Perspectives on C and CP Violation (and more) in η Decay

Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY

in collaboration with Jun Shi

Precision tests of fundamental physics with light mesons ECT* — Trento June 15, 2023

Puzzles

Existing observed and measured effects defy the SM New theoretical underpinnings unclear

The cosmic baryon asymmetry

$$\eta = n_{\text{baryon}} / n_{\text{photon}} = (6.12 \pm 0.04) \times 10^{-10}$$

[Planck, 2020; PDG, 2022]

Dark matter

Observational Evidence for Dark Matter ranges from "local" to cosmic scales

Aspects of SMEFT

Assumes new physics scale Λ heavy cf. to the weak scale v **Assumes** SM gauge symmetries & particle content Assumes the scalar sector is weakly coupled [cf. Buchalla, Cata, & Krause, 2015] Theorem: if EW symmetry is unbroken the operators have even (odd) mass dimension dif (B - L)/2 is even (odd) [Kobach, 2016] Assert T &/or P, or B or L &/or B-L... broken: different "SMEFT" operators enter in each case (i) How to use it? (ii) How to test it (its convergence)? Revealing?! (iii) What new issues arise in complex, many-body systems? (not today)

Applying SMEFT: Proton Decay ($|\Delta B| = 1$) Assuming new physics **heavy** cf. to the weak scale

$$\mathscr{L}_{\rm SM} \Longrightarrow \mathscr{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^{d-4}} \mathscr{O}_i^d$$

e.g.: $p \rightarrow e^+ \pi^0$

[Buchmuller & Wyler, 1986; Grzadkowski et al., 2010]

$$\mathscr{L}_{|\Delta B|=1}^{(d=6)} \supset \sum_{i} \frac{C_{i}}{\Lambda_{|\Delta B|=1}^{2}} (qqq\ell)_{i} + \text{h.c.}$$
Many?

For c_i work in an explicit BSM model or make $\mathcal{O}(1)$ — with matrix element experimental limit bounds Λ_{new} ... here $\Lambda_{|\Delta B|=1} \simeq 10^{15} \,\text{GeV}$ Local operator: LQCD to compute its hadronic matrix element

[e.g., Aoki et al., FLAG review, 2111.09849]

Applying SMEFT: Precision W Mass Explain with new dim-6 operators? SM At odds with global 80478 ± 83 D0 I EWPO fit by $\sim 7\sigma$ 80432 ± 79 CDF I [de Blas et al., 2112.07274] DELPHI 80336 ± 67 L3 80270 ± 55 Enter, e.g., OPAL 80415 ± 52 ALEPH 80440 ± 51 $H^{\dagger}\tau^{I}H\,W^{I}_{\mu\nu}B^{\mu\nu}$ \mathcal{O}_{HWB} D0 II 80376 ± 23 $\left|H^{\dagger}D_{\mu}H\right|^{2}$ \mathcal{O}_{HD} ATLAS 80370 ± 19 $\left(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H\right)\left(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r}\right)$ $\mathcal{O}_{Hl}^{(3)}$ $\left(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H\right)\left(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r}\right)$ $\mathcal{O}_{Hq}^{(3)}$ CDF II 80433 ± 9 $\left(\bar{l}_p \gamma_\mu l_r\right) \left(\bar{l}_s \gamma^\mu l_t\right)$ \mathcal{O}_{ll} 80400 80000 80200 80300 79900 80100 80500 W boson mass (MeV/c^2) $\mathcal{O}_{la}^{(3)}$ $(\bar{l}_p \tau^I \gamma_\mu l_r) (\bar{q}_s \tau^I \gamma^\mu q_t)$ [CDF: Aaltonen et al., Science 376 (2022), 170] $\frac{\delta m_W^2}{m_{W}^2} = v^2 \left| \frac{s_w c_w}{s_w^2 - c_w^2} \right| 2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right) \right|$ **CKM** unitarity! [Cirigliano et al., 2204.08440]

8

Stress testing the SMEFT framework LECs of natural size?

- Probed via experiment!
- Weakly coupled scalar sector?
- Enter $b \rightarrow c \tau \bar{\nu}_{\tau}$: study angular distribution to fit all LEC's; is the scale of d=6 suppression universal?

[Burgess et al., 2111.07421]

Convergence? Processes with leading higher dimension operators?

