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1.   Introduction and Motivation 



1.1  Why is it interesting to study  π0, η and η’physics? 

•  π0 is the pseudo-Goldstone boson of chiral perturbation theory 
•  It is one of the most fundamental degree of freedom  
•  There are still some puzzles about this particle:  
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Theory and Experiments
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Figure 15: Theoretical predictions and experimental results of the ⇡0 radiative decay width. Theory: LO (chiral anomaly) [15, 16, 311] (pink band);
sum rule/IO [87] (blue band); NNLO/KM [86] (yellow band); �PT NLO/AM [85] (light-green band); �PT NLO/GBH [84] (green band). Exper-
iments included in the current PDG [54]: CERN (direct) [317]; Cornell (Primako↵) [318]; CBAL (collider) [319]; PIBE (⇡+ decay) [320];
PrimEx-I [82]. New results: PrimEx-II and PrimEx-I and -II combined [83].

Two-photon decays of the ⌘ and ⌘0 can be similarly predicted in the chiral and large-Nc limits. However, the
situation becomes more complex once SU(3) breaking due to nonvanishing and di↵erent quark masses is taken into
account. The SU(3) breaking is primarily manifested by the ⌘mixing with the ⌘0, which needs to be tightly controlled
for a rigorous theoretical description of the matrix elements F⌘(0)��, following Sect. 3.2. They are given in terms of the
singlet and octet decay constants as well as mixing angles as
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Here, a 1/Nc-suppressed, Okubo–Zweig–Iizuka-(OZI-)rule-violating correction that amounts to a replacement F0 !
F0/(1 + ⇤3) [139] has been omitted; it is theoretically required to cancel the scale-dependence in the singlet decay
constant F0, but is assumed to be negligible in most phenomenological analyses of ⌘–⌘0 mixing [140–143]. In the
single-angle flavor-mixing scheme, Eq. (6.4) translates into
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The partial widths �(⌘(0) ! ��) are a prime source for experimental information on the decay constants and mixing
angles, and therefore of high theoretical interest.

6.1.2. Experimental activities for ⇡0, ⌘, ⌘0 ! ��
With the measurement of ⇡0 ! �� being an important precision test of low-energy QCD, its current theoretical

and experimental status is presented in Fig. 15. The chiral anomaly prediction in Eq. (6.3) gives �(⇡0 ! ��) =
7.750(16) eV (horizontal pink band). Its width corresponds to its uncertainty, due to the experimental uncertainty
from the pion decay constant, F⇡ = 92.277(95) MeV [54], extracted from the charged-pion decay. Since the ⇡0 is the
lightest hadron, higher-order corrections to the anomaly prediction due to nonvanishing quark masses are small and
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1.1  Why is it interesting to study η and η’physics? 

•  Quantum numbers IG JPC = 0+ 0−+ 

–  C, P eigenstates, all additive quantum numbers are zero  
–  flavour-conserving laboratory for symmetry tests  

  
•  η: pseudo-Goldstone boson,                         

 
All decay modes forbidden at leading order by symmetries (C, P, 
angular momentum, isospin/G-parity. . . ) 

 
•  η’: not a Goldstone boson due to U(1)A anomaly 
 
 
 
 

•  Theoretical methods: 
–   (large-Nc) chiral perturbation theory, RChPT 
–  dispersion relations to resum final state interactions 
–  Vector-meson dominance  
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  Mη = 547.862(17) MeV , Γη = 1.31 keV 

  Mη ' = 957.78(6) MeV
Γη’ = 196 keV 



1.1  Why is it interesting to study η and η’physics? 

•  In the study of η and η’physics, large amount of data have been 
collected: 
 

 CBall, WASA, KLOE & KLOEII, BESIII, A2@MAMI, CLAS,     
            GlueX 
 
 

      More to come: JEF, REDTOP (Elam et al’22), LHCb?, JLab@22GeV 
 
 
 

 
•  Unique opportunity:  

–  Test chiral dynamics at low energy 
–  Extract fundamental parameters of the Standard Model:  

ex: light quark masses 
–  Study of fundamental symmetries: P & CP and C & CP violation 
–  Looking for beyond Standard Model Physics         Dark Sector 
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1.3  Study of η and  η’ physics  
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PDG’18 
Gan, Kubis, E.P., Tulin  

in progress 

  Mη = 547.862(17) MeV

Rich physics program 
at h,h’ factories

Standard Model highlights
• Theory input for light-by-light 

scattering for (g-2)m
• Extraction of light quark masses
• QCD scalar dynamics 

Fundamental symmetry tests
• P,CP violation
• C,CP violation

[Kobzarev & Okun (1964), Prentki & 
Veltman (1965), Lee (1965), Lee & 
Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)
• Vector bosons
• Scalars
• Pseudoscalars (ALPs)

(Plus other channels that have 
not been searched for to date) Gan, Kubis, Passemar, ST

[arxiv:2007.00664]

From  S.Tulin 

Gan, Kubis, E. P., 
Tulin’22 
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2.  η → 3π : light quark mass extraction and  
test of C & CP violation 

In collaboration with G. Colangelo, S. Lanz  
          and H. Leutwyler (ITP-Bern) 

 

   Phys. Rev. Lett. 118 (2017) no.2, 022001 
  Eur.Phys.J. C78 (2018) no.11, 947 

See talks by I. Danilkin and M. Albaladejo 



2.1   Decays of η 

•  η  decay from PDG:  
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Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

η IG (JPC ) = 0+(0 − +)

We have omitted some results that have been superseded by later
experiments. The omitted results may be found in our 1988 edition
Physics Letters B204B204B204B204 (1988).

η MASSη MASSη MASSη MASS

Recent measurements resolve the obvious inconsistency in previous η mass
measurements in favor of the higher value first reported by NA48 (LAI 02).
We use only precise measurements consistent with this higher mass value
for our η mass average.

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE

547.865±0.031±0.062 NIKOLAEV 14 CRYB γp → pη

547.873±0.005±0.027 1M GOSLAWSKI 12 SPEC d p → 3He η

547.874±0.007±0.029 AMBROSINO 07B KLOE e+ e− → φ → ηγ
547.785±0.017±0.057 16k MILLER 07 CLEO ψ(2S) → J/ψη

547.843±0.030±0.041 1134 LAI 02 NA48 η → 3π0

• • • We do not use the following data for averages, fits, limits, etc. • • •

547.311±0.028±0.032 1 ABDEL-BARY 05 SPEC d p → 3He η
547.12 ±0.06 ±0.25 KRUSCHE 95D SPEC γp → ηp, threshold

547.30 ±0.15 PLOUIN 92 SPEC d p → 3He η

547.45 ±0.25 DUANE 74 SPEC π− p → n neutrals
548.2 ±0.65 FOSTER 65C HBC
549.0 ±0.7 148 FOELSCHE 64 HBC
548.0 ±1.0 91 ALFF-... 62 HBC
549.0 ±1.2 53 BASTIEN 62 HBC

1ABDEL-BARY 05 disagrees significantly with recent measurements of similar or better
precision. See comment in the header.

η WIDTHη WIDTHη WIDTHη WIDTH

This is the partial decay rate Γ(η → γγ) divided by the fitted branching
fraction for that mode. See the note at the start of the Γ(2γ) data block,
next below.

VALUE (keV) DOCUMENT ID

1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT

η DECAY MODESη DECAY MODESη DECAY MODESη DECAY MODES

Scale factor/
Mode Fraction (Γi /Γ) Confidence level

Neutral modesNeutral modesNeutral modesNeutral modes
Γ1 neutral modes (72.12±0.34) % S=1.2

Γ2 2γ (39.41±0.20) % S=1.1

Γ3 3π0 (32.68±0.23) % S=1.1

HTTP://PDG.LBL.GOV Page 1 Created: 10/1/2016 20:06

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

Γ4 π02γ ( 2.56±0.22) × 10−4

Γ5 2π02γ < 1.2 × 10−3 CL=90%

Γ6 4γ < 2.8 × 10−4 CL=90%

Γ7 invisible < 1.0 × 10−4 CL=90%

Charged modesCharged modesCharged modesCharged modes
Γ8 charged modes (28.10±0.34) % S=1.2

Γ9 π+π−π0 (22.92±0.28) % S=1.2

Γ10 π+π−γ ( 4.22±0.08) % S=1.1

Γ11 e+ e−γ ( 6.9 ±0.4 ) × 10−3 S=1.3

Γ12 µ+µ−γ ( 3.1 ±0.4 ) × 10−4

Γ13 e+ e− < 2.3 × 10−6 CL=90%

Γ14 µ+µ− ( 5.8 ±0.8 ) × 10−6

Γ15 2e+ 2e− ( 2.40±0.22) × 10−5

Γ16 π+π− e+ e− (γ) ( 2.68±0.11) × 10−4

Γ17 e+ e−µ+µ− < 1.6 × 10−4 CL=90%

Γ18 2µ+ 2µ− < 3.6 × 10−4 CL=90%

Γ19 µ+µ−π+π− < 3.6 × 10−4 CL=90%

Γ20 π+ e− νe + c.c. < 1.7 × 10−4 CL=90%

Γ21 π+π−2γ < 2.1 × 10−3

Γ22 π+π−π0γ < 5 × 10−4 CL=90%

Γ23 π0µ+µ−γ < 3 × 10−6 CL=90%

Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),
Charge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), or

Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

Γ24 π0γ C < 9 × 10−5 CL=90%

Γ25 π+π− P,CP < 1.3 × 10−5 CL=90%

Γ26 2π0 P,CP < 3.5 × 10−4 CL=90%

Γ27 2π0γ C < 5 × 10−4 CL=90%

Γ28 3π0γ C < 6 × 10−5 CL=90%

Γ29 3γ C < 1.6 × 10−5 CL=90%

Γ30 4π0 P,CP < 6.9 × 10−7 CL=90%

Γ31 π0 e+ e− C [a] < 4 × 10−5 CL=90%

Γ32 π0µ+µ− C [a] < 5 × 10−6 CL=90%

Γ33 µ+ e− + µ− e+ LF < 6 × 10−6 CL=90%

[a] C parity forbids this to occur as a single-photon process.

