

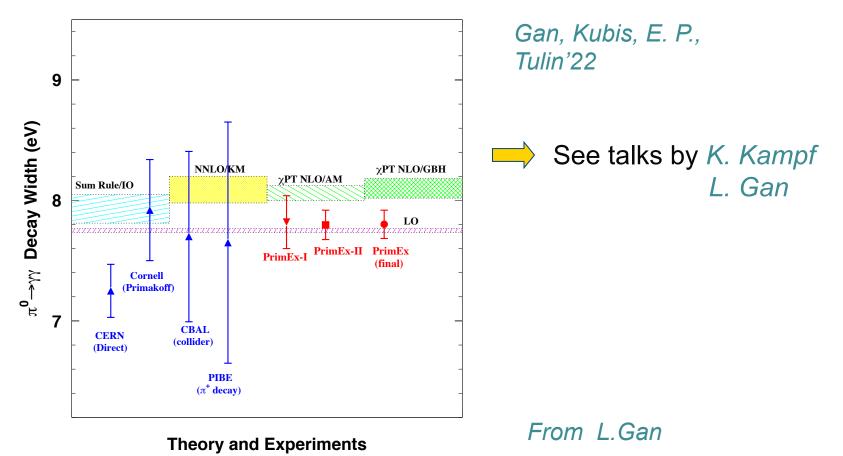
Probing Low-Energy QCD, Fundamental Symmetry and BSM Physics with π^0 , η and η ' mesons

Emilie Passemar epassema@indiana.edu

Indiana University/Jefferson Laboratory/IFIC Valencia

Workshop on Precision Tests of Fundamental Physics with Light Mesons ECT*, Trento, Italy, June 12 -16, 2023

Based on *Phys. Rept.* 945 (2022), 1-105, *L. Gan, B. Kubis, E.P., S. Tulin*



- 1. Introduction and Motivation
- 2. $\eta \rightarrow 3\pi$: light quark mass extraction and test of C & CP violation
- 3. Test of CP violation (P & CP violation) in $\eta \rightarrow \mu^+ \mu^-$
- 4. $\eta' \rightarrow \eta \pi \pi$ and chiral dynamics
- 5. Conclusion and Outlook

1. Introduction and Motivation

1.1 Why is it interesting to study π^0 , η and η' physics?

- π^0 is the pseudo-Goldstone boson of chiral perturbation theory
- It is one of the most fundamental degree of freedom
- There are still some puzzles about this particle:

1.1 Why is it interesting to study η and η' physics?

- Quantum numbers I^G J^{PC} = 0⁺ 0⁻⁺
 - C, P eigenstates, all additive quantum numbers are zero
 - flavour-conserving laboratory for symmetry tests
- η: pseudo-Goldstone boson,

$$M_{\eta} = 547.862(17) \text{ MeV}$$
, $\Gamma_{\eta} = 1.31 \text{ keV}$

All decay modes forbidden at leading order by *symmetries* (C, P, angular momentum, isospin/G-parity...)

- η' : not a Goldstone boson due to U(1)_A anomaly $M_{\eta'} = 957.78(6)$ MeV $\Gamma_{\eta'} = 196$ keV
- Theoretical methods:
 - (large-N_c) chiral perturbation theory, RChPT
 - dispersion relations to resum final state interactions
 - Vector-meson dominance

1.1 Why is it interesting to study η and η' physics?

• In the study of η and η' physics, large amount of data have been collected:

GlueX

More to come: JEF, REDTOP (Elam et al'22), LHCb?, JLab@22GeV

See talk by *S. Taylor*

- Unique opportunity:
 - Test chiral dynamics at low energy
 - Extract fundamental parameters of the Standard Model: ex: light quark masses
 - Study of fundamental symmetries: P & CP and C & CP violation

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio
$\eta ightarrow 2\gamma$	39.41(20)%
$\eta \rightarrow 3\pi^0$	32.68(23)%
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%
$\eta ightarrow \pi^+ \pi^- \gamma$	4.22(8)%
$\eta ightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$
$\eta \rightarrow e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$
$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$
$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$
$\eta ightarrow \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$	
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$
$\eta o \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$
$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$
$\eta ightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$
$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$
$\eta \to \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$
$\eta ightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$

From S.Tulin

Discussion

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion
$\eta \to 2\gamma$	39.41(20)%	chiral anomaly, η – η' mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson,
		light Higgs scalars
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	$< 10^{-11}[52]$
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation,
		light Higgs scalars
$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF
		and $(g - 2)_{\mu}$, <i>P</i> / <i>CP</i> violation
$\eta \to \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_{\mu}$,
		dark photon, protophobic X boson
$\eta \to \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon
$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays
$\eta ightarrow \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays,
		P/CP violation
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,
		<i>P/CP</i> violation, ALPs
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,
		P/CP violation, ALPs
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$
$\eta \to e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta ightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current
$\eta \to \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$	<i>P/CP</i> violation <i>Gan, Kubis, E. P.,</i>
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	D/CD violation
$\eta \rightarrow 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation Tulin'22

Diamarian

Event branching ratio

Channal

From S.Tulin

2. $\eta \rightarrow 3\pi$: light quark mass extraction and test of C & CP violation

In collaboration with G. Colangelo, S. Lanz and H. Leutwyler (ITP-Bern)

Phys. Rev. Lett. 118 (2017) no.2, 022001 *Eur.Phys.J.* C78 (2018) no.11, 947

2.1 Decays of η

• η decay from PDG:

 $M_{\eta} = 547.862(17) \text{ MeV}$

η DECAY MODES			
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
		Neutral modes	
Γ ₁	neutral modes	(72.12±0.34) %	S=1.2
Γ2	2γ	(39.41±0.20) %	S=1.1
Г ₃	$3\pi^0$	(32.68±0.23) %	S=1.1
		Charged modes	
Г ₈	charged modes	$(28.10\pm0.34)~\%$	S=1.2
Γ ₉	$\pi^+\pi^-\pi^0$	(22.92 ± 0.28) %	S=1.2
Γ ₁₀	$\pi^+\pi^-\gamma$	(4.22±0.08) %	S=1.1

2.1 Why is it interesting to study $\eta \rightarrow 3\pi$?

• Decay forbidden by isospin symmetry $\eta(I^{G} = 0^{+}) \rightarrow 3\pi(I^{G} = 1^{-})$

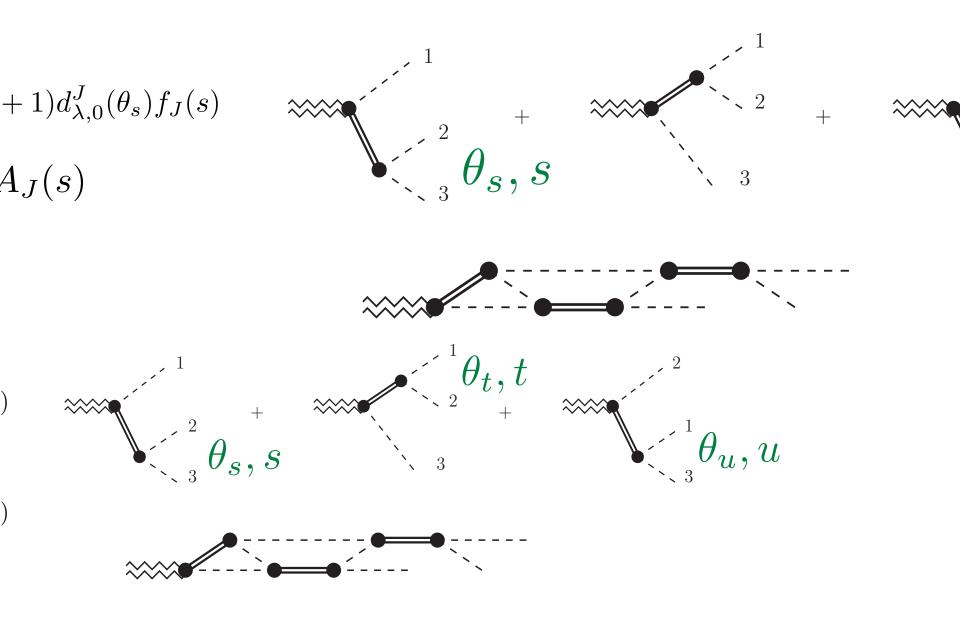
$$A = \left(m_{u} - m_{d} \right) A_{1} + \alpha_{em} A_{2}$$