Enter Dalitz asymmetry in $\eta \rightarrow \pi^+ \pi^- \pi^0$

[Gardner & Shi, 2020 & in prep, note 2203.07651 (REDTOP)]

Hadronic CP violation C versus P violation

- "What do we really know about T-odd, P-even interactions?" [Khriplovich & Lamoreaux, "CP Violation without Strangeness", 1997]
- Answer: the strength of a T odd, P even interaction can be estimated: dress it with a P odd radiative correction to yield a T odd, P odd interaction and cf with an EDM limit. *They're tiny!*
- No, the answer depends on whether parity is a symmetry of the high energy theory. If it is not, then the argued connection does not follow! [Ramsey-Musolf, 1999]
- Thus in SMEFT we can expect them to be independent

Dalitz Plot (Charge) Asymmetry in η to 3π Breaks C (and CP) symmetries

Note old "C odd" papers [TD Lee & L Wolfenstein,1965; Lee, 1965; Nauenberg, 1965] ^{0.16} [Bernstein, Feinberg, & Lee, 1965; Barshay ,1965]

$$s = (p_{\pi^+} + p_{\pi^-})^2, \quad t = (p_{\pi^-} + p_{\pi^0})^2, \quad u = (p_{\pi^+} + p_{\pi^0})^2$$
 0.1

$$A_{LR} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \quad (N_{+}: u > t, N_{-}: u < t)$$

Features of
$$\eta \to \pi^+\pi^-\pi^0$$

$$\pi^+\pi^-\pi^0$$
: $C = -(-1)^I$ [TD Lee, 1965]

final states	decay amplitude
$\bigstar I = 1, C = +1$	C conserving $ \Delta I = 1$
I = 0, C = -1	C breaking $ \Delta I = 0$
I = 2, C = -1	C breaking $ \Delta I = 2$
•••	•••

J=0 3π state of even parity: here, then, C and CP are broken

Dalitz Plot Asymmetries

E.g., enter C and CP violation in $\eta \rightarrow \pi^+ \pi^- \pi^0$ via a **momentum asymmetry** about the mirror line in the Dalitz plot

Can occur in both heavy and light flavor decays

Analyzing method (SMEFT)

analyzing procedure

start at new physics energy scale and pick operators that are CPV

Higgs acquires VEV, express $SU(2)_L \times U(1)_Y$ gauge bosons in terms of physical ones (W^{\pm}, Z, γ) list the CP odd pieces

at $E \triangleleft M_W$, integrate out W^{\pm} , Z

analyzing operators with definite P, C

list the lowest C&CP odd operators

example $(\bar{q}_L \sigma^{\mu\nu} \Gamma^d_W d_R) \tau^i \varphi W^i_{\mu\nu} + \text{h.c.}$ $vi \operatorname{Im}(\Gamma_W^d) \left(\bar{u}_L \sigma^{\mu\nu} d_R \right) \partial_\mu W_\nu^+$ $-(\bar{d}_R\sigma^{\mu\nu}u_L)\partial_{\mu}W_{\nu}^-+\dots$ $i \operatorname{Im}(\Gamma_W^d) \frac{gv}{2m_W^2} [(\bar{u}_L \sigma^{\mu\nu} d_R) \partial_\mu (\bar{d}'_L \gamma_\nu u_L)]$ $-(\bar{d}_R \sigma^{\mu\nu} u_L) \partial_\mu (\bar{u}_L \gamma_\nu d'_L)] + \cdots$ $\cdots v [(\bar{u}\sigma^{\mu\nu}\gamma_5 d)\partial_{\mu}(\bar{d}'\gamma_{\nu}u) + (\bar{d}\sigma^{\mu\nu}\gamma_5 u)\partial_{\mu}(\bar{u}\gamma_{\nu}d')]\cdots$ P odd C even $\cdots \underbrace{v}(\bar{u}\sigma^{\mu\nu}d)\partial_{\mu}(\bar{d}'\gamma_{\nu}u) - (\bar{d}\sigma^{\mu\nu}u)\partial_{\mu}(\bar{u}\gamma_{\nu}d')]\cdots$ C odd P even