HTTP://PDG.LBL.GOV Page 2 Created: 10/1/2016 20:06

  Mη = 547.862(17) MeV



2.1   Why is it interesting to study η → 3π?  

•  Decay forbidden by isospin symmetry  η(IG = 0+)→ 3π(IG = 1-) 
 
 
 

 

•          effects are small         Sutherland’66, Bell & Sutherland’68 
          Baur, Kambor, Wyler’96, Ditsche, Kubis, Meissner’09 

 
 

•  Decay rate measures the size of isospin breaking (mu − md) in the SM:  
 

              Unique access to (mu− md) 
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2.2   Quark mass ratio 

•  In the following, extraction of Q  from η → π+ π- π0  

 
 
 
 
 

•  Aim: Compute M(s,t,u) with the best accuracy 
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Determined from experiment 
 

Determined from: 
•  Dispersive calculation 
•  ChPT  
 

Fit to  
Dalitz distr. 
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md
2 − mu

2

⎡

⎣
⎢

⎤

⎦
⎥

   
m ≡

md + mu

2
⎡

⎣
⎢

⎤

⎦
⎥



2.3  Method

•  Decompose amplitide in partial waves: 
 
 
 
 
•  Usual assumption: 3 BWs (ρ+, ρ−, ρ0) + background term 

�
�
�

•  Use a Khuri-Treiman approach or dispersive approach 
Restore 3 body unitarity and take into account the final state 
interactions in a systematic way 
 
 

•   
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Improve to include final  
states interactions 
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+ restore unitarity 
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2.7  Method

•  S-channel partial wave decomposition  
 
 
 
 

 
•  One truncates the partial wave expansion :         Isobar approximation 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

•   Use a Khuri-Treiman approach or dispersive approach 
        Restore 3 body unitarity and take into account the final state interactions     

             in a systematic way 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves        exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 

   
 

 

 
 

      

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM
Fuchs, Sazdjian & Stern’93 

Anisovich & Leutwyler’96 
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2.3  Representation of the amplitude 



•  Decomposition of the amplitude as a function of isospin states  

 
 

 
 

•  Unitarity relation:  

 

 
 

      

 
 

  
M (s, t,u) = M0

0(s) + s − u( )M1
1(t) + s − t( )M1

1(u) + M0
2(t) + M0

2(u) − 2
3

M0
2(s)
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2.3  Representation of the amplitude 
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disc Mℓ

I (s)⎡⎣ ⎤⎦ = ρ(s)tℓ
*(s) Mℓ

I (s) + M̂ℓ
I (s)( )

right-hand cut  left-hand cut  

From unitarity to integral equation

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
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right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(s)

F(s) = aΩ(s)
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s
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Khuri, Treiman 1960
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B. Kubis, Precision tools in hadron physics for Dalitz plot studies – p. 12
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F(s, t, u) = F(s) + F(t) + F(u)

2.4  ω/φ  → 3π	

•  Simple system: restricted to odd partial waves  
        P wave interactions only (neglecting F- and higher)  

•  Amplitude: 

 
 
 

•  F(s) function of one variable with only a right-hand cut 
 

•  Unitarity relation: 

•  Relation of dispersion to reconstruct the amplitude everywhere: 
 
 
 
 
 
 
 
 
 

ω(s): conformal map of inelastic contributions: 
        Coefficients ai play the role of improved  
        subtraction constants in alternative approaches:  
        e.g, Niecknig, Kubis, Schneider‘12 

•    
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•  Decomposition of the amplitude as a function of isospin states  

 
 
 

•  Unitarity relation:  

 
 
 

•  Relation of dispersion to reconstruct the amplitude everywhere: 

•  PI(s) determined from a fit to NLO ChPT + experimental Dalitz plot 
 
 

 

 

 
 

      

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −
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2.3  Representation of the amplitude 

   
disc Mℓ

I (s)⎡⎣ ⎤⎦ = ρ(s)tℓ
*(s) Mℓ

I (s) + M̂ℓ
I (s)( )

  
MI (s) = Ω I (s) PI (s) + sn

π
ds'
s'n

4 Mπ
2

∞

∫
sinδ I (s') M̂I (s')
Ω I (s') s'− s − iε( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Omnès function 
 

  

Ω I (s) = exp
s
π

ds'
δ I (s')

s'(s'− s − iε )
4 Mπ

2

∞

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Subtraction constants 

•  Extension of the numbers of parameters compared to Anisovich & Leutwyler’96 

 
 

•  In the work of Anisovich & Leutwyler’96 matching to one loop ChPT 
Use of the SU(2) x SU(2) chiral theorem 
       The amplitude has an Adler zero along the line s=u 

 
•  Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III 

      Use the data to directly fit the subtraction constants 
 

•  However normalization to be fixed to ChPT!     
 
 
 

 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2

Emilie Passemar 17 



Subtraction constants 

•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

•  They are determined from combining ChPT with a fit to KLOE Dalitz plot 

•  Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients 

�
�

•  Gauge freedom in the decomposition of M(s,t,u) 

P0 (s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

P2(s) = α 2 + β2s + γ 2s
2 + δ 0s

3

  M0(s) = A0 + B0s +C0s
2 + D0s

3 + ...

  M1(s) = A1 + B1s +C1s
2 + ...

  M2(s) = A2 + B2s +C2s
2 + D2s

3 +
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Subtraction constants 

•  Build some gauge independent combinations of Taylor coefficients 
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3

Aphys = KÃ. As discussed below, the prediction ob-
tained for the branching ratio of the two modes provides
a stringent test of this approximate formula: the factor
|K|2 barely a↵ects the Dalitz plot distribution because it
is nearly constant, but it di↵ers from unity and therefore
a↵ects the rate. Details will be given in [22].

The experimental results on the Dalitz plot distribu-
tion do not su�ce to determine all subtraction constants.
In particular, the overall normalization of the amplitude
is not constrained by these. We use the one-loop repre-
sentation of �PT to constrain the admissible range of the
subtraction constants. To do this we consider the Taylor
coe�cients of the functions M0(s), M1(s) and M2(s):

MI(s) = AI +BIs+ CIs
2 +DIs

3 + . . . (8)

These coe�cients also depend on the choice made in the
decomposition (2), but the combinations

H0 =A0 +
4

3
A2 + s0

✓
B0 +

4

3
B2

◆

H1 =A1 +
1

9
(3B0 � 5B2)� 3C2s0

H2 =C0 +
4

3
C2, H3 = B1 + C2

H4 =D0 +
4

3
D2, H5 = C1 � 3D2

(9)

are independent thereof (s0 stands for the value of the
Mandelstam variables at the center of the Dalitz plot:
s0 = 1

3M
2
⌘ + M2

⇡). We use the constant H0 to param-
eterize the normalization of the amplitude and describe
the relative size of the subtraction constants by means
of the variables hI = HI/H0. Specifying the 6 threshold
coe�cients H0, h1, . . . , h5 is equivalent to specifying the
6 subtraction constants ↵0, �0, . . ., �1.

At leading order of the chiral expansion, only HLO
0 = 1

and hLO
1 = 1/(M2

⌘ �M2
⇡) = 3.56 are di↵erent from zero

(throughout, dimensionful quantities are given in GeV
units). The NLO representation yields corrections for
these two coe�cients as well as the leading terms in the
chiral expansion of h2 and h3. The one-loop formulae
can be expressed in terms of the masses, the decay con-
stants F⇡, FK and the low energy constant L3, which only
contributes to H3. We are using the recently improved
determination L3 = �2.65(46) · 10�3 of [23], so that the
one-loop representation does not contain any unknowns.

Experience with �PT indicates that, unless the quan-
tity of interest contains strong infrared singularities, sub-
sequent terms in the chiral perturbation series based on
SU(3)⇥ SU(3) are smaller by a factor of 20� 30%. The
values HNLO

0 = 1.176, hNLO
1 = 4.52 confirm this rule:

while in the case of H0, the correction is below 20%, the
one in h1 is relatively large (27%), because this quantity
does contain a strong infrared singularity: h1 diverges in
the limit M⇡ ! 0, in proportion to 1/M2

⇡ . In fact, the
singular contribution fully dominates the correction. We

conclude that it is meaningful to truncate the chiral ex-
pansion of the Taylor coe�cients at NLO. The invariant
X is approximated with the one-loop result XNLO and
the uncertainties from the omitted higher orders are esti-
mated at 0.3 |XNLO �XLO|. This is on the conservative
side of the rule mentioned above and yields a theoretical
estimate for four of the six coe�cients: H0 = 1.176(53),
h1 = 4.52(36), h2 = 16.4(4.9), h3 = 6.3(1.9) (the esti-
mate used for h3 in particular also covers the compara-
tively small uncertainty in the value of L3). The remain-
ing two are beyond reach of the one-loop representation
– we treat h4 and h5 as free parameters.
The observed Dalitz plot distribution o↵ers a good

check of these estimates: dropping the subtraction con-
stants �0, �1 and ignoring �PT altogether, we obtain
a three-parameter fit to the KLOE Dalitz plot with
�2
exp = 385 for 371 data points. For all three coe�-

cients h1, h2, h3, the fit yields a value in the range esti-
mated above on the basis of �PT. Moreover, along the
line s = u, the resulting representation for the real part
of the amplitude exhibits a zero at sfitA = 1.43M2