- *α_{em}* effects are small Sutherland'66, Bell & Sutherland'68 Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09
- Decay rate measures the size of isospin breaking $(m_u m_d)$ in the SM:

$$L_{QCD} \rightarrow L_{IB} = -\frac{m_u - m_d}{2} \left(\overline{u} u - \overline{d} d \right)$$

$$\rightarrow$$
 Unique access to $(m_u - m_d)$

2.2 Quark mass ratio

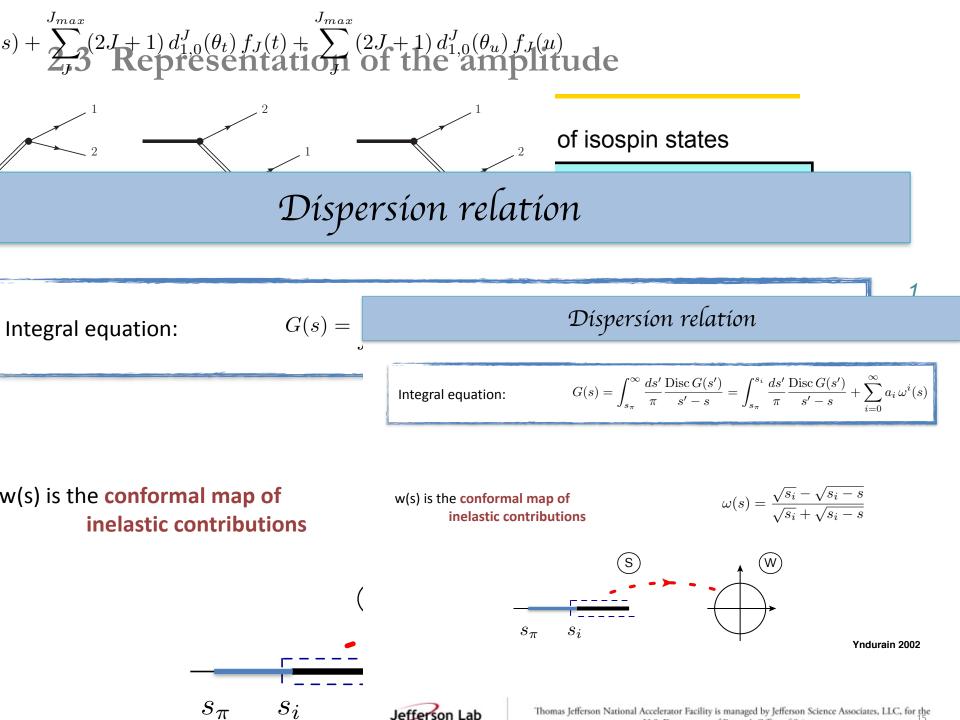

• In the following, extraction of Q from $\eta \to \pi^+ \pi^- \pi^0$

$$\Gamma_{\eta \to \pi^{+}\pi^{-}\pi^{0}} = \frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2} - M_{\pi}^{2}\right)^{2}}{6912\pi^{3}F_{\pi}^{4}M_{\eta}^{3}} \int_{s_{\min}}^{s_{\max}} ds \int_{u_{-}(s)}^{u_{+}(s)} du \left|M(s,t,u)\right|^{2}$$
Determined from experiment
$$Determined from: \cdot Dispersive calculation \cdot Dispersive calculation \cdot ChPT$$

$$\left[Q^{2} = \frac{m_{s}^{2} - \hat{m}_{u}^{2}}{m_{d}^{2} - m_{u}^{2}}\right] \left[\widehat{m} = \frac{m_{d} + m_{u}}{2}\right]$$

• Aim: Compute M(s,t,u) with the *best accuracy*

Three Pions


2.3 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- \succ M_I isospin *I* rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- ➢ Main two body rescattering corrections inside M₁

2.3 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

• Unitarity relation:

$$disc\left[M_{\ell}^{I}(s)\right] = \rho(s)t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s) + \hat{M}_{\ell}^{I}(s)\right)$$

• Relation of dispersion to reconstruct the amplitude everywhere:

$$M_{I}(s) = \Omega_{I}(s) \left(\frac{P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)}} \right) \qquad \left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)}\right) \right]$$
Omnès function

Gasser & Rusetsky'18

P_I(s) determined from a fit to NLO ChPT + experimental Dalitz plot

Emilie Passemar

Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III
 Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_I Subtraction constants Taylor coefficients

$$M_{0}(s) = A_{0} + B_{0}s + C_{0}s^{2} + D_{0}s^{3} + \dots$$
$$M_{1}(s) = A_{1} + B_{1}s + C_{1}s^{2} + \dots$$
$$M_{2}(s) = A_{2} + B_{2}s + C_{2}s^{2} + D_{2}s^{3} + \dots$$

• Gauge freedom in the decomposition of M(s,t,u)

Subtraction constants

Build some gauge independent combinations of Taylor coefficients

$$H_{0} = A_{0} + \frac{4}{3}A_{2} + s_{0}\left(B_{0} + \frac{4}{3}B_{2}\right) \qquad H_{0}^{ChPT} = 1 + 0.176 + O\left(p^{4}\right)$$

$$H_{1} = A_{1} + \frac{1}{9}\left(3B_{0} - 5B_{2}\right) - 3C_{2}s_{0} \qquad \Longrightarrow \qquad h_{1}^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1 - 0.21 + O\left(p^{4}\right)\right)$$

$$H_{2} = C_{0} + \frac{4}{3}C_{2}, \qquad H_{3} = B_{1} + C_{2} \qquad h_{2}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(4.9 + O\left(p^{4}\right)\right)$$

$$H_{4} = D_{0} + \frac{4}{3}D_{2}, \qquad H_{5} = C_{1} - 3D_{2} \qquad h_{3}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(1.3 + O\left(p^{4}\right)\right)$$

