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Introduction: BCS-BEC crossover in ultracold atoms

I consider Fermionic atoms, two spin
states (↑, ↓), contact interaction

I scattering length a can be tuned
(Feshbach resonance)

I on resonance: unitary limit a→∞

I fermionic atoms ↔ molecules

I at zero temperature: crossover
from BCS superfluid (Cooper pairs)
to BEC (molecules)
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I Nozières-Schmitt-Rink (NSR) theory includes non-condensed pairs above Tc

→ interpolates between BCS and BEC limits

I at unitarity (1/kFa = 0):
BCS NSR exp.

Tc/EF 0.5 0.22 0.17

I discrepancy NSR vs. exp. explained by screening [e.g. Pisani et al. PRB 97 (2018)]



BCS-BEC crossover in neutron matter?

I No nn bound state → BEC side of crossover cannot be realized

I Unitary limit in cold atoms: 1/|a| � kF � 1/r (r = interaction range)

I nn scattering in the 1S0 channel: a ≈ −18 fm, r ≈ 2.7 fm

→ one can realize 1/|a| . kF . 1/r

I Neutron matter with kF ∼ 0.05− 0.4 fm−1 similar to unitary Fermi gas

I Crossover physics (e.g., NSR) important for n ∼ 10−5 − 0.002 fm−3

I Weak-coupling regime kF |a| < 1 at densities below 10−5 fm−3 is only of
academic interest

I At densities above 0.002 fm−3, ∆/EF gets smaller again because of finite
range (momentum dependence) of the nn interaction (∆ = pairing gap)



Digression: Neutron stars

I Neutron star formed at the end of the “life” of an
intermediate-mass star (supernova)

I M ∼ 1− 2 M� in a radius of R ∼ 10− 15 km
→ average density ∼ 5× 1014 g/cm3

(∼ 2× nuclear matter saturation density)

I Cools down rapidly by neutrino emission
within ∼ 1 month: T . 109 K ∼ 100 keV

I Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich
nuclei in a degenerate electron gas

inner crust: unbound neutrons form a
neutron gas between the nuclei (clusters)

outer core: homogeneous matter (n, p, e−)

inner core: new degrees of freedom:
hyperons? quark matter?

RCW103 [Chandra X-ray telescope]

~10 km

1−2 km



Relevance of superfluidity in dilute neutron matter
I Upper layers of the inner crust (close to neutron-drip density ∼ 2.5× 10−4 fm−3)

[Negele & Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

ngas = 4× 10−5 fm−3 (14% of total nB)

ngas = 4.8× 10−4 fm−3 (54% of total nB)

→ In spite of its low density, the neutron gas is relevant because it occupies a much larger volume than the clusters

I Deeper in the crust: ngas increases up to ∼ n0/2 = 0.08 fm−3

I Examples for observable manifestations of superfluidity in the crust:

Cooling of accreting neutron stars
[Deibel et al., ApJ 839 (2017)]
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Pulsar glitches
[Radhakrishnan
& Manchester,
Nature 222 (1969)]



Pairing in neutron matter: existing literature
I Throughout this talk: consider uniform neutron matter

I Compilation of results [Chamel and Haensel, Liv. Rev. Relativity (2008)]

I Literature more or less agrees on the BCS result
(except moderate uncertainty due to density of states ∝ m∗)

I Large corrections beyond BCS, but no consensus



Zoom on low densities: QMC vs. screening
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I No screening at low density? → Third part of the talk



Screening of the pairing interaction

I Diagrams (analogous to screening of Coulomb interaction)
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I As interaction V , we use Vlow-k derived from AV18, with cutoff Λ = 2 fm−1

I Approximation: neglect energy transfer
→ (a) and (b) can be treated as a corrections to pairing interaction V

I Contact interaction at very weak coupling [diagram (a) only]:
repulsive exchange of spin fluctuations (S = 1) should reduce Tc by ∼ 50%
[Gor’kov and Melik-Barkhudarov (1961)]

I Away from weak-coupling limit: necessary to include RPA [diagram (b)]



RPA effect on the S = 0 and S = 1 contributions

I diagram (a): S = 0 contribution attractive,
S = 1 repulsive and about 3× stronger than S = 0

I RPA in Landau approximation: (Π0 = Lindhard function)

V RPA
ph =

f0
1− f0Π0

+
g0

1− g0Π0
~σ1 · ~σ2

I generally f0 < 0, g0 > 0 (at least at low density)
(contact interaction: g0 = −f0)

I f0 < 0 → RPA enhances S = 0 contribution
g0 > 0 → RPA reduces S = 1 contribution