⇡ : the
observed Dalitz plot distribution implies the presence of
an Adler zero, as required by a venerable SU(2)⇥SU(2)
low-energy theorem [20] (at leading order of the chiral
expansion, the zero sits at sLOA = 4

3M
2
⇡ , the corrections

of first non-leading order shift it to sNLO
A = 1.40M2

⇡).
The three assumptions formulated above do not imply

that the subtraction constants are real. In fact, beyond
NLO of the chiral expansion, the subtraction constants
get an imaginary part which can be estimated with the
explicit expressions obtained from the two-loop represen-
tation: they do not contain any unknown LECs, and none
of the O(p6) ones. For simplicity, we take ↵0,�0, . . . , �1
to be real. The small changes occurring if the imaginary
parts of the subtraction constants are instead taken from
the two-loop representation barely a↵ect our results.
In our analysis, the recent KLOE data [24] play the

central role. In this experiment, the Dalitz plot distri-
bution of the decay ⌘ ! ⇡+⇡�⇡0 is determined to high
accuracy, bin-by-bin. In the following we restrict our-
selves to an analysis of these data. The results of earlier
experiments [25–27] can readily be included, but do not
have a significant e↵ect on our results [22].
We minimize the sum of two discrepancy functions:

while �2
exp measures the di↵erence between the calculated

and measured Dalitz plot distributions at the 371 data
points of KLOE [24], �2

th represents the sum of the square
of the di↵erences between the values of h1, h2 and h3 used
in the fit and the central theoretical estimates, divided
by the uncertainties attached to these. The minimum
�2 = �2

exp+ �2
th we obtain for the 371 data points is equal

to �2
exp = 380.2, at the parameter values (the subtraction

constants are univocally fixed by these):

h1 = 4.49(14), h2 = 21.2(4.3), h3 = 7.1(1.7),

h4 = 76.4(3.4), h5 = 47.3(5.8) .
(10)

  H0
ChPT = 1 + 0.176 +O p4( )

h1
ChPT = 1

Δηπ

1− 0.21+O p4( )( )

  
h2

ChPT = 1
Δηπ

2 4.9 +O p4( )( )
h3
ChPT = 1

Δηπ
2 1.3 +O p4( )( )

  

χ theo
2 =

hi − hi
ChPT

σ
hi

ChPT

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i=1

3

∑
2

σhiChPT
= 0.3 hi

NLO − hi
LO

  
hi ≡

Hi

H0

⎡

⎣
⎢

⎤

⎦
⎥



Isospin breaking corrections 

•  Dispersive calculations in the isospin limit        to fit to data one has to include 
isospin breaking corrections  

 
 
 

•                                                              with MDKM :  amplitude at one loop 
                 with O(e2m) effects 

 
 

                     physical boundaries 
 

 

Mc/n(s, t,u) = Mdisp(s, t,u)
MDKM (s, t,u)
!MGL(s, t,u)

MGL: amplitude at one loop in  
        the isospin limit  

Gasser & Leutwyler’85 

Ditsche, Kubis, Meissner’09 

Out[392]=

!1.0 !0.5 0.5 1.0 Xn

!1.0

!0.5

0.5

1.0

Yn

Kinematic map:  
isospin symmetric boundaries  

à       

Neutral channel 

  
!MGL MGL
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Xn = 3

T2 −T1

Qn

  
Yn =

3T3

Qn

−1

Qn ≡ Mη − 3Mπ 0



2.4  η → 3π  Dalitz plot 

•  In the charged channel: experimental data from WASA, KLOE, BESIII 

•  New data expected from CLAS and GlueX with very different systematics 
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FIG. 7: (Color online) The experimental background
subtracted Dalitz plot distribution represented by the
two dimensional histogram with 371 bins. Only bins
used for the Dalitz parameter fits are shown. The

physical border is indicated by the red line.

TABLE V: Summary of the systematic errors for the
asymmetries.

syst. error (⇥105) �ALR �AQ �AS

EGmin ±1 ±0 ±4

BkgSub ±5 ±3 ±16

✓+� , ✓�� cut +2
�0

+0
�2

+2
�0

�te cut +49
�92

+48
�22

+ 7
�15

�te ��t⇡ cut +0
�2

+3
�0

+0
�1

✓⇤�� cut + 1
�57

+3
�4

+0
�8

MM +0
�4

+0
�1

+1
�2

ECL ±9 ±0 ±25

TOTAL + 50
�109

+48
�23

+31
�35

These results confirm the tension with the theoretical
calculations on the b parameter, and also the need for
the f parameter. In comparison to the previous mea-
surements shown in Tab. I, the present results are the
most precise and the first including the g parameter.
The improvement over KLOE(08) analysis comes from
four times larger statistics and improvement in the sys-
tematic uncertainties which are in some cases reduced
by factor 2 � 3. The major improvement in the system-
atic uncertainties comes from the analysis of the e↵ect of
the Event classification with an unbiased prescaled data
sample.

The final values of the charge asymmetries are all con-

X
1− 0.5− 0 0.5 1

   
 

i
N

5000

10000

15000

20000

25000

FIG. 8: (Color online) The experimental background
subtracted Dalitz plot data, Ni, (points with errors),

compared to set #4 fit results (red lines connecting bins
with the same Y value). The row with lowest Ni values

corresponds to the highest Y value (Y = +0.75).

Entries  371
Mean   0.01405
RMS    0.9723

ir
3− 2− 1− 0 1 2 30

5

10

15

20
Entries  371
Mean   0.01405
RMS    0.9723

FIG. 9: (Color online) Distribution of the normalized
residuals, ri, for fit #4.

KLOE’16 

  
A(s, t,u)

2
= N

1 + aY + bY 2

+dX 2 + fY 3 + ...
⎛
⎝⎜

⎞
⎠⎟

X = 3
T+ −T−

Qc
= 3
2MηQc

u − t( )

  
Y =

3T0

Qc

−1 = 3
2MηQc

Mη − M
π 0( )2

− s⎛
⎝

⎞
⎠ −1

See talk by S. Taylor 

See talk by S. Giovannella 



•  The amplitude along the line s = u :  

 

2.5  Results: Amplitude for η→ π+ π- π0 decays  
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Intro mu − md η → 3π and Q η → 3π disp. Summary iso-breaking Fits to data

Momentum dependence
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•  The amplitude along the line t = u :  

 

2.5  Results: Amplitude for η→ π+ π- π0 decays  
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Shift of Q towards  
smaller values  
Better agreement with  
 η → 3π result  

Quark mass ratio 

24 

  Q = 22.1 ± 0.7

•  Experimental systematics needs to be taken into account 

20 21 22 23 24

Q

χPT O(p4) (Gasser, Leutwyler’85)

η → 3π

χPT O(p6) (Bijnens, Ghorbani’07)

dispersive (Anisovich et al.’96)

dispersive (Kambor et al.’96)

dispersive (Kampf et al.’11)

dispersive (Albaladejo et al.’17)

dispersive (Guo et al., JPAC’15’17)

dispersive (Colangelo et al.’18)

Weinberg’77

kaon mass splitting

Kastner, Neufeld’08

Nf = 2

lattice, FLAG’21

Nf = 2 + 1

Nf = 2 + 1 + 1

New lattice results 



 
 
 
 
 
 

•  Smaller values for Q        smaller values for ms/md and mu/md than LO ChPT  
  

 

Light quark masses 

25 

  Q = 22.1 ± 0.7
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= 0.44 ± 0.03
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2.6  Prospects 
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•  Uncertainties in the quark mass ratio 

 
 
 
 
           

 

 
 
 

 

Can be investigated and reduced at  
future facilities 
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Figure 17: Experimental status of �(⌘ ! ��). The five points on the left are the results from collider experiments [319, 328–331], point 6
represents the Cornell Primako↵ measurement [332]. Point 7 is the projected error for the PrimEx-eta measurement with a ⇠ 3% total error,
arbitrarily plotted to agree with the average value of previous measurements. Figure reprinted from Ref. [89].

to separate the Primako↵ process from hadronic backgrounds, as demonstrated in the earlier Primako↵ experiment
by the Cornell group [332]. Two experimental techniques will be applied in the PrimEx-eta experiment to ameliorate
this problem. One is to go to higher photon energies, which, in addition to increasing the Primako↵ cross section
[�P ⇠ Z2 log(E)], will help better separating di↵erent processes by pushing the Primako↵ peak to smaller angles
[✓P ⇠ M2

⌘/(2E2)] as compared to the nuclear coherent production peaked at ✓NC ⇠ 2/(ER) [334], where R is the nuclear
radius (R ⇠ A1/3/M⇡). As such, a higher-energy beam in the JLab 12 GeV era is vital for this measurement. The
second is to use lighter targets, 1H and 4He, which are more compact compared to heavier nuclei, thereby enhancing
coherency as well as o↵ering less distortion to the physics signals due to the initial- and final-state interactions in
the nuclear medium. Since form factors for lighter nuclei fall slowly with increasing momentum transfer, the nuclear
coherent mechanism is peaked at larger angles for lighter nuclei, which helps to separate it from Primako↵ production.
The PrimEx-eta experiment collected the first data set in spring 2019 on a liquid 4He target and data analysis is in
progress. More data will be expected from the second run in fall 2021.