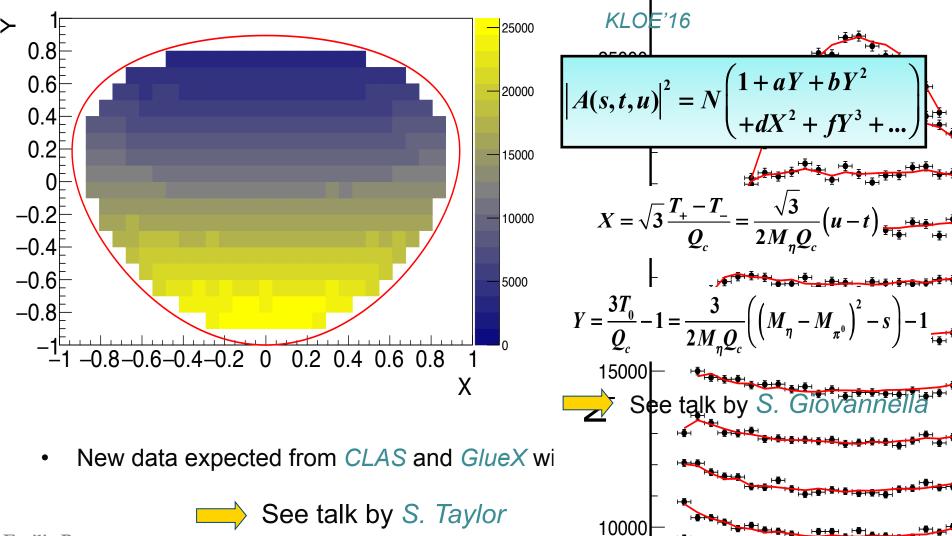
$$\chi^{2}_{theo} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}} \right)^{2}$$

$$\sigma_{\boldsymbol{h}_{i}^{ChPT}}=0.3\left|\boldsymbol{h}_{i}^{NLO}-\boldsymbol{h}_{i}^{LO}\right|$$

 $h_i \equiv \frac{H_i}{H_0}$

Isospin breaking corrections

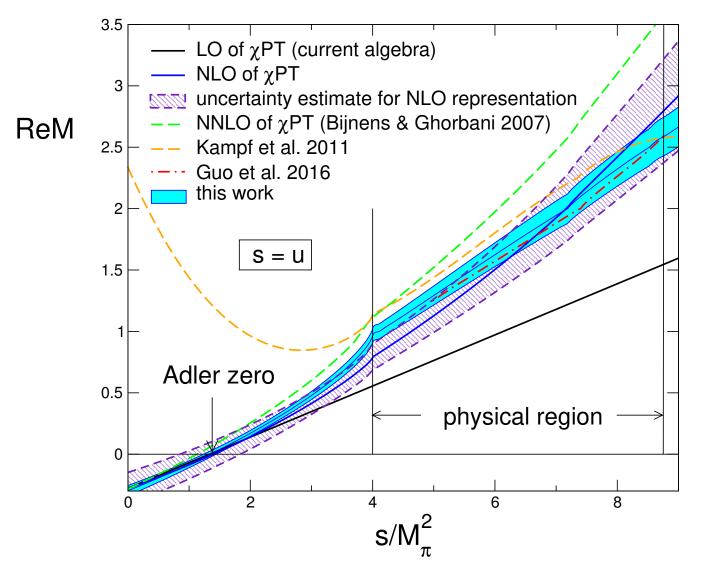
Dispersive calculations in the isospin limit


 to fit to data one has to include
 isospin breaking corrections

•
$$M_{cln}(s,t,u) = M_{disp}(s,t,u) \frac{M_{DKM}(s,t,u)}{\tilde{M}_{GL}(s,t,u)}$$
 with M_{DKM} : amplitude at one loop with $\mathcal{O}(e^{2}m)$ effects
 $Ditsche, Kubis, Meissner'09$
 M_{GL} : amplitude at one loop in the isospin limit
 $Gasser \& Leutwyler' 85$
Kinematic map:
 $isospin symmetric boundaries$
 $M_{GL} \rightarrow \tilde{M}_{GL}$
 $M_{GL} \rightarrow \tilde{M}_{GL}$

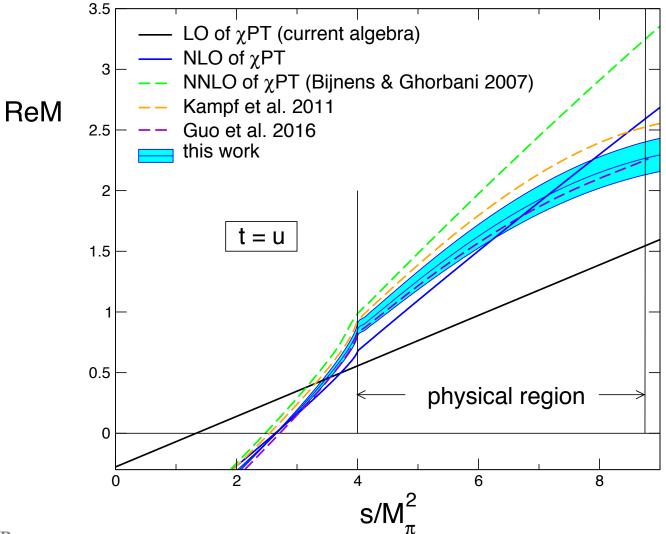
Emilie Passemar

2.4 $\eta \rightarrow 3\pi$ Dalitz plot

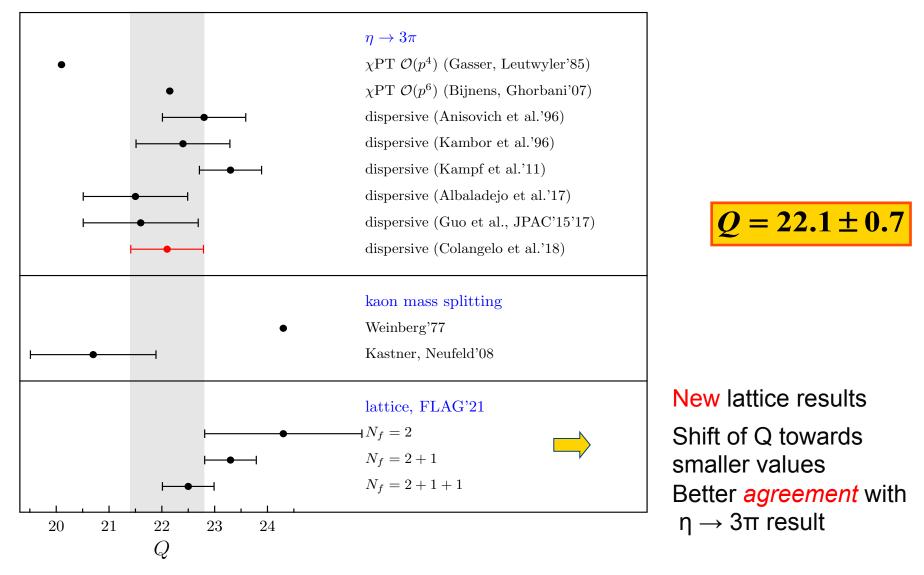

In the charged channel: experimental data from WASA KIOE PESIII

Emilie Passemar

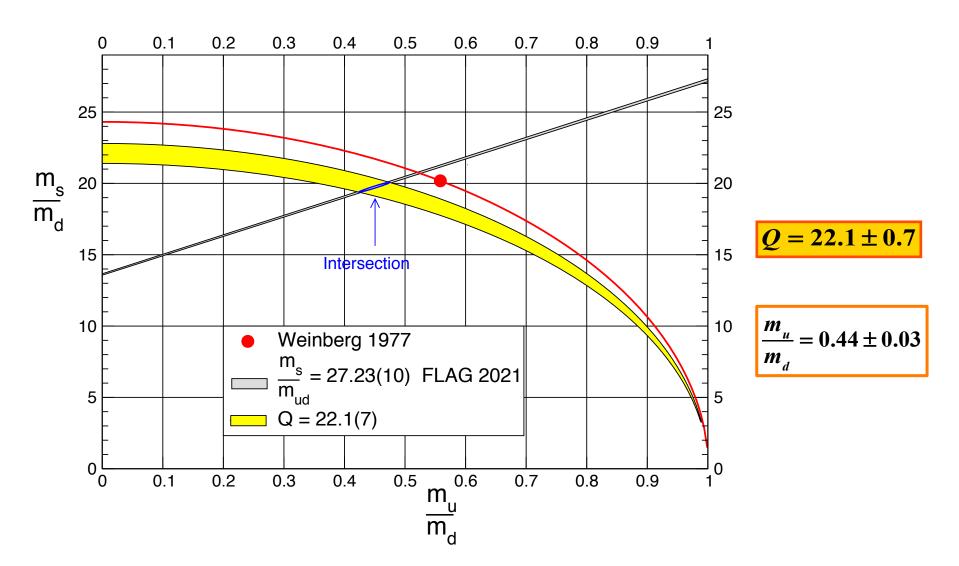
2.5 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays


• The amplitude along the line s = u :

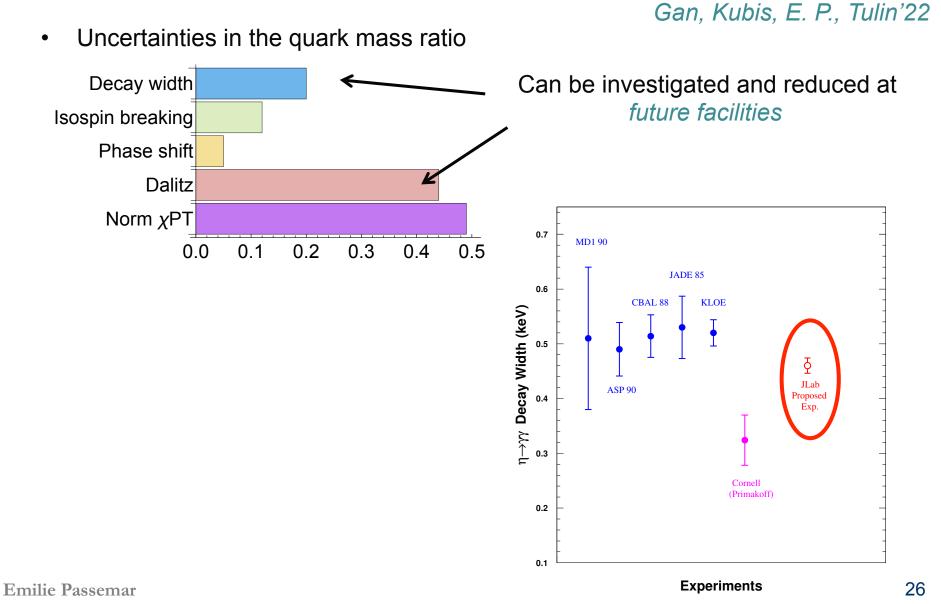
Emilie Passer


2.5 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

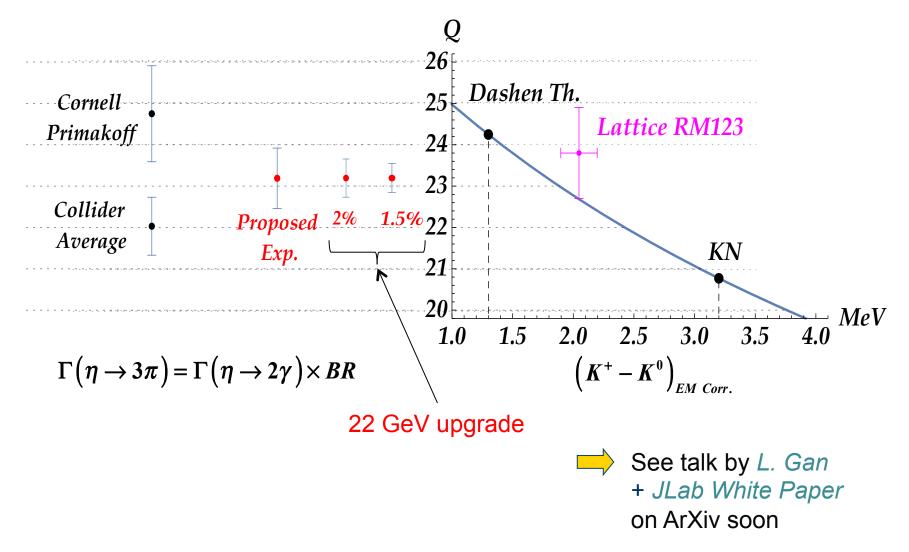
• The amplitude along the line t = u :


Emilie Passemar

Quark mass ratio

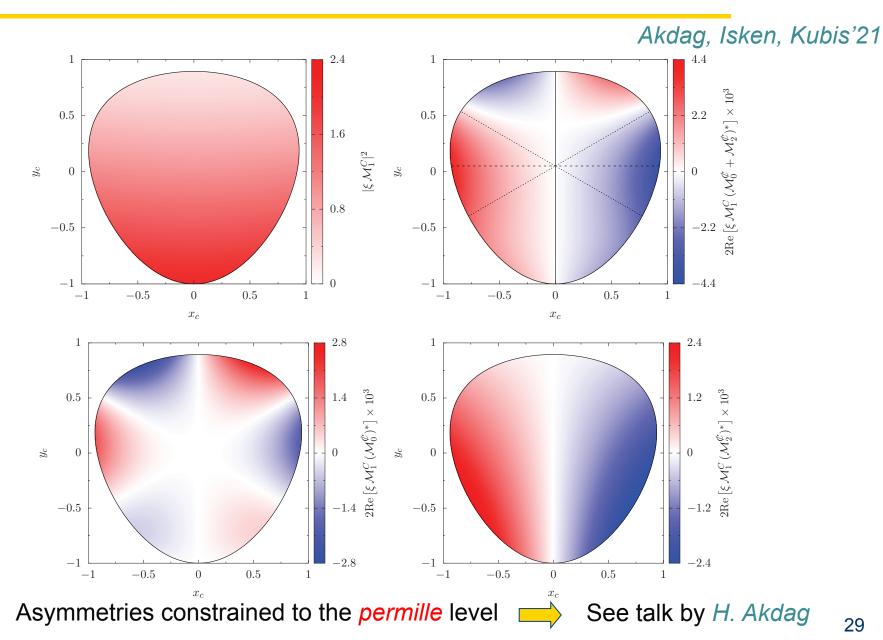

Experimental systematics needs to be taken into account

Light quark masses

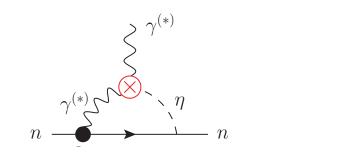


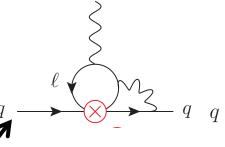
• Smaller values for Q \implies smaller values for m_s/m_d and m_u/m_d than LO ChPT

2.6 Prospects


2.7 Expected Impact of JLab 22 GeV program

2.8 Studying C & CP violation with $\eta \rightarrow 3\pi$ asymetries


2.8 Studying C & CP violation with $\eta \rightarrow 3\pi$ asymetries



3. Fundamental Symmetry tests: CP violation in $\eta \rightarrow \mu^+ \mu^-$

Studying of P & CP violation with $\eta \to \mu^+ \mu^-$

 A large number of P & CP-violating η(') decays indirectly excluded from extremely stringent neutron EDM bounds