I RPA effect (diagram (b)) gets more important with
increasing density

I example: at kF = 0.8 fm−1, net result is attractive
→ antiscreening instead of screening!
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Gap equation and critical temperature

I gap equation: ∆(k) = − 2

π

∫ ∞
0

dq q2V (k, q)
tanh( E(q)

2T
)

2E(q)
∆(q)

with E(q) =
√
ξ(q)2 + ∆(q)2, ξ(q) = ε(q)− µ

I ∆→ 0 for T → Tc : linearize gap equation

I Tc can be obtained from the eigenvalue equation

− 2

π

∫ ∞
0

dq q2V (k, q)
tanh( ξ(q)

2T
)

2ξ(q)
φ(q) = η(T )φ(k)

as the temperature where the largest eigenvalue satisfies η(Tc) = 1

I Tc and the gap at T = 0 are related by the BCS relation

∆(kF ;T = 0) ≈ 1.76Tc

(exact at weak coupling and very good approximation at all densities)



Critical temperature

I Vlow-k+ Landau parameters from SLy4:

I diagram (a) results in dramatic screening

I from kF ∼ 0.7 fm−1 (n ∼ 0.01 fm−3),
screening turns into antiscreening
→ Tc is increased, not reduced!

I repeat calculation with Gogny D1 and D1N:

I Tc depends on the choice of the interaction

I again, screening turns into antiscreening at
kF ≈ 0.7− 0.8 fm−1

I NSR effect not included here

I additional reduction of Tc from quasiparticle
residue (Z factor < 1)?
[Cao, Lombardo, and Schuck]
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The low-density limit: breakdown of “perturbativeness”

I So far, screening seems to disappear at low density
→ contradiction to GMB result (reduction of Tc by a factor (4e)−1/3 ≈ 0.45)

I In their original paper, GMB use contact interaction

I But: as vertices they use the scattering length a (i.e., the full
T matrix) instead of the coupling constant (' V )

I This corresponds to an (approximate) resummation of ladder
diagrams in the vertices

I Back to the nn interaction: scattering length a very large

→ even soft potential Vlow-k needs to be resummed at low momenta (small kF )

I But at low density, the Vlow-k -cutoff Λ (typically Λ = 2 fm−1) can be lowered
further (down to Λ ∼ 2.5kF ) without changing the BCS gap or Tc

I Using a density-dependent cutoff Λ = 2.5kF , we have V1S0

kF→0−−−→ a

→ Can we recover the GMB result in this way?



Results with density dependent cutoff

I Without screening: Λ = 2 fm−3 and
Λ = 2.5 kF give the same Tc at all
densities

I With screening: Tc with Λ = 2 fm−3

and Λ = 2.5 kF agree over large range of
kF but cutoff dependence at large and
small densities

I Ratio T
(screened)
c /T

(bare)
c tends towards

the GMB result 0.45 but only at very
low densities

I Notice: GMB derived for |kFa| � 1, i.e.,
kF � 0.05 fm−1 (n� 4 · 10−6 fm−3)

I At the lowest relevant densities, the
ratio is T

(screened)
c /T

(bare)
c ≈ 0.6
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Nozières-Schmitt-Rink (NSR) correction to the density
I In-medium T matrix and self-energy: ladder approximation

+=Γ ΓV(q,q’)
Γ

=Σ

I density from s.-p. Green’s function: n =
2

β

∑
~k,ωn

G(~k, ωn) (ωn =Matsubara frequency)

I BCS: G = G0 → n = n0 = 2
∑
~k

f (ξ~k) (for T ≥ Tc )

I NSR: truncate Dyson equation: G = G0 + G2
0 Σ → n = n0 + ncorr

I mean-field shift Uk = Σ(k, ξk) already
included in s.-p. energy ξk
[Zimmermann and Stolz (1985)]

Σ(k, iωn)→ Σ(k, iωn)− Uk

I approximate Uk by HF self-energy

I ncorr/n→ 0 at large n
but slightly cutoff dependent 0 0.2 0.4 0.6 0.8 1
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Critical temperature including screening and NSR

0.5 1 1.5
kF  (fm-1)

0

0.5

1

1.5

2
T c   

 (M
eV

)

0.5 1 1.5
kF  (fm-1)

screened
screened  +  NSR
bare

Λ = 2.0 fm-1 Λ = 2.5 kF
0

I NSR effect visible but much weaker than screening (antiscreening)

I Screening suppresses NSR effect: partial compensation of cutoff
dependence [constant (left) vs. density dependent (right) cutoff]