The precision measurement of the ⌘ radiative decay width will o↵er a sensitive probe into low-energy QCD. One
example is the extraction of the ⌘–⌘0 mixing angle. In addition, an improvement in �(⌘ ! ��) will also have a broad
impact on all other ⌘ partial decay widths in the PDG listing, as they are determined by using the ⌘! �� decay width
and their corresponding experimental branching ratios. This holds true in particular for the ⌘ ! 3⇡ decay (discussed
in Sect. 5.1) used for an accurate determination of the quark mass double ratio Q [203, 229]. As shown in Fig. 18, a
new Primako↵ result from the PrimEx-eta experiment will make an impact on Q by resolving the systematic di↵erence
between the results determined by using collider and previous Primako↵ measurements.

Lastly, we discuss ⌘0 ! ��. All existing measurements of �(⌘0 ! ��) were carried out by using e+e� colli-
sions, with experimental uncertainty for each individual experiment in the range of 7.3%–27% [56]. A planned new
experiment with GlueX, an extension of PrimEx-eta, will perform the first Primako↵ measurement with a projected
uncertainty of 4% for �(⌘0 ! ��). This precision measurement, coupled with theory, will provide further input for
global analyses of the ⌘–⌘0 system to determine their mixing angles and decay constants. Moreover, it will further pin
down the ⌘0 contribution to light-by-light scattering in (g � 2)µ.

41

Gan, Kubis, E. P., Tulin’22 



2.7  Expected Impact of JLab 22 GeV program 
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Q

  Γ η → 3π( ) = Γ η → 2γ( ) × BR
  

K + − K 0( )
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Figure 18: Light quark mass ratio determined by two di↵erent methods. The left-hand side indicates the values of Q calculated from the ⌘ ! 3⇡
decay corresponding to the Primako↵ [332] and collider average [54] experimental results for �(⌘! ��) as input, as well as the PDG averages for
B(⌘ ! ⇡+⇡�⇡0) and B(⌘ ! ��), see Table 1. The right-hand side shows the results for Q obtained from the kaon mass di↵erence, see Eq. (5.24),
with theoretical estimates for the electromagnetic corrections based on Dashen’s theorem (5.8), Ref. [252] (KN), or the lattice [259]. Figure adapted
from [203].

the nuclear medium. Since form factors for lighter nuclei fall slowly with increasing momentum transfer, the nuclear
coherent mechanism is peaked at larger angles for lighter nuclei, which helps to separate it from Primako↵ production.
The PrimEx-eta experiment collected the first two data sets in spring 2019 and in fall 2021 on a liquid 4He target.
More data will be expected from the third run in 2022.

The precision measurement of the ⌘ radiative decay width will o↵er a sensitive probe into low-energy QCD. One
example is the extraction of the ⌘–⌘0 mixing angle. In addition, an improvement in �(⌘ ! ��) will also have a broad
impact on all other ⌘ partial decay widths in the PDG listing, as they are determined by using the ⌘! �� decay width
and their corresponding experimental branching ratios. This holds true in particular for the ⌘ ! 3⇡ decay (discussed
in Sect. 5.1) used for an accurate determination of the quark mass double ratio Q [203, 229]. As shown in Fig. 18,
a new Primako↵ result from the PrimEx-eta experiment (the red point) will make an impact on Q by resolving the
systematic di↵erence between the results determined by using collider and previous Primako↵ measurements.

Lastly, we discuss ⌘0 ! ��. All existing measurements of �(⌘0 ! ��) were carried out by using e+e� colli-
sions, with experimental uncertainty for each individual experiment in the range of 7.3%–27% [54]. A planned new
experiment with GlueX, an extension of PrimEx-eta, will perform the first Primako↵ measurement with a projected
uncertainty of 4% for �(⌘0 ! ��). This precision measurement, coupled with theory, will provide further input for
global analyses of the ⌘–⌘0 system to determine their mixing angles and decay constants. Moreover, it will further pin
down the ⌘0 contribution to light-by-light scattering in (g � 2)µ.

6.2. ⇡0, ⌘, ⌘0 transition form factors
The general two-photon couplings for the lightest flavor-neutral pseudoscalar mesons P = ⇡0, ⌘, ⌘0 are described

by FP�⇤�⇤ (q2
1, q

2
2), defined in Eq. (6.1). Di↵erent experimental techniques can be used to access these TFFs in various

kinematical regions, including both time-like and space-like momenta, which are related to one another by analytic
continuation. In the space-like case, it is customary to express the photon momenta in terms of the positive variables
Q2

1,2 = �q2
1,2 > 0.

The general (doubly-virtual) TFFs are challenging both to predict theoretically and measure experimentally. Con-
sequently, most attention has focused on the singly-virtual TFF FP�⇤�(q2) ⌘ FP�⇤�⇤ (q2, 0) involving one real and one
virtual photon. Although we present more sophisticated treatments below, the approximate behavior of this function
can be understood simply within the context of VMD, which predicts a parameterization of the form

FP�⇤�(q2) ⌘ FP�⇤�⇤ (q2, 0) =
FP��

1 � q2/⇤2
P
, (6.8)
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2.8  Studying C & CP violation with η → 3π  asymetries 

•  η(IG = 0+)→ 3π(IG = 1-) breaks G parity 
 

Ø  In the SM:  C conserved, isospin broken 

Ø  Now in BSM: C broken, isospin either conserved or broken 

•  2 additional amplitudes which are C violating:  
interference: π+ ↔ π− asymmetries linear in BSM couplings  
 

•  Use KT approach to determine the hadronic amplitudes 

 
 
•            and          lead to different interference patterns  
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Gardner & Shi’19 
Akdag, Isken, Kubis’21 
Akdag, Kubis, Wirzba’22 
 
 

A new old proposal: Dalitz plot asymmetries

−→ H. Akdag

• η(IG = 0+)→ 3π(IG = 1−) breaks G-parity:

◃ SM: C conserved, isospin broken (& el.magn. suppressed)

−→ ideal process to extract mu −md −→ E. Passemar, T. Isken

◃ BSM: C broken, isospin either conserved or broken

M(s, t, u) = MC
1 (s, t, u) +M ̸C

0 (s, t, u) +M ̸C
2 (s, t, u)

• interference: π+ ↔ π− asymmetries linear in BSM couplings
Gardner, Shi 2019

• follow SM strategy for hadronic amplitudes: Akdag, Isken, BK 2021

analyse M ̸C
0,2(s, t, u) using dispersive Khuri–Treiman framework

η

η
π

π
π

π

π

π
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η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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• asymmetries constrained to the permille level
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η → π+π−π0: Dalitz plot asymmetries
• Dalitz plot decomposition (central fit result)
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η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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See talk by H. Akdag and S. Gardner 



2.8  Studying C & CP violation with η → 3π  asymetries 

 
 

•  Asymmetries constrained to the permille level 
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Akdag, Isken, Kubis’21 
 

η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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See talk by H. Akdag 



3.   Fundamental Symmetry tests:  
CP violation in η → µ+µ- 

 



•  A large number of P & CP-violating η(′) decays indirectly excluded from 
extremely stringent neutron EDM bounds 
 
 
 
 

 
 
 
 

•  The only exception: investigation of the muon polarization asymmetries in 
η→µ+µ− : EDM constraints at 2 loop order 
 

 

      Probe flavour-conserving CP-violation in the second generation 
      Constraint from EDM for strange quarks weakest:  

 
        possible with REDTOP statistics, see Elam et al, Snowmass WP’22 

•  Test of CPV in  
Ø  η(‘) → π0µ+µ−  
Ø  η‘ → ηµ+µ−  

 
 
 

 
 

 

 

 

 
 
 

     
 
 

     
 

 
 

 

Studying of  P & CP violation with η →  µ+µ−  
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Figure 38: Left: One-loop contribution to the neutron EDM, induced by a CP-violating ⌘ ! �⇤�⇤ TFF [denoted by the red vertex (⌦)]. The
photon–neutron coupling (black dot) involves the standard electromagnetic form factors. A similar crossed diagram is not shown explicitly. Right:
Two-loop contribution to the neutron EDM, induced by a CP-violating quark–lepton four-fermion operator [denoted by the red vertex (⌦)]. Neither
crossed diagrams nor counterterm contributions at one-loop and tree level required for renormalization are displayed explicitly.

The term in brackets has the same quantum numbers as the field strength tensor ⇢0
µ⌫ = @µ⇢

0
⌫ � @⌫⇢0

µ for the ⇢0 meson.
Through strong dynamics, any BSM operator generating Eq. (9.15) would certainly generate a lower-dimensional
interaction of the form

Le↵ =  ⌘Fµ⌫⇢0
µ⌫ . (9.16)

The coe�cient  can be estimated by dimensional analysis and is likely not much less than O(E⇥F2
⇡). Equation (9.16)

contributes to the neutron EDM at one-loop order, shown in Fig. 37. Qualitatively, this yields dn ⇠ g⇢NNg⌘NN/(4⇡)2,
where g⇢NN ⇠ 3 is the ⇢-meson–nucleon (vector) coupling [594]. It is not possible to be more precise since the
loop integral is logarithmically divergent, which would be cut o↵ around the QCD scale anyway. Nevertheless, this
yields an order-of-magnitude constraint at the level of E/M . 10�11, far beyond present sensitivities for the angular
asymmetry even allowing for the roughness of our estimates.14

Recently, Sánchez-Puertas [40, 41] proposed a new class of symmetry tests in ⌘ decays to dimuon final states:

⌘! µ+µ� , ⌘! µ+µ�� , ⌘! µ+µ�e+e� . (9.17)

CP-odd asymmetries in the first two channels involve the muon polarizations, which will be measurable at the planned
REDTOP experiment [70, 71], while for the last decay, the simplest CP-odd observable is the angular asymmetry
between the two dilepton planes (much like for ⌘! ⇡+⇡�e+e� discussed above). In contrast to electronic final states,
these decays avoid strong constraints from the electron EDM (and other CP-odd electon interactions, e.g., [574]);
also, electron polarizations will not be measured in the proposed REDTOP detector [70, 71].