• The only exception: investigation of the *muon polarization asymmetries* in $\eta \rightarrow \mu^+ \mu^-$: EDM constraints at 2 loop order *Sanchez-Puertas'19*

$$\mathcal{L}_{\text{eff}} = \frac{1}{2v^2} \text{Im} \, c_{\ell edq}^{2222} \Big[(\bar{\mu}\mu) \big(\bar{s}i\gamma^5 s \big) - \big(\bar{\mu}i\gamma^5\mu \big) (\bar{s}s) \Big] + [u\text{-}, d\text{-}\mathsf{quarks}]$$

Probe flavour-conserving CP-violation in the second generation Constraint from EDM for strange quarks weakest: $\lim_{t \to t} c_{\ell}^{2222} < |t| < 1$

 $|\mathrm{Im}\, c_{\ell edq}^{2222}| < 0.04$

possible with *REDTOP* statistics, see *Elam et al, Snowmass WP*'22

• Test of CPV in Escribano et al.'22 Zillinger et al.'22 > $\eta(') \rightarrow \pi^0 \mu^+ \mu^-$ > $\eta(') \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ > $\eta' \rightarrow \eta \mu^+ \mu^-$ See talks by *P. Sanchez-Puertas* and *H. Schäfer*

4. $\eta' \rightarrow \eta \pi \pi$ and chiral dynamics

In collaboration with S. Gonzalez-Solis (LANL) Eur. Phys. J. C78 (2018) no.9, 758

4.1 Why is it interesting to study $\eta' \rightarrow \eta \pi \pi$?

PDG'21 Gan, Kubis, E. P., Tulin'22

$$M_{\eta'} = 957.78(6) \text{ MeV}$$

$\eta' \to 2\gamma$	$(2.20 \pm 0.08)\%$	chiral anomaly
$\eta' \rightarrow 3\gamma$	$< 1.0 \times 10^{-4}$	C, CP violation
$\eta' ightarrow e^+ e^- \gamma$	$< 9 \times 10^{-4}$	χ PT, dark photon (BSM)
$\eta' \rightarrow 2\pi^0$	$< 4 \times 10^{-4}$	P, CP violation
$\eta' ightarrow \pi^+ \pi^-$	$< 1.8 \times 10^{-5}$	P, CP violation
$\eta' \rightarrow 3\pi^0$	$(2.14 \pm 0.20)\%$	$m_u - m_d$
$\eta' ightarrow \pi^+ \pi^- \pi^0$	$(3.8 \pm 0.4) \times 10^{-3}$	$m_u - m_d$, <i>CP</i> violation
$\eta' ightarrow \eta \pi^+ \pi^-$	$(42.6 \pm 0.7)\%$	R χ PT, anomaly, $\eta - \eta'$ mixing
$\eta' o \eta \pi^0 \pi^0$	$(22.8 \pm 0.8)\%$	R χ PT, anomaly, $\eta - \eta'$ mixing
$\eta' ightarrow \pi^0 e^+ e^-$	$< 1.4 \times 10^{-3}$	C violation
$\eta' ightarrow \pi^+ \pi^- e^+ e^-$	$(2.4^{+1.3}_{-1.0}) \times 10^{-3}$	P, CP violation
$\eta' ightarrow \pi^0 \gamma \gamma$	$< 8 \times 10^{-4}$	χ PT, leptophobic <i>B</i> boson (BSM)
$\eta' \to \eta e^+ e^-$	$< 2.4 \times 10^{-3}$	<i>C</i> violation

4.1 Why is it interesting to study $\eta' \rightarrow \eta \pi \pi$?

PDG'21 Gan, Kubis, E. P., Tulin'22

-		
$\eta' \to 2\gamma$	$(2.20 \pm 0.08)\%$	chiral anomaly
$\eta' \to 3\gamma$	$< 1.0 \times 10^{-4}$	C, CP violation
$\eta' ightarrow e^+ e^- \gamma$	$< 9 \times 10^{-4}$	χ PT, dark photon (BSM)
$\eta' ightarrow 2\pi^0$	$< 4 \times 10^{-4}$	<i>P</i> , <i>CP</i> violation
$\eta' o \pi^+ \pi^-$	$< 1.8 \times 10^{-5}$	<i>P</i> , <i>CP</i> violation
$\eta' \to 3\pi^0$	$(2.14 \pm 0.20)\%$	$m_u - m_d$
$\eta' ightarrow \pi^+ \pi^- \pi^0$	$(3.8 \pm 0.4) \times 10^{-3}$	$m_u - m_d$, CP violation
$\eta' ightarrow \eta \pi^+ \pi^-$	$(42.6 \pm 0.7)\%$	$R_{\chi}PT$, anomaly, $\eta - \eta'$ mixing
$\eta' o \eta \pi^0 \pi^0$	$(22.8 \pm 0.8)\%$	R_{χ} PT, anomaly, $\eta - \eta'$ mixing
$\eta' ightarrow \pi^0 e^+ e^-$	$< 1.4 \times 10^{-3}$	C violation
$\eta' \to \pi^+ \pi^- e^+ e^-$	$(2.4^{+1.3}_{-1.0}) \times 10^{-3}$	P, CP violation
$\eta' o \pi^0 \gamma \gamma$	$< 8 \times 10^{-4}$	χ PT, leptophobic <i>B</i> boson (BSM)
$\eta' ightarrow \eta e^+ e^-$	$< 2.4 \times 10^{-3}$	<i>C</i> violation

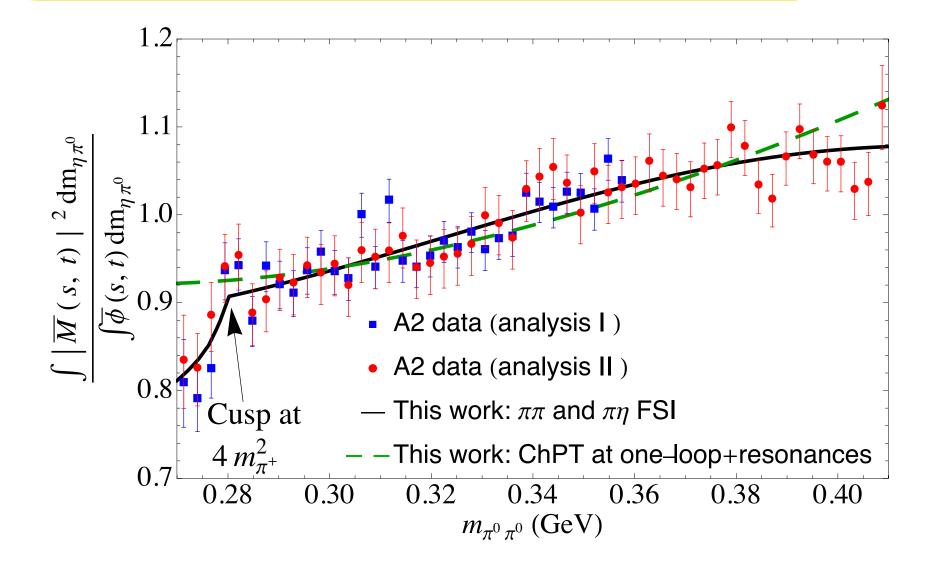
4.1 Why is it interesting to study $\eta' \rightarrow \eta \pi \pi$?