Results

Flavor-changing vs flavor-conserving interactions

		flavor changing	flavor conserving
lowest mass dimension	P-odd and CP-odd	6	6
	C-odd and CP-odd	6	8
	patterns of P-odd and CP-odd vs C- odd and CP-odd	one-to-one corresponding with different combinations	Distinct
flavor-changing examp	le:	of LEC	
$\frac{1}{4}i \mathbf{Im}(C_{q^4}^{(1)prst} + C_{q^4}^{(3)prs}$	$S^{t} + C_{u^{4}}^{prst} + C_{q^{2}u^{2}}^{(1)prst})[(\bar{u}_{p}\gamma_{\mu}u_{p})]$	$(\bar{u}_s \gamma^{\mu} u_t) - (\bar{u}_t \gamma^{\mu} u_s)$	$(\bar{u}_r \gamma_\mu u_p)$] C&CP odd
$\frac{1}{4}i \mathbf{lm}(-C_{a^4}^{(1)prst} - C_{a^4}^{(3)prst})$	$(\bar{u}_{p}\gamma)^{prst} + C_{u^4}^{prst} - C_{a^2u^2}^{(1)prst}) [(\bar{u}_{p}\gamma)^{prst}]$	$(\bar{u}_{k}\gamma_{5}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})-(\bar{u}_{t}\gamma^{\mu}u_{t})$	$(\bar{u}_{s})(\bar{u}_{r}\gamma_{\mu}\gamma_{5}u_{p})$] P&CP odd

Results

Sample C odd, CP odd operators

$\frac{v}{\sqrt{2}}(\bar{u}_p\sigma^{\mu\nu}\gamma_5 u_p)\partial_\mu(\bar{u}_r\gamma_\nu\gamma_5 u_r)$	$-G_F i C^{pr}_{quZ\varphi}$
$\frac{v}{\sqrt{2}}(\bar{u}_p\sigma^{\mu\nu}\gamma_5 u_p)\partial_\mu(\bar{d}_r\gamma_\nu\gamma_5 d_r)$	$G_F i C^{pr}_{qdZ\varphi}$
$\frac{v}{\sqrt{2}}(\bar{d}_p\sigma^{\mu\nu}\gamma_5 d_p)\partial_\mu(\bar{u}_r\gamma_\nu\gamma_5 u_r)$	$-G_F i C^{pr}_{quZ\varphi}$
$\frac{v}{\sqrt{2}}(\bar{d}_p\sigma^{\mu\nu}\gamma_5 d_p)\partial_\mu(\bar{d}_r\gamma_\nu\gamma_5 d_r)$	$G_F i C^{pr}_{qdZ\varphi}$
$\frac{v}{\sqrt{2}} \left[V_{u_r d_p} (\bar{d}_p \sigma^{\mu\nu} u_r) \partial_\mu (\bar{u}_r \gamma_\nu d_p) \right]$	$2G_F i [\operatorname{Im}(C_{quW\varphi}^{pr}) - \operatorname{Im}(C_{qdW\varphi}^{rp})]$
$-V_{u_rd_p}^*(\bar{u}_r\sigma^{\mu\nu}d_p)\partial_\mu(\bar{d}_p\gamma_\nu u_r)\Big]$	
$\frac{v}{\sqrt{2}} \left[V_{u_r d_p} (\bar{d}_p \sigma^{\mu\nu} \gamma_5 u_r) \partial_\mu (\bar{u}_r \gamma_\nu \gamma_5 d_p) \right]$	$-2G_F i [\operatorname{Im}(C_{quW\varphi}^{pr}) + \operatorname{Im}(C_{qdW\varphi}^{rp})]$
$+V_{u_rd_p}^*(\bar{u}_r\sigma^{\mu\nu}\gamma_5d_p)\partial_\mu(\bar{d}_p\gamma_\nu\gamma_5u_r)\Big]\Big]$	

Summary

We have considered the C and CP violation in η decay

- The flavor conserving C and CP odd operators start in massdimension 8 in SMEFT, while for P and CP odd ones the lowest mass-dimension is 6.
- The new physics sources of a Dalitz asymmetry in $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay and of a (neutron) EDM can be completely different.
- Thus the empirical study of this process can point to physics beyond SMEFT

A Surprise: GW190814A $2.6M_{\odot}$ object – neutron star or black hole?

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

https://ligo.northwestern.edu/media/mass-plot/index.html

New Short-Range Force?* E.g., a $U(1)_{\rm B}$ gauge boson B...

- \bullet Can be heavy ($\gtrsim 600\,MeV$) and not so weakly coupled with little impact on NN phenomenology
- •Generates a repulsive force between neutrons
- Need to work within non-relativistic many-body physics for connection to NN physics
- Can modify neutron star properties to yield a larger maximum neutron star mass

[Berryman & SG, 2021]

Neutron Star Structure with gauged $U(1)_{B_1}$

Backup Slides

Extending the SM (QCD) with Gauged Baryon Number (or B-L)

Can be probed through observed breaking effects

- BNV can be **explicit**. $n\bar{n}$ oscillations; $nn \rightarrow \nu\nu$; $e^-p \rightarrow e^+\bar{p}$
- BNV can be **apparent** (entrained with dark sectors). $n \rightarrow \chi \gamma; n \rightarrow \chi \chi \chi; nn \rightarrow \chi \chi \dots$
- BNV can be **spontaneous**. Enter "mesogenesis" (Elor er al.)! massive mediator of gauged B or B L or

cf. τ_n anomaly

Implications for origins of the BAU, neutrino mass....