Summary
I Dilute neutron matter ≈ cold atoms in the BCS-BEC crossover regime

I Tc of dilute neutron matter relevant for neutron stars (cooling, glitches)

I Screening corrections: very important, but large theoretical uncertainties

I RPA bubble exchange: calculation with realistic Landau parameters
suggests that screening turns into antiscreening beyond 0.01− 0.02 fm−3

I To retrieve the GMB result in the low-density limit, the Vlow-kcutoff must
be scaled with kF

I Reduction of Tc (for given density) at n . 0.01 fm−3 due to
non-condensed pairs (NSR theory) is much weaker than screening effect

Outlook
I reduction of Tc due to quasiparticle residue Z < 1

I derive Fermi-liquid parameters and pairing from one interaction:
in-medium similarity renormalization group (IMSRG) instead of Vlow-k

I Soft interactions (RG evolved to small cutoffs) may be useful also in cold
atoms



Appendix

I More details on the low-density limit

I More details on the NSR correction to the density



Low-density limit and (wrong) derivation of the GMB result
I For kF → 0 diagram (b) vanishes

I For diagram (a) we may consider q, q′ ' kF → 0

→ replace each Ṽ by 2V1S0
(0, 0) ≡ 2V0: V(a)(q, q

′) ≈ −2πV 2
0〈Π0〉

with 〈Π0〉 =

∫
dΩ~q~q′

4π
Π0(|~q − ~q′|) = angle averaged Lindhard function

I Special case: q = q′ = kF : V(a)(kF , kF ) ≈ 2πV 2
0N0

1
3 ln 4e

with N0 =
m∗kF
π2

= density of states

I Weak-coupling formula: Tc ∝ exp
( 1

2πN0V (kF , kF )

)
I Replace V → V0 + V(a):

T screened
c

T bare
c

≈ exp
( 1

2πN0[V0 + 2πV 2
0N0

1
3 ln 4e]

− 1

2πN0V0

)
= exp

( − 1
3 ln 4e

1 + 2πV0N0
1
3 ln 4e

)
≈ (4e)−1/3 ≈ 0.45



Failure of the weak-coupling formula at low density

I At low T , the kernel

tanh(ξ(q)/2T )

2ξ(q)

is strongly peaked at q = kF

I Weak-coupling formula assumes
that the integral in the gap
equation is dominated by this peak

I But: e.g. at kF = 0.012 fm−1, peak
contributes < 10% to the integral

I V(a) limited to much smaller range
of q (. a few times kF ) than V0

→ Tc almost unaffected by V(a).
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T matrix with low-momentum interaction Vlow-k

I Vlow-k : low-momentum interaction generated from a realistic NN interaction by
renormalization group methods (cutoff Λ)

I difficulty: numerical matrix elements V (q, q′), not separable

I T matrix: +=Γ ΓV(q,q’)

Γ(K , q, q′, ω) = V (q, q′) +
2

π

∫
dq′′q′′ 2V (q, q′′)Ḡ

(2)
0 (K , q′′, ω)Γ(K , q′′, q′, ω)

Ḡ
(2)
0 (K , q, ω) = angle average of G

(2)
0 =

1− f (
~K
2

+ ~q)− f (
~K
2
− ~q)

ω − K2

4m
− q2

m
+ iε

I solve this integral equation by diagonalizing V Ḡ
(2)
0 :

2

π

∫
dq′q′ 2V (q, q′)Ḡ

(2)
0 (K , q′, ω)φν(q′,K , ω) = ην(K , ω)φν(q,K , ω)

ην : Weinberg eigenvalues [Weinberg (1963)]



Contribution of non-condensed pairs to the density

I density from s.-p. Green’s function: n =
2

β

∑
~k,ωn

G(~k, ωn) (ωn =Matsubara frequency)

I BCS: G = G0 → n = nfree = 2
∑
~k

f (ξ~k) (for T ≥ Tc )

I NSR: truncate Dyson equation at 1st order in Σ:
Γ

=ΣG = G0 + G2
0 Σ → n = nfree + ncorr

ncorr = − ∂

∂µ

∫
K 2dK

2π2

∫
dω

π
g(ω) Im

∑
ν

log(1− ην(K , ω)) (g =Bose function)

I mean-field shift Uk = Σ(k, ξk) already
included in s.-p. energy ξk
[Zimmermann and Stolz (1985)]

Σ(k, iωn)→ Σ(k, iωn)− Uk

I approximate Uk by HF self-energy

I ncorr � n at higher density
but HF subtraction is cutoff dependent 0 0.2 0.4 0.6 0.8 1
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