much weaker than screening (antiscreening)

» Screening suppresses NSR effect: partial compensation of cutoff
dependence [constant (left) vs. density dependent (right) cutoff]



Summary

»

>

| 2

Dilute neutron matter = cold atoms in the BCS-BEC crossover regime
T. of dilute neutron matter relevant for neutron stars (cooling, glitches)
Screening corrections: very important, but large theoretical uncertainties

RPA bubble exchange: calculation with realistic Landau parameters
suggests that screening turns into antiscreening beyond 0.01 — 0.02 fm—3
To retrieve the GMB result in the low-density limit, the Vjgw.xcutoff must
be scaled with kg

Reduction of T, (for given density) at n < 0.01 fm~3 due to
non-condensed pairs (NSR theory) is much weaker than screening effect

Outlook

reduction of T, due to quasiparticle residue Z < 1

derive Fermi-liquid parameters and pairing from one interaction:
in-medium similarity renormalization group (IMSRG) instead of Vo«

Soft interactions (RG evolved to small cutoffs) may be useful also in cold
atoms



Appendix

> More details on the low-density limit

» More details on the NSR correction to the density



Low-density limit and (wrong) derivation of the GMB result

» For ke — 0 diagram (b) vanishes
» For diagram (a) we may consider q, ¢ ~ kp — 0

— replace each V/ by 2Vig, (0,0) = 2V4: Vo (g, q") = =27 V3(MN)

dQze
with (Mo) = / T Mo(|g — G'|) = angle averaged Lindhard function

47
> Special case: g = ¢’ = kr: Viay(ke, k) = 27rV%N0% In4e
with No = m é(F = density of states
s
1
» Weak-coupling formula: T, X exp (m)

» Replace V' — Vo + V(,:

T screened 1 1
Tbare 2wNo[Vo + 21 VENo5 Inde]  2mNoVo

1 Inde
= exp ( ) ~ (4e)71/3 ~ 0.45
1+ 27TV0N03 In4e



Failure of the weak-coupling formula at low density

v

At low T, the kernel

tanh(§(q)/2T)
2¢(q)

is strongly peaked at g = kr
Weak-coupling formula assumes
that the integral in the gap

equation is dominated by this peak

But: e.g. at kr = 0.012 fm~1, peak
contributes < 10% to the integral

V(s) limited to much smaller range
of g (< a few times kg) than V

— T, almost unaffected by V(,).
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T matrix with low-momentum interaction V-«

» Viowk: low-momentum interaction generated from a realistic NN interaction by
renormalization group methods (cutoff A)

» difficulty: numerical matrix elements V/(q, q’), not separable

» T matrix: EZ (q q < >

2 _
M(K,a.q,w) = V(q,q)+= / dq"q"*V(q,4")G (K, q" W) (K.q".q .w)

1=+ (5 -9

K2
UJ*m**‘i’/E

G(§2)(K7 q,w) = angle average of Géz) =

» solve this integral equation by diagonalizing VGSQ)
2 N ’
; /dqlqlzv(qv q )Gé2)(K7 q 7w)¢V(q/3 K,W) = nV(K7w)¢V(qa K,W)

7 Weinberg eigenvalues [Weinberg (1963)]



Contribution of non-condensed pairs to the density

. , . 2 >
» density from s.-p. Green's function: n = E Z g(k, wn) (wn =Matsubara frequency)

k,wn

» BCS:G=Go — n=ne=2Y f(&) (forT>T)

» NSR: truncate Dyson equation at 1st order in X: 8

g = gO + QSZ —> N = Nfree + Ncorr

K%dK [dw .
Neorr = 52 / ) Im Z Iog 1 — ’I]u )) (g =Bose function)

> mean-field shift Uy = X(k, &) already

included in s.-p. energy & M oom ]

[Zimmermann and Stolz (1985)] 12r --- A=25k ]

qu\ 1 4

Y (k,iwn) = X(k,iwn) — Uk < o8 ]

5080 4

> approximate Ui by HF self-energy : “odf )/ Thinlines v, ]

> nNeorr K n at higher density o/ 7 Thicklines Vo + Vi ) \M
but HF subtraction is cutoff dependent % =0z 07 ~ o5 08 I

K2 (fm™)