Enter neutron stars — as a BNV laboratory!

Operator Analysis of EDMs Multiple sources with $d \le 6$ exist

Even a single TeV scale source can give rise to multiple GeV scale sources through QCD effects

[Chien et al., 2016]

[Batell, Pospelov, & Ritz, 2009]

 $\mathcal{L}^{d \leq 6} \supset \bar{\theta} \alpha_s G \tilde{G} + \sum i (d_i \bar{q}_i (F\sigma) \gamma_5 q + \tilde{d}_i \bar{q}_i (G\sigma) \gamma_5 q) + d_G G G \tilde{G} \tilde{G}$ [Pospelov & Ritz, 2005] $i \in u, d, s$ LQCD studies of apropos neutron matrix elements exist (e.g., tensor charges) and is ongoing [note FLAG review; Snowmass white paper 2203.08103] Can all the low-energy CPV sources be determined? Need to interpret EDM limits in nuclei, atoms, molecules Note $aG\tilde{G}$, $\partial_{\mu}a\bar{N}\gamma^{\mu}\gamma_{5}N$ can act as axion portals

EDMs to Probe CPV for a BAU? Current limits for the electron and neutron strongly constrain models of EW baryogenesis Neutron: $|d_n| < 1.8 \times 10^{-26}$ e-cm [90 % C.L.] [Abel et al., 2020] For a sense of scale:

Scaling the n to Earth's size implies a charge separation of $< 4\mu m$ (cf. human hair width 40 μm)

Expts under development reach for 10-100x sensitivity Applied electric fields can be enormously enhanced in atoms and molecules [Purcell and Ramsey, 1950] ACME II, 2018 (ThO): $|d_e| < 1.1 \times 10^{-29}$ e-cm [90 % C.L.] Roussy et al., 2212.11841 (HfF⁺): $|d_e| < 4.1 \times 10^{-30}$ e-cm [90 % C.L.] New CPV sources not yet observed....

A Cosmic Baryon Asymmetry From particle physics?

The particle physics of the early universe can explain this asymmetry if **B** (baryon number), C (particle-antiparticle), and CP (matter-antimatter) violation all exist in a non-equilibrium environment. [Sakharov, 1967]

But what is the mechanism?

The SM almost has the right ingredients:

B? Yes, at high temperatures C and CP? Yes, but CP is "special"

Non-equilibrium dynamics? No. (!)

The Higgs particle is about 125 GeV in mass; lattice simulations reveal the electroweak phase transition is NOT of first-order. [Kajantie, Laine, Rummukainen, Shaposhnikov, 1996; Rummukainen et al., 1998; Csikor, Fodor, Heitger, 1999] Thus the SM cannot explain it And we seek new sources of CPV....

EDM Measurement Principle Much simplified!

Consider the precession frequency

$$\nu = \frac{1}{2\pi} \frac{d\varphi}{dt} = \frac{2\overrightarrow{\mu} \cdot \overrightarrow{B} \pm 2\overrightarrow{d} \cdot \overrightarrow{E}}{-\cancel{h}}$$

and its change under E field reversal

B must be very well determined!

The experimental sensitivity to the energy $\vec{d} \cdot \vec{E}$ is set by

 $\sigma_{d} \sim \frac{\hbar}{|\vec{E}| T_{m}\sqrt{N}} \qquad \begin{array}{l} T_{m} \text{ measurement time} \\ N \text{ number of counts} \\ N \text{ number of counts} \\ N \text{ eutron: } d_{n} < 1.8 \times 10^{-26} \text{ e-cm [90 \% C.L.]} \\ \text{[Abel et al., 2020]} \\ \text{Estimate: } d \sim \frac{2}{3} e\ell \sim 6 \times 10^{-15} \text{ e-cm if } \ell \sim 0.1 r_{p} \text{ (!)} \end{array}$

A Cosmic Baryon Asymmetry

Theory requires n lifetime value

BAU from BBN & observed D/H & 4He/H concordance BAU from CMB is more precise

[Both @ 95% CL]