Main decay channel of the η': PDG'21

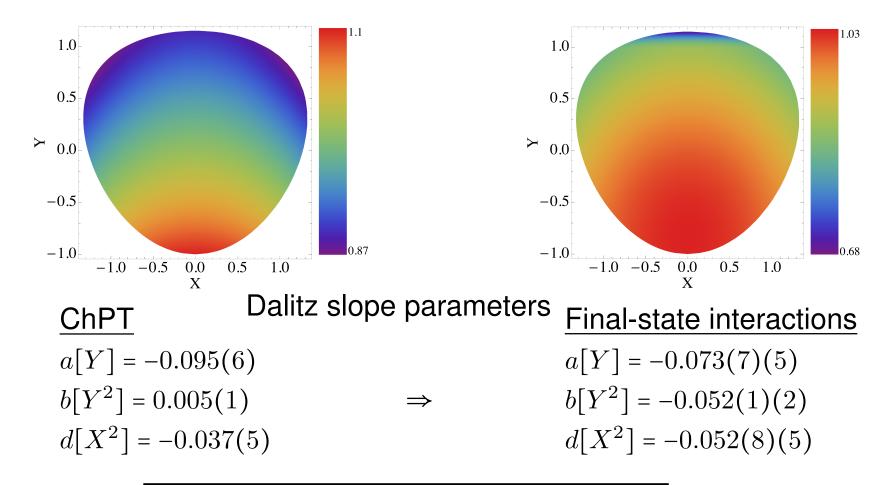
 $BR(\eta' \to \eta \pi^0 \pi^0) = 22.8(8)\%$ and $BR(\eta' \to \eta \pi^+ \pi^-) = 42.6(7)\%$

- Precise measurements became available: recent results on
 - neutral channel by A2 collaboration : 1.2 x 10⁵ events
 - neutral and charged channel by *BESIII* collaboration: 351 016 events
- More to come from *GlueX* \longrightarrow See talk by *O. Cortes Becerra*

4.2 Method

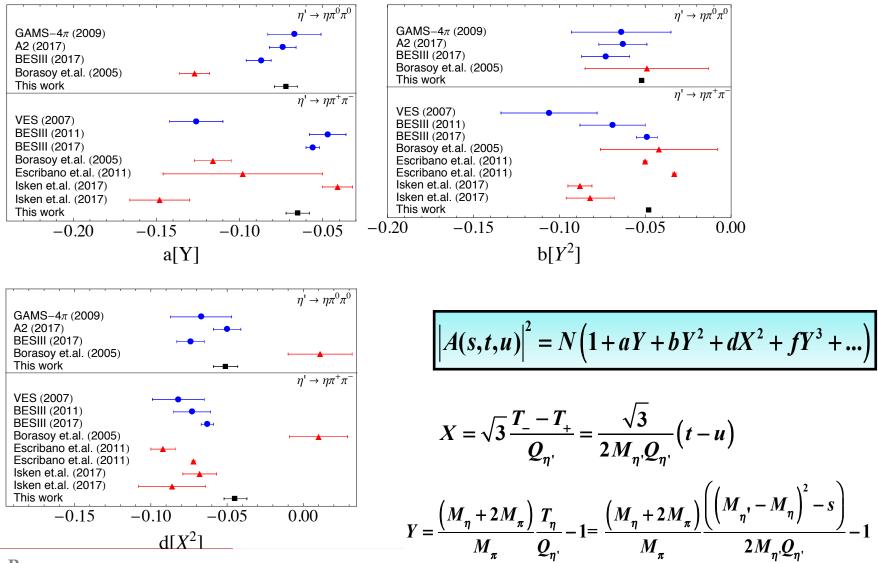

• Main decay channel of the η' :

 $BR(\eta' \to \eta \pi^0 \pi^0) = 22.8(8)\%$ and $BR(\eta' \to \eta \pi^+ \pi^-) = 42.6(7)\%$

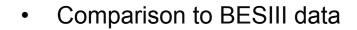

PDG'21

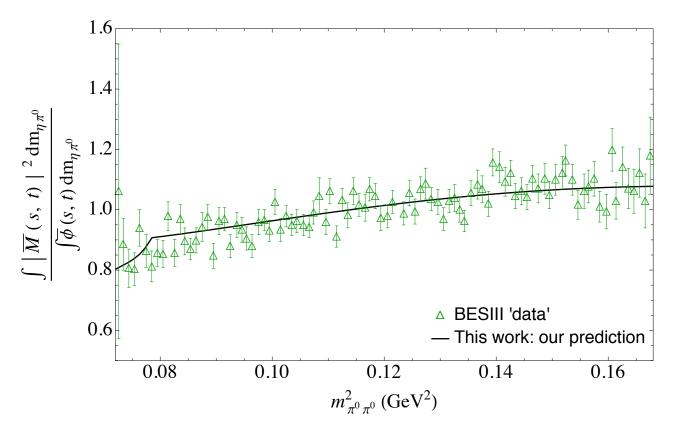
- Precise measurements became available: recent results on
 - neutral channel by A2 collaboration : 1.2 x 10⁵ events
 - Neutral and charged channel by *BES///* collaboration: 351 016 events
- Studying this decay allows
 - to test any of the extensions of ChPT e.g. resonance chiral theory, Large-N_C U(3) ChPT etc
 - to study the effects of the $\pi\pi$ and $\pi\eta$ final-state interactions
- Method Used: U(3) ChPT with resonances at one-loop + Final-state interaction through N/D unitarization method with D waves + kaon loops
 N.B.: For KT framework see *Isken et al'17*

4.3 Results



4.3 Results




$$|A(s,t,u)|^2 = N(1+aY+bY^2+dX^2+fY^3+...)$$

4.3 Results

4.4 Prospects

 Simultaneous fit by experimental collaborations to the neutral and charged channels etc

5. Conclusion and Outlook

5.1 Conclusion

- η and η' allows to study the fundamental properties of QCD and test the SM
 - Extraction of fundamental parameters of the SM,
 - \rightarrow e.g. light quark masses
 - Study of chiral dynamics
 - Study of CP violation
- To studies η and η' with the best precision: Development of amplitude analysis techniques consistent with analyticity, unitarity, crossing symmetry dispersion relations allow to take into account *all rescattering effects* being as model independent as possible combined with ChPT Provide parametrization for experimental studies
- In this talk, illustration with $\eta\!\to\!3\pi$ and extraction of the light quark masses and $\eta'\!\to\!\eta\pi\pi$
- Examples of constraints on *CP violation* from:
 - $\eta \rightarrow 3\pi$ asymmetries : C & CP violation
 - $\eta \rightarrow \mu^+\mu^-$: P & CP violation \implies constraints on sµ operators
- Many more topics I did not have time to address e.g. inputs for g-2, light BSM, sorry! See talks at the workshop!