The minimal framework to generate CP-odd asymmetries in decays (9.17) is to introduce CP violation in the
⌘–two-photon coupling. The usual ⌘ transition form factor (6.1) is generalized to

�✏µ⌫↵�q↵1 q�2F⌘�⇤�⇤ (q2
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2
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2
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2
2) , (9.18)

to include new P- and CP-violating TFFs FCP1,2
⌘�⇤�⇤ that couple to scalar—instead of pseudoscalar—Lorentz structures

(the contribution of FCP2
⌘�⇤�⇤ vanishes as long as one of the photons is real). However, such new ⌘�⇤�⇤ interactions induce

contributions to the neutron EDM at the one-loop level via an ⌘� intermediate state, shown in Fig. 38 (left) (similar to
the bounds on ⌘(0) ! ⇡⇡ discussed above). To evaluate the loop integral, the q2

i -dependence of the CP-violating TFFs
is modeled in a simple way motivated by the high-energy asymptotics of scalar TFFs in QCD [595]. The resulting
indirect constraints on all dimuon asymmetries are several orders of magnitude stronger than projections for REDTOP
based on a proposed statistics of 2 ⇥ 1012 produced ⌘ mesons [40].

Alternatively, CP-violating dimuon asymmetries can also arise via CP-odd four-fermion operators between quarks
and leptons in the Standard Model E↵ective Field Theory framework [596, 597]. In the notation of Ref. [597], the

14The foregoing argument excludes CP-violating ⌘ ! ⇡+⇡��⇤ operators (as suggested in the literature) at an observable level, but strictly
speaking does not preclude the contribution of local e↵ective quark–lepton operators inducing CP-violating ⌘ ! ⇡+⇡�`+`� decays. We expect
significant constraints from EDM searches in paramagnetic atoms and molecules, which are sensitive to CP-odd electron–nucleon couplings [574].
The consequences of similar quark–dimuon operators, as discussed in the following, have not been discussed for this specific decay yet.
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Figure 38: Left: One-loop contribution to the neutron EDM, induced by a CP-violating ⌘ ! �⇤�⇤ TFF [denoted by the red vertex (⌦)]. The
photon–neutron coupling (black dot) involves the standard electromagnetic form factors. A similar crossed diagram is not shown explicitly. Right:
Two-loop contribution to the neutron EDM, induced by a CP-violating quark–lepton four-fermion operator [denoted by the red vertex (⌦)]. Neither
crossed diagrams nor counterterm contributions at one-loop and tree level required for renormalization are displayed explicitly.

The term in brackets has the same quantum numbers as the field strength tensor ⇢0
µ⌫ = @µ⇢

0
⌫ � @⌫⇢0

µ for the ⇢0 meson.
Through strong dynamics, any BSM operator generating Eq. (9.15) would certainly generate a lower-dimensional
interaction of the form

Le↵ =  ⌘Fµ⌫⇢0
µ⌫ . (9.16)

The coe�cient  can be estimated by dimensional analysis and is likely not much less than O(E⇥F2
⇡). Equation (9.16)

contributes to the neutron EDM at one-loop order, shown in Fig. 37. Qualitatively, this yields dn ⇠ g⇢NNg⌘NN/(4⇡)2,
where g⇢NN ⇠ 3 is the ⇢-meson–nucleon (vector) coupling [594]. It is not possible to be more precise since the
loop integral is logarithmically divergent, which would be cut o↵ around the QCD scale anyway. Nevertheless, this
yields an order-of-magnitude constraint at the level of E/M . 10�11, far beyond present sensitivities for the angular
asymmetry even allowing for the roughness of our estimates.14

Recently, Sánchez-Puertas [40, 41] proposed a new class of symmetry tests in ⌘ decays to dimuon final states:

⌘! µ+µ� , ⌘! µ+µ�� , ⌘! µ+µ�e+e� . (9.17)

CP-odd asymmetries in the first two channels involve the muon polarizations, which will be measurable at the planned
REDTOP experiment [70, 71], while for the last decay, the simplest CP-odd observable is the angular asymmetry
between the two dilepton planes (much like for ⌘! ⇡+⇡�e+e� discussed above). In contrast to electronic final states,
these decays avoid strong constraints from the electron EDM (and other CP-odd electon interactions, e.g., [574]);
also, electron polarizations will not be measured in the proposed REDTOP detector [70, 71].

The minimal framework to generate CP-odd asymmetries in decays (9.17) is to introduce CP violation in the
⌘–two-photon coupling. The usual ⌘ transition form factor (6.1) is generalized to
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to include new P- and CP-violating TFFs FCP1,2
⌘�⇤�⇤ that couple to scalar—instead of pseudoscalar—Lorentz structures

(the contribution of FCP2
⌘�⇤�⇤ vanishes as long as one of the photons is real). However, such new ⌘�⇤�⇤ interactions induce

contributions to the neutron EDM at the one-loop level via an ⌘� intermediate state, shown in Fig. 38 (left) (similar to
the bounds on ⌘(0) ! ⇡⇡ discussed above). To evaluate the loop integral, the q2

i -dependence of the CP-violating TFFs
is modeled in a simple way motivated by the high-energy asymptotics of scalar TFFs in QCD [595]. The resulting
indirect constraints on all dimuon asymmetries are several orders of magnitude stronger than projections for REDTOP
based on a proposed statistics of 2 ⇥ 1012 produced ⌘ mesons [40].

Alternatively, CP-violating dimuon asymmetries can also arise via CP-odd four-fermion operators between quarks
and leptons in the Standard Model E↵ective Field Theory framework [596, 597]. In the notation of Ref. [597], the

14The foregoing argument excludes CP-violating ⌘ ! ⇡+⇡��⇤ operators (as suggested in the literature) at an observable level, but strictly
speaking does not preclude the contribution of local e↵ective quark–lepton operators inducing CP-violating ⌘ ! ⇡+⇡�`+`� decays. We expect
significant constraints from EDM searches in paramagnetic atoms and molecules, which are sensitive to CP-odd electron–nucleon couplings [574].
The consequences of similar quark–dimuon operators, as discussed in the following, have not been discussed for this specific decay yet.
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Sanchez-Puertas’19 

A loophole: scalar quark–lepton operators

• new class of CP-tests in Sánchez-Puertas 2019

η → µ+µ− , η → µ+µ−γ , η → µ+µ−e+e−

CP-odd observables for the first two require muon polarisation

• CP-odd ηγ∗γ∗ couplings ruled out as before

• quark–lepton four-fermion operators (scalar–pseudoscalar):

Leff =
1

2v2
Im c2222ℓedq

[

(µ̄µ)
(

s̄iγ5s
)

−
(

µ̄iγ5µ
)

(s̄s)
]

+ [u-, d-quarks]

• EDMs only generated at two loops

constraint for strange quarks weakest:

|Im c2222ℓedq | < 0.04

• asymmetries in η → µ+µ− may be within reach at REDTOP

• testing CPV in η → π0µ+µ− −→ E. Royo

and η → π+π−µ+µ− Zillinger, BK, Sánchez-Puertas

q q

ℓ
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Escribano et al.’22 

A loophole: scalar quark–lepton operators

• new class of CP-tests in Sánchez-Puertas 2019

η → µ+µ− , η → µ+µ−γ , η → µ+µ−e+e−

CP-odd observables for the first two require muon polarisation

• CP-odd ηγ∗γ∗ couplings ruled out as before

• quark–lepton four-fermion operators (scalar–pseudoscalar):

Leff =
1

2v2
Im c2222ℓedq

[

(µ̄µ)
(

s̄iγ5s
)

−
(

µ̄iγ5µ
)

(s̄s)
]

+ [u-, d-quarks]

• EDMs only generated at two loops

constraint for strange quarks weakest:

|Im c2222ℓedq | < 0.04

• asymmetries in η → µ+µ− may be within reach at REDTOP

• testing CPV in η → π0µ+µ− −→ E. Royo

and η → π+π−µ+µ− Zillinger, BK, Sánchez-Puertas

q q

ℓ

B. Kubis, Fundamental physics with η and η
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See talks by P. Sanchez-Puertas and H. Schäfer 
Ø  η(‘) → π+π-µ+µ−  

Zillinger et al.’22 



4.  η’ →  ηππ  and chiral dynamics 

In collaboration with  
S. Gonzalez-Solis (LANL) 
Eur. Phys. J. C78 (2018) no.9, 758  

  
 



4.1   Why is it interesting to study η’ → ηππ?  
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Channel Expt. branching ratio Discussion

⌘! 2� (39.3 ± 0.2)% anomaly, ⌘–⌘0 mixing
⌘! 3� < 1.6 ⇥ 10�5 C violation
⌘! 4� < 2.8 ⇥ 10�4

⌘! e+e�� (6.9 ± 0.4) ⇥ 10�3 Theory input for (g � 2)µ, dark photon (BSM)
⌘! 2⇡0 < 3.5 ⇥ 10�4 P, CP violation
⌘! ⇡+⇡� < 1.3 ⇥ 10�5 P, CP violation
⌘! 3⇡0 (32.6 ± 0.2)% mu � md

⌘! ⇡+⇡�⇡0 (22.7 ± 0.3)% mu � md, CP violation
⌘! ⇡0� < 9 ⇥ 10�5 [? ] C violation, angular momentum nonconservation
⌘! ⇡0e+e� < 7.5 ⇥ 10�6 [? ] C violation
⌘! ⇡0�� (2.7 ± 0.5) ⇥ 10�4 �PT at O(p6), leptophobic B boson (BSM)
⌘! 2⇡0� < 5 ⇥ 10�4 C, CP violation
⌘! ⇡+⇡�� (4.22 ± 0.08)% chiral anomaly, C violation
⌘! 2⇡0e+e�

⌘! ⇡+⇡�e+e� (2.68 ± 0.11) ⇥ 10�4 CP violation
⌘! 3⇡0� < 6 ⇥ 10�5 C, CP violation
⌘! ⇡+⇡�⇡0� < 5 ⇥ 10�4

⌘! 4⇡0 < 6.9 ⇥ 10�7 P, CP violation

⌘0 ! 2� (2.20 ± 0.08)% chiral anomaly
⌘0 ! 3� < 1.0 ⇥ 10�4 C, CP violation
⌘0 ! e+e�� < 9 ⇥ 10�4 �PT, dark photon (BSM)
⌘0 ! 2⇡0 < 4 ⇥ 10�4 P, CP violation
⌘0 ! ⇡+⇡� < 1.8 ⇥ 10�5 P, CP violation
⌘0 ! 3⇡0 (2.14 ± 0.20)% mu � md

⌘0 ! ⇡+⇡�⇡0 (3.8 ± 0.4) ⇥ 10�3 mu � md, CP violation
⌘0 ! ⌘⇡+⇡� (42.6 ± 0.7)% R�PT, anomaly, ⌘ � ⌘0 mixing
⌘0 ! ⌘⇡0⇡0 (22.8 ± 0.8)% R�PT, anomaly, ⌘ � ⌘0 mixing
⌘0 ! ⇡0e+e� < 1.4 ⇥ 10�3 C violation
⌘0 ! ⇡+⇡�e+e� (2.4+1.3

�1.0) ⇥ 10�3 P, CP violation
⌘0 ! ⇡0�� < 8 ⇥ 10�4 �PT, leptophobic B boson (BSM)
⌘0 ! ⌘e+e� < 2.4 ⇥ 10�3 C violation

Table 1: Summary of ⌘ and ⌘0 meson decays. [BK: references? what numbers are taken from where, updated, checked?]

a hydrogen or deuterium pellet target near the threshold. The formation of mesons is tagged by detecting the forward
boosted protons or helium ions. About 1.2 ⇥ 107 ⌘ events have been collected from the pd ! ⌘ +3 He reaction at
1 GeV [? ]. At the MAMI electron accelerator facility, the Crystal Ball/TAPS experiment [? ] uses a real-photon beam
derived from the production of bremsstrahlung radiation o↵ a 1.6 GeV electron beam passing through a thin radiator
and tagged with the Glasgow tagging spectrometer. The ⌘ and ⌘0 mesons were produced from the �p ! ⌘/⌘0p reac-
tion near threshold. About 2.5 ⇥ 108 ⌘ were collected [? ]. An extension of the physics program to the ⌘0 is planned.

3

PDG’21 
Gan, Kubis, E. P., Tulin’22 

  Mη ' = 957.78(6) MeV
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Channel Expt. branching ratio Discussion

⌘! 2� (39.3 ± 0.2)% anomaly, ⌘–⌘0 mixing
⌘! 3� < 1.6 ⇥ 10�5 C violation
⌘! 4� < 2.8 ⇥ 10�4

⌘! e+e�� (6.9 ± 0.4) ⇥ 10�3 Theory input for (g � 2)µ, dark photon (BSM)
⌘! 2⇡0 < 3.5 ⇥ 10�4 P, CP violation
⌘! ⇡+⇡� < 1.3 ⇥ 10�5 P, CP violation
⌘! 3⇡0 (32.6 ± 0.2)% mu � md

⌘! ⇡+⇡�⇡0 (22.7 ± 0.3)% mu � md, CP violation
⌘! ⇡0� < 9 ⇥ 10�5 [? ] C violation, angular momentum nonconservation
⌘! ⇡0e+e� < 7.5 ⇥ 10�6 [? ] C violation
⌘! ⇡0�� (2.7 ± 0.5) ⇥ 10�4 �PT at O(p6), leptophobic B boson (BSM)
⌘! 2⇡0� < 5 ⇥ 10�4 C, CP violation
⌘! ⇡+⇡�� (4.22 ± 0.08)% chiral anomaly, C violation
⌘! 2⇡0e+e�

⌘! ⇡+⇡�e+e� (2.68 ± 0.11) ⇥ 10�4 CP violation
⌘! 3⇡0� < 6 ⇥ 10�5 C, CP violation
⌘! ⇡+⇡�⇡0� < 5 ⇥ 10�4

⌘! 4⇡0 < 6.9 ⇥ 10�7 P, CP violation

⌘0 ! 2� (2.20 ± 0.08)% chiral anomaly
⌘0 ! 3� < 1.0 ⇥ 10�4 C, CP violation
⌘0 ! e+e�� < 9 ⇥ 10�4 �PT, dark photon (BSM)
⌘0 ! 2⇡0 < 4 ⇥ 10�4 P, CP violation
⌘0 ! ⇡+⇡� < 1.8 ⇥ 10�5 P, CP violation
⌘0 ! 3⇡0 (2.14 ± 0.20)% mu � md

⌘0 ! ⇡+⇡�⇡0 (3.8 ± 0.4) ⇥ 10�3 mu � md, CP violation
⌘0 ! ⌘⇡+⇡� (42.6 ± 0.7)% R�PT, anomaly, ⌘ � ⌘0 mixing
⌘0 ! ⌘⇡0⇡0 (22.8 ± 0.8)% R�PT, anomaly, ⌘ � ⌘0 mixing
⌘0 ! ⇡0e+e� < 1.4 ⇥ 10�3 C violation
⌘0 ! ⇡+⇡�e+e� (2.4+1.3

�1.0) ⇥ 10�3 P, CP violation
⌘0 ! ⇡0�� < 8 ⇥ 10�4 �PT, leptophobic B boson (BSM)
⌘0 ! ⌘e+e� < 2.4 ⇥ 10�3 C violation

Table 1: Summary of ⌘ and ⌘0 meson decays. [BK: references? what numbers are taken from where, updated, checked?]

a hydrogen or deuterium pellet target near the threshold. The formation of mesons is tagged by detecting the forward
boosted protons or helium ions. About 1.2 ⇥ 107 ⌘ events have been collected from the pd ! ⌘ +3 He reaction at
1 GeV [? ]. At the MAMI electron accelerator facility, the Crystal Ball/TAPS experiment [? ] uses a real-photon beam
derived from the production of bremsstrahlung radiation o↵ a 1.6 GeV electron beam passing through a thin radiator
and tagged with the Glasgow tagging spectrometer. The ⌘ and ⌘0 mesons were produced from the �p ! ⌘/⌘0p reac-
tion near threshold. About 2.5 ⇥ 108 ⌘ were collected [? ]. An extension of the physics program to the ⌘0 is planned.

3

PDG’21 
Gan, Kubis, E. P., Tulin’22 



4.1   Why is it interesting to study η’ → ηππ?  

•  Main decay channel of the η′:  

 
 
 
 

•  Precise measurements became available: recent results on  
–  neutral channel by A2 collaboration : 1.2 x 105 events 

–  neutral and charged channel by BESIII collaboration: 351 016 events 
 
 

•  More to come from GlueX          See talk by O. Cortes Becerra 
 
 
 
 
 
 
 

 
              

 
 

 BR(η '→ηπ 0π 0 ) = 22.8(8)%  BR(η '→ηπ +π − ) = 42.6(7)%and 

PDG’21 



4.2  Method 

•  Main decay channel of the η′:  

 
 
 
 
 

•  Precise measurements became available: recent results on  
–  neutral channel by A2 collaboration : 1.2 x 105 events 

–  Neutral and charged channel by BESIII collaboration: 351 016 events 
 

•  Studying this decay allows  
–  to test any of the extensions of ChPT e.g. resonance chiral theory, 

Large-NC U(3) ChPT etc  
–  to study the effects of the ππ and πη final-state interactions 

 
•  Method Used: U(3) ChPT with resonances at one-loop + Final-state 

interaction through N/D unitarization method with D waves + kaon loops 
 

N.B.: For KT framework see Isken et al’17              
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 BR(η '→ηπ 0π 0 ) = 22.8(8)%  BR(η '→ηπ +π − ) = 42.6(7)%and 

PDG’21 



4.3   Results 
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Research achievements: ⌘′ → ⌘⇡⇡ decays

Results
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Eur. Phys. J. C78 (2018) no.9, 758
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4.3   Results 
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Research achievements: ⌘′ → ⌘⇡⇡ decays

Results

⇒
ChPT Dalitz slope parameters Final-state interactions
a[Y ] = −0.095(6)
b[Y 2] = 0.005(1)
d[X2] = −0.037(5)

a[Y ] = −0.073(7)(5)
b[Y 2] = −0.052(1)(2)
d[X2] = −0.052(8)(5)

Eur. Phys. J. C78 (2018) no.9, 758

We are willing to provide our parametrization to the interested
experimental groups e.g. GlueX, BESIII etc.