5.2 Outlook

New η and η' programs JEF and REDTOP

Gan, Kubis, E. P., Tulin'22

• In our opinion the most promising channels to study:

Decay channel	Standard Model	Discrete symmetries	Light BSM particles
$\eta o \pi^+ \pi^- \pi^0$	light quark masses	<i>C/CP</i> violation	scalar bosons (also η')
$\eta^{(\prime)} o \gamma \gamma$	η – η' mixing, precision partial widths		
$\eta^{(\prime)} ightarrow \ell^+ \ell^- \gamma$	$(g - 2)_{\mu}$		Z' bosons, dark photon
$\eta ightarrow \pi^0 \gamma \gamma$	higher-order χ PT, scalar dynamics		$U(1)_B$ boson, scalar bosons
$\eta^{(\prime)} ightarrow \mu^+ \mu^-$	$(g-2)_{\mu}$, precision tests	CP violation	
$\eta ightarrow \pi^0 \ell^+ \ell^-$		<i>C</i> violation	scalar bosons
$\eta^{(\prime)} \to \pi^+ \pi^- \ell^+ \ell^-$	$(g - 2)_{\mu}$		ALPs, dark photon
$\eta^{(\prime)} \to \pi^0 \pi^0 \ell^+ \ell^-$		C violation	ALPs

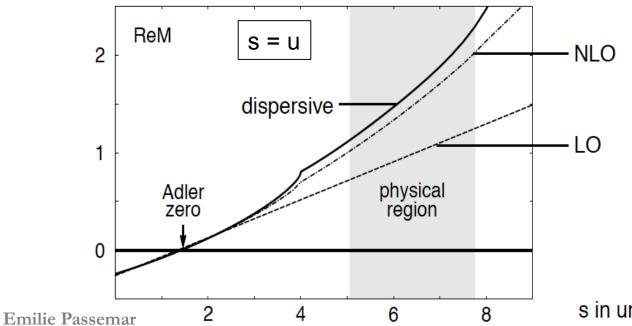
- Synergies between different physics:
 - Standard Model precision analyses
 - Discrete symmetry tests
 - Search for light BSM particles

6. Back-up

Parameter	Analysis I Fit 1 (with <i>D</i> -wave)	Fit 1 (w/o D-wave)	_
M_S	1017(68)(24)	996(66)(25)	_
c_d	30.4(4.8)(9)	23.3(3.5)(1.5)	
c_m	$= c_d$	$= c_d$	
$ ilde{c}_d$	17.6(2.8)(5)	13.5(2.0)(9)	
$ ilde{c}_m$	$= \tilde{c}_d$	$= \tilde{c}_d \qquad M $	$V(X,Y)_{\text{Full}} ^2/ M(X,Y)_{\text{D-wave=0}} ^2$
$a_{\pi\pi}$	0.76(61)(6)	2.01(1.61)(71)	1.00
$\chi^2_{ m dof}$	1.12	1.24 1.0	
a[Y]	-0.074(7)(8)	-0.091(9)(4)	
$b[Y^2]$	-0.049(1)(2)	-0.013(1)(5) ^{0.5}	
c[X]	0	0	
$\frac{d[X^2]}{d[X^2]}$	-0.047(8)(4)	-0.031(6)(3) > 0.0	
$\kappa_{03}[Y^3]$	0.001	0.001	
$\kappa_{21}[YX^2]$	-0.004	-0.001 -0.5	
$\kappa_{22}[Y^2X^{\bar{2}}]$	0.001	0.0004	
		-1.0	-1.0 -0.5 0.0 0.5 1.0

2.1 Definitions
•
$$\eta$$
 decay: $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$
 $\sqrt[x^{+}\pi^{-}\pi^{0}}_{aul}|\eta\rangle = i(2\pi)^{+}\delta^{+}(p_{\eta} - p_{\pi^{-}} - p_{\pi^{-}})A(s,t,u)$
• Mandelstam variables $s = (p_{\pi^{+}} + p_{\pi^{-}})^{2}$, $t = (p_{\pi^{-}} + p_{\pi^{0}})^{2}$, $u = (p_{\pi^{0}} + p_{\pi^{+}})^{2}$
 \Rightarrow only two independent variables
• 3 body decay \Rightarrow Dalitz plot
 $A(s,t,u)^{2} = N(1+aY+bY^{2}+dX^{2}+fY^{3}+...)$
Expansion around X=Y=0
 $X = \sqrt{3}\frac{T_{+} - T_{-}}{Q_{c}} = \frac{\sqrt{3}}{2M_{\eta}Q_{c}}(u-t)$
 $Y = \frac{3T_{0}}{Q_{c}} - 1 = \frac{3}{2M_{\eta}Q_{c}}((M_{\eta} - M_{\pi^{0}})^{2} - s) - 1$
while Passemar
 $Q_{c} = M_{\eta} - 2M_{\pi^{c}} - M_{\pi^{0}}$

2.3 Computation of the amplitude


- What do we know?
- Compute the amplitude using ChPT : ٠

$$\Gamma_{\eta \to 3\pi} = \begin{pmatrix} 66 + 94 + \dots + \dots \end{pmatrix} eV = (300 \pm 12) eV$$

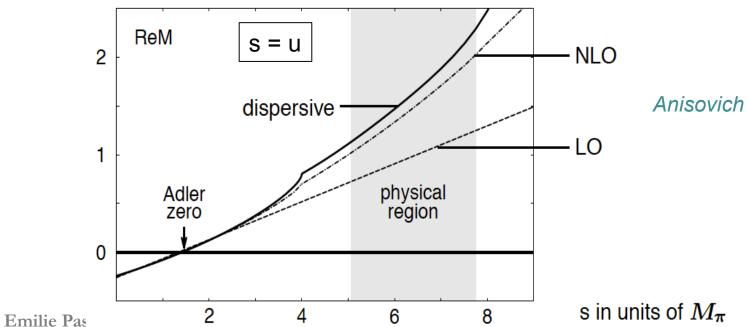
$$IO \quad NLO \quad NNLO \quad PDG'16$$

$$NLO: Bijnens \& Ghorbani'07$$

The Chiral series has convergence problems

Anisovich & Leutwyler'96

LO: Osborn, Wallace'70


NLO: Gasser & Leutwyler'85

2.3 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem Adler'85
 Amplitude has a zero for :

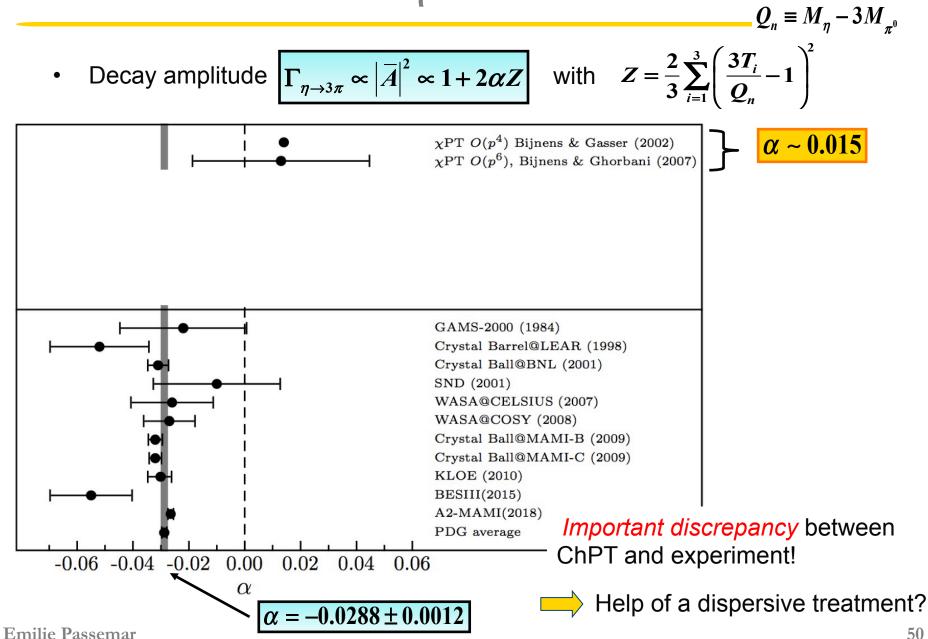
 $p_{\pi^{+}} \to 0 \implies s = u = 0, \ t = M_{\eta}^{2} \qquad M_{\pi} \neq 0 \qquad s = u = \frac{4}{3}M_{\pi}^{2}, \ t = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$ $p_{\pi^{-}} \to 0 \implies s = t = 0, \ u = M_{\eta}^{2} \qquad s = t = \frac{4}{3}M_{\pi}^{2}, \ u = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$

SU(2) corrections

Anisovich & Leutwyler'96

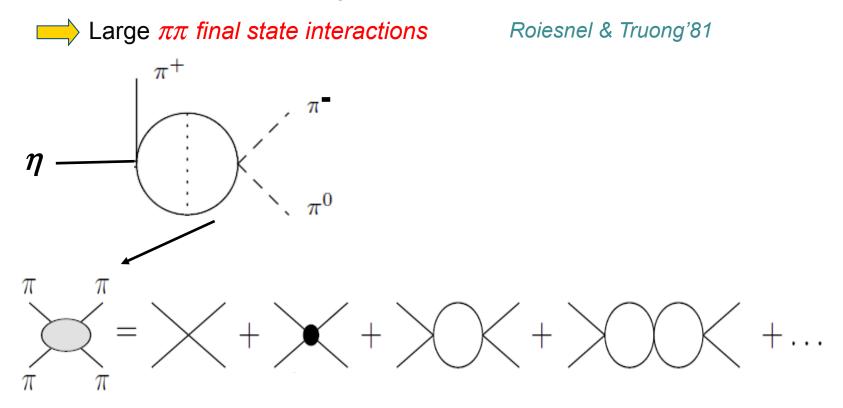
2.4 Neutral channel :
$$\eta \rightarrow \pi^0 \pi^0 \pi^0$$

- What do we know?
- We can relate charged and neutral channels

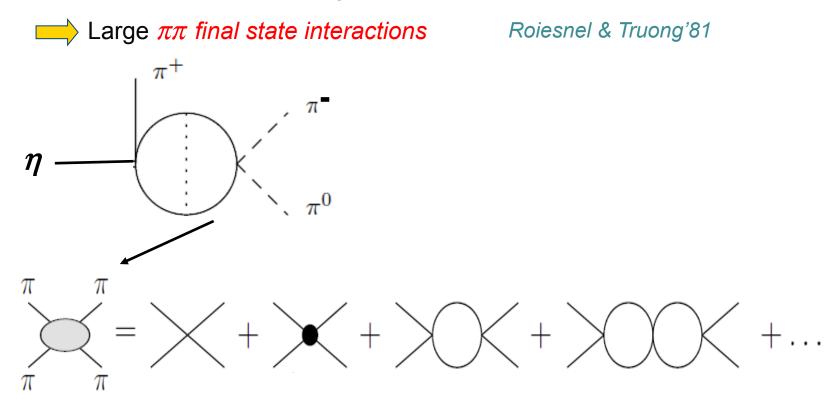

 $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$

Correct formalism should be able to reproduce both charged and neutral channels

Ratio of decay width precisely measured


$$r = \frac{\Gamma(\eta \to \pi^0 \pi^0 \pi^0)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} = 1.426 \pm 0.026 \qquad PDG'19$$

2.4 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$


2.5 Dispersive treatment

The Chiral series has convergence problems

2.5 Dispersive treatment

• The Chiral series has convergence problems

- Dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

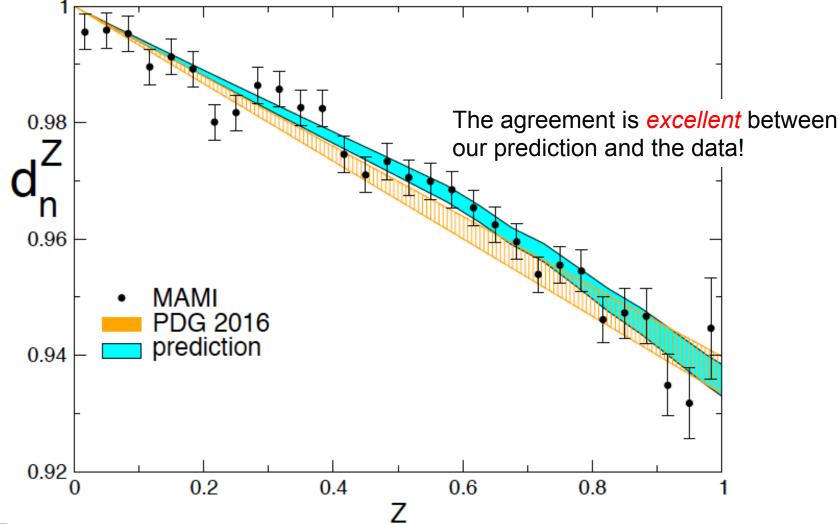
2.6 Why a new dispersive analysis?

- Several new ingredients:
 - New inputs available: extraction $\pi\pi$ phase shifts has improved

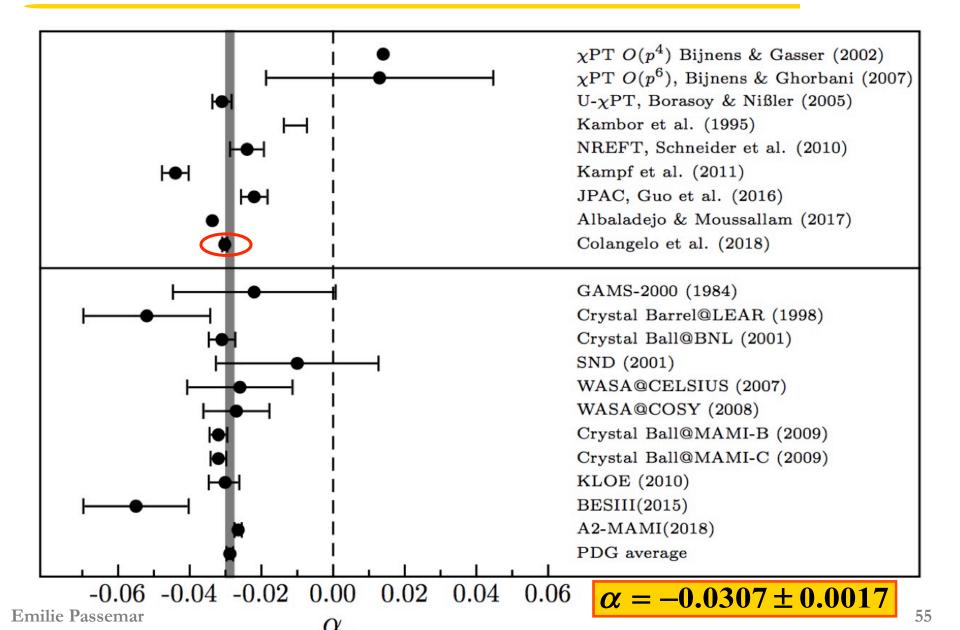
Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01 Kaminsky et al'01, Garcia-Martin et al'09

 New experimental programs, precise Dalitz plot measurements *TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
 - Electromagnetic effects (O(e²m)) Ditsche, Kubis, Meissner'09
 - Isospin breaking effects
 - Inelasticities


Emilie Passemar

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11


Albaladejo & Moussallam'15

2.11 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

• The amplitude squared in the neutral channel is