S.Gonzàlez-Solís Theory postdoc position at JLab 25 january 2019 13 / 23

A(s, t,u)
2
= N 1+ aY + bY 2 + dX 2 + fY 3 + ...( )



4.3   Results 
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Fits to experimental data Unitarization of the ChPT amplitude

Dalitz Plot Parameters
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A(s, t,u)
2
= N 1+ aY + bY 2 + dX 2 + fY 3 + ...( )

  
X = 3

T− −T+

Qη '

= 3
2Mη 'Qη '

t − u( )

  
Y =

Mη + 2Mπ( )
Mπ

Tη

Qη '

−1= 
Mη + 2Mπ( )

Mπ

M
η' − Mη( )2

− s⎛
⎝⎜

⎞
⎠⎟

2Mη 'Qη '

−1



4.4   Prospects 
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•  Comparison to BESIII data  

 
 
 
 
 
 
 
 
 
 

•  Simultaneous fit by experimental collaborations to the neutral and charged 
channels etc 
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Figure 11: Di�erential decay rate distribution for ÷

Õ æ ÷fi

0

fi

0 divided by the phase-space,
both individually normalized, associated to the resulting parameters of Fit 1 of table 3 as
compared with the BESIII experimental data [46].

consider all possible sources of isospin breaking. In our framework, isospin breaking e�ects
mostly a�ect the Dalitz variables X and Y if the charged pion mass is used in Eqs. (2.9)
and (2.10). In Ref. [40] relations between the Dalitz parameters in the charged and the
neutral decay modes have been derived:

a

n = a

c + Á

iso

(ac + 2b

c) , b

n = b

c(1 + 2Á

iso

) , d

n = d

c

A
Q

n

Q

c

B
2

, (6.30)

where the superscripts c and n denote the associated parameters in the charged and neutral
systems, respectively, and with Á

iso

≥ 4.7% [40]. Following this prescription, our estimates
for the Dalitz parameters in the charged channel reads

a = ≠0.065(7)
stat

(8)
syst

, b = ≠0.048(1)
stat

(2)
syst

, d = ≠0.045(7)
stat

(5)
syst

. (6.31)

Comparing the above results with the most recent experimental determination of these
parameters in the charged system released by BESIII in 2017 [46], a = ≠0.056(4)

stat

(3)
syst

, b =
≠0.049(6)

stat

(6)
syst

, d = ≠0.063(4)
stat

(4)
syst

, we observe that our prediction for b is in ex-
cellent agreement while a and d are found to be 1‡ and 2‡ away, respectively.
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5.   Conclusion and Outlook 



5.1  Conclusion 

42 

 

•  η  and η’ allows to study the fundamental properties of QCD and test the SM 
–  Extraction of fundamental parameters of the SM,  

         e.g. light quark masses  
–  Study of chiral dynamics 

–  Study of CP violation 
 

•  To studies η  and η’with the best precision: Development of amplitude 
analysis techniques consistent with analyticity, unitarity, crossing symmetry         
dispersion relations allow to take into account all rescattering effects being as 
model independent as possible combined with ChPT          Provide 
parametrization for experimental studies 

 

•  In this talk, illustration with η → 3π  and extraction of the light quark masses 
and η' →  ηππ

•  Examples of constraints on CP violation from: 
–  η → 3π  asymmetries : C & CP violation 
–  η → µ+µ− : P & CP violation         constraints on sµ operators 

•  Many more topics I did not have time to address e.g. inputs for g-2, light BSM,  
sorry!          See talks at the workshop! 



5.2  Outlook  
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•  New η and η’ programs JEF and REDTOP 
•  In our opinion the most promising channels to study:  

•  Synergies between different physics: 
Ø Standard Model precision analyses 
Ø Discrete symmetry tests 
Ø Search for light BSM particles 

What else? — highlights in η and η′ physics

New experiments: JEF and REDTOP −→ A. Somov, C. Gatto

Our (personal) recommended highlights selection:

Decay channel Standard Model Discrete symmetries Light BSM particles

η→ π+π−π0 light quark masses C/CP violation scalar bosons (also η′)

η(′)
→ γγ η–η′ mixing, precision partial widths

η(′)
→ ℓ+ℓ−γ (g − 2)µ Z′ bosons, dark photon

η→ π0γγ higher-order χPT, scalar dynamics U(1)B boson, scalar bosons

η(′)
→ µ+µ− (g − 2)µ, precision tests CP violation

η→ π0ℓ+ℓ− C violation scalar bosons

η(′)
→ π+π−ℓ+ℓ− (g − 2)µ ALPs, dark photon

η(′)
→ π0π0ℓ+ℓ− C violation ALPs

−→ decay channels that allow for synergies between

• Standard Model precision analyses

• discrete symmetry tests

• searches for light BSM particles Gan, BK, Passemar, Tulin 2020

B. Kubis, Fundamental physics with η and η
′ decays – p. 25

Gan, Kubis, E. P., Tulin’22 



6.   Back-up 



3.4   Role of the D-wave ππ  FSI 
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Fits to experimental data Unitarization of the ChPT amplitude

The role of the D-wave ⇡⇡ FSI

Parameter Analysis I
Fit 1 (with D-wave) Fit 1 (w/o D-wave)

MS 1017(68)(24) 996(66)(25)
cd 30.4(4.8)(9) 23.3(3.5)(1.5)
cm = cd = cd
c̃d 17.6(2.8)(5) 13.5(2.0)(9)
c̃m = c̃d = c̃d
a⇡⇡ 0.76(61)(6) 2.01(1.61)(71)
�2

dof

1.12 1.24
a[Y ] −0.074(7)(8) −0.091(9)(4)
b[Y 2] −0.049(1)(2) −0.013(1)(5)
c[X] 0 0
d[X2] −0.047(8)(4) −0.031(6)(3)

03

[Y 3] 0.001 0.001

21

[Y X2] −0.004 −0.001

22

[Y 2X2] 0.001 0.0004

�M(X,Y )
Full

�2��M(X,Y )
D−wave=0�2

Sergi Gonzàlez-Solís (Indiana U.) APS workshop 2019 11 april 2019 22 / 41



2.1   Definitions 

•  η decay: η→ π+ π- π0 

 
 
 

•  Mandelstam variables 
 

       only two independent variables 
 
 

•  3 body decay         Dalitz plot  
 
 
 
 

Expansion around X=Y=0 
 
 

 
 
      

 
 

  
s = p

π + + p
π −( )2

, ( )0 2
,t p p

π π−= + ( )0

2
u p p

π π += +

0
2 2 2

02 3s t u M M M sη π π ++ + = + + ≡

( ) ( )040 42 ( , , )out i p p p p A s t uη π π ππ π π η π δ + −
+ − = − − −

Dalitz plot measurements

Dalitz plot variables

X
-1 0 1

Y

-1

0

1

1 X =
√
3

2mηQc
(u − t)

Y = 3
2mηQc

(

(mη −mπ0)2 − s
)

−1

Qc = mη − 2mπ+ −mπ0

Z = X2 + Y 2

Stefan Lanz (Lund University) η → 3π and quark masses Chiral Dynamics 2012 14
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θS

A(s, t,u)
2
= N 1+ aY + bY 2 + dX 2 + fY 3 + ...( )

  
X = 3

T+ −T−

Qc

= 3
2MηQc

u − t( )

Y =
3T0
Qc

−1 = 3
2MηQc

Mη −Mπ 0( )2 − s⎛
⎝

⎞
⎠ −1

02cQ M M Mη π π+≡ − −



2.3   Computation of the amplitude 

•  What do we know?  

•  Compute the amplitude using ChPT : 
 
 
 
 
 
The Chiral series has convergence problems 
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Γη→3π = 66 + 94 + ... + ...( )eV = 300 ±12( )eV

LO NLO NNLO 

LO: 
NLO: 
 NNLO: PDG’16 

Osborn, Wallace’70 

Gasser & Leutwyler’85 

 Bijnens & Ghorbani’07 

Anisovich & Leutwyler’96  

s = u 



2.3   Computation of the amplitude 

•  What do we know?  

•  The amplitude has an Adler zero: soft pion theorem 
         Amplitude has a zero for :  
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Anisovich & Leutwyler’96  

 Adler’85 

  pπ − → 0
  s = u = 0,  t = Mη

2

  pπ + → 0

s = t = 0,  u = Mη
2

  
s = u = 4

3
Mπ

2 ,  t = Mη
2 +

Mπ
2

3Mπ ≠ 0

SU(2) corrections 

s = t = 4
3
Mπ

2 ,  u = Mη
2 +
Mπ

2

3

s = u 



2.4   Neutral channel : η→ π0 π0 π0  

•  What do we know?  
 

•  We can relate charged and neutral channels 
 
 
 
        Correct formalism should be able to reproduce both charged and     

             neutral channels 
 
•  Ratio of decay width precisely measured 
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( , , ) ( , , ) ( , , ) ( , , )A s t u A s t u A t u s A u s t= + +

  
r =

Γ η → π 0π 0π 0( )
Γ η → π +π −π 0( )  = 1.426 ± 0.026 PDG’19 

 



•  Decay amplitude  

 
 

 
 

 
 

 

 
 

 
   

 

 

 
 

      

 
 

2.4   Neutral Channel : η→ π0 π0 π0  

2

3 1 2A Zη π α→Γ ∝ ∝ + with 
23

1

32 1
3

i

i n

T
Z

Q=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

  α  0.015

 α = −0.0288 ± 0.0012

03nQ M Mη π
≡ −

 Important discrepancy between  
ChPT and experiment!  

Help of a dispersive treatment? 
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2.5   Dispersive treatment 

•  The Chiral series has convergence problems   
 

 Large ππ  final state interactions  
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 Roiesnel & Truong’81 

−
η



2.5   Dispersive treatment 

•  The Chiral series has convergence problems   
 

 Large ππ  final state interactions  

 
 

•  Dispersive treatment :  
–  analyticity, unitarity and crossing symmetry 
–  Take into account all the rescattering effects 
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−
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2.6   Why a new dispersive analysis? 

 

•  Several new ingredients:  
–  New inputs available: extraction ππ phase shifts has improved 

 
 
 

 
–  New experimental programs, precise Dalitz plot measurements 
 
 
 
 
 
–  Many improvements needed in view of very precise data: inclusion of  

‒  Electromagnetic effects (O(e2m)) 

 

‒  Isospin breaking effects 

‒  Inelasticities 
 
 
 
 

 

 

Ditsche, Kubis, Meissner’09 
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Kaminsky et al’01, Garcia-Martin et al’09 

Ananthanarayan et al’01, Colangelo et al’01 
Descotes-Genon et al’01 

CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) 
     

TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) 

BES III (Beijing) 

Gullstrom, Kupsc, Rusetsky’09,  
Schneider, Kubis, Ditsche’11 
 
 Albaladejo & Moussallam’15 



•  The amplitude squared in the neutral channel is  

2.11  Z distribution for η→ π0 π0 π0 decays  

The agreement is excellent between  
our prediction and the data! 
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2.12  Comparison of results for α

Emilie Passemar 55  α = −0.0307 ± 0.0017



Experimental Facilities and Role of JLab 12 

Emilie Passemar 56 

 

 
 
 

 

M. J. Amaryan et al.  
CLAS Analysis Proposal, (2014) 



2.3   Computation of the amplitude 

•  What do we know?  
 

 
 

•  Compute the amplitude using ChPT : the effective theory that describe 
dynamics of the Goldstone bosons (kaons, pions, eta) at low energy 
 
 
 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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   mu , md ≪ ms < ΛQCD

 Weinberg’s power counting rule 

  p << ΛH = 4πFπ ~ 1 GeV
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }



2.5  Iterative Procedure 

•  Solution linear in the subtraction constants    Anisovich & Leutwyler’96  

 
 
 
 
 

 
  
M (s, t,u) = α 0Mα 0

(s, t,u) + β0Mβ0
(s, t,u) + ... makes the fit much easier  

3 Integral Equations

Numerical solution of the dispersion relation

fix one subtraction
constant to 1,
all others to 0

compute ˆMi with
angular integrals

compute Mi with
dispersive integrals

compute Omnès
functions ⌦

I
l

⇡⇡/K⇡

elastic phase
shifts �Il

convergence?

linear fit of
subtraction

constants to data

matching to �PT:
extract LECs

apply isospin
corrections

experimental
data on F , G
form factors

no

yes

21

			ππ	

Determination of 
subtraction constants:   

fit to data + chiral 
constraints 

Adapted from P. Stoffer’15 
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2.6  Subtraction constants 

•  Extension of the numbers of parameters compared to Anisovich & Leutwyler’96 

 
 

•  In the work of Anisovich & Leutwyler’96 matching to one loop ChPT 
Use of the SU(2) x SU(2) chiral theorem 
       The amplitude has an Adler zero along the line s=u 

 
•  Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III 

      Use the data to directly fit the subtraction constants 
 

•  However normalization to be fixed to ChPT!     
 
 
 

 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2
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2.7  Subtraction constants 

•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

•  They are determined from combining ChPT with a fit to KLOE Dalitz plot 

•  Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients 

�
�

•  Gauge freedom in the decomposition of M(s,t,u) 

P0 (s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

P2(s) = α 2 + β2s + γ 2s
2 + δ 0s

3

  M0(s) = A0 + B0s +C0s
2 + D0s

3 + ...

  M1(s) = A1 + B1s +C1s
2 + ...

  M2(s) = A2 + B2s +C2s
2 + D2s

3 +
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2.7  Subtraction constants 

•  Build some gauge independent combinations of Taylor coefficients 
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3

Aphys = KÃ. As discussed below, the prediction ob-
tained for the branching ratio of the two modes provides
a stringent test of this approximate formula: the factor
|K|2 barely a↵ects the Dalitz plot distribution because it
is nearly constant, but it di↵ers from unity and therefore
a↵ects the rate. Details will be given in [22].

The experimental results on the Dalitz plot distribu-
tion do not su�ce to determine all subtraction constants.
In particular, the overall normalization of the amplitude
is not constrained by these. We use the one-loop repre-
sentation of �PT to constrain the admissible range of the
subtraction constants. To do this we consider the Taylor
coe�cients of the functions M0(s), M1(s) and M2(s):

MI(s) = AI +BIs+ CIs
2 +DIs

3 + . . . (8)

These coe�cients also depend on the choice made in the
decomposition (2), but the combinations

H0 =A0 +
4

3
A2 + s0

✓
B0 +

4

3
B2

◆

H1 =A1 +
1

9
(3B0 � 5B2)� 3C2s0

H2 =C0 +
4

3
C2, H3 = B1 + C2

H4 =D0 +
4

3
D2, H5 = C1 � 3D2

(9)

are independent thereof (s0 stands for the value of the
Mandelstam variables at the center of the Dalitz plot:
s0 = 1

3M
2
⌘ + M2

⇡). We use the constant H0 to param-
eterize the normalization of the amplitude and describe
the relative size of the subtraction constants by means
of the variables hI = HI/H0. Specifying the 6 threshold
coe�cients H0, h1, . . . , h5 is equivalent to specifying the
6 subtraction constants ↵0, �0, . . ., �1.

At leading order of the chiral expansion, only HLO
0 = 1

and hLO
1 = 1/(M2

⌘ �M2
⇡) = 3.56 are di↵erent from zero

(throughout, dimensionful quantities are given in GeV
units). The NLO representation yields corrections for
these two coe�cients as well as the leading terms in the
chiral expansion of h2 and h3. The one-loop formulae
can be expressed in terms of the masses, the decay con-
stants F⇡, FK and the low energy constant L3, which only
contributes to H3. We are using the recently improved
determination L3 = �2.65(46) · 10�3 of [23], so that the
one-loop representation does not contain any unknowns.

Experience with �PT indicates that, unless the quan-
tity of interest contains strong infrared singularities, sub-
sequent terms in the chiral perturbation series based on
SU(3)⇥ SU(3) are smaller by a factor of 20� 30%. The
values HNLO

0 = 1.176, hNLO
1 = 4.52 confirm this rule:

while in the case of H0, the correction is below 20%, the
one in h1 is relatively large (27%), because this quantity
does contain a strong infrared singularity: h1 diverges in
the limit M⇡ ! 0, in proportion to 1/M2

⇡ . In fact, the
singular contribution fully dominates the correction. We

conclude that it is meaningful to truncate the chiral ex-
pansion of the Taylor coe�cients at NLO. The invariant
X is approximated with the one-loop result XNLO and
the uncertainties from the omitted higher orders are esti-
mated at 0.3 |XNLO �XLO|. This is on the conservative
side of the rule mentioned above and yields a theoretical
estimate for four of the six coe�cients: H0 = 1.176(53),
h1 = 4.52(36), h2 = 16.4(4.9), h3 = 6.3(1.9) (the esti-
mate used for h3 in particular also covers the compara-
tively small uncertainty in the value of L3). The remain-
ing two are beyond reach of the one-loop representation
– we treat h4 and h5 as free parameters.
The observed Dalitz plot distribution o↵ers a good

check of these estimates: dropping the subtraction con-
stants �0, �1 and ignoring �PT altogether, we obtain
a three-parameter fit to the KLOE Dalitz plot with
�2
exp = 385 for 371 data points. For all three coe�-

cients h1, h2, h3, the fit yields a value in the range esti-
mated above on the basis of �PT. Moreover, along the
line s = u, the resulting representation for the real part
of the amplitude exhibits a zero at sfitA = 1.43M2

⇡ : the
observed Dalitz plot distribution implies the presence of
an Adler zero, as required by a venerable SU(2)⇥SU(2)
low-energy theorem [20] (at leading order of the chiral
expansion, the zero sits at sLOA = 4

3M
2
⇡ , the corrections

of first non-leading order shift it to sNLO
A = 1.40M2

⇡).
The three assumptions formulated above do not imply

that the subtraction constants are real. In fact, beyond
NLO of the chiral expansion, the subtraction constants
get an imaginary part which can be estimated with the
explicit expressions obtained from the two-loop represen-
tation: they do not contain any unknown LECs, and none
of the O(p6) ones. For simplicity, we take ↵0,�0, . . . , �1
to be real. The small changes occurring if the imaginary
parts of the subtraction constants are instead taken from
the two-loop representation barely a↵ect our results.
In our analysis, the recent KLOE data [24] play the

central role. In this experiment, the Dalitz plot distri-
bution of the decay ⌘ ! ⇡+⇡�⇡0 is determined to high
accuracy, bin-by-bin. In the following we restrict our-
selves to an analysis of these data. The results of earlier
experiments [25–27] can readily be included, but do not
have a significant e↵ect on our results [22].
We minimize the sum of two discrepancy functions:

while �2
exp measures the di↵erence between the calculated

and measured Dalitz plot distributions at the 371 data
points of KLOE [24], �2

th represents the sum of the square
of the di↵erences between the values of h1, h2 and h3 used
in the fit and the central theoretical estimates, divided
by the uncertainties attached to these. The minimum
�2 = �2

exp+ �2
th we obtain for the 371 data points is equal

to �2
exp = 380.2, at the parameter values (the subtraction

constants are univocally fixed by these):

h1 = 4.49(14), h2 = 21.2(4.3), h3 = 7.1(1.7),

h4 = 76.4(3.4), h5 = 47.3(5.8) .
(10)
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2.5  η → 3π and light quark masses 
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2.14  Comparison with Lattice 
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3.2   Theoretical Framework  

•  U(3) ChPT with resonances at one-loop 
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Structure of the decay amplitude

⌘′ → ⌘⇡⇡: Scalar Resonance and loop contributions
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Final-state interaction through  
the N/D unitarization method  
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3.2   Theoretical Framework  

•  Unitarity relations 

 
 
•  A dispersive analysis also exists by Isken et al.’17 but here we include 

D waves as well as kaon loops 
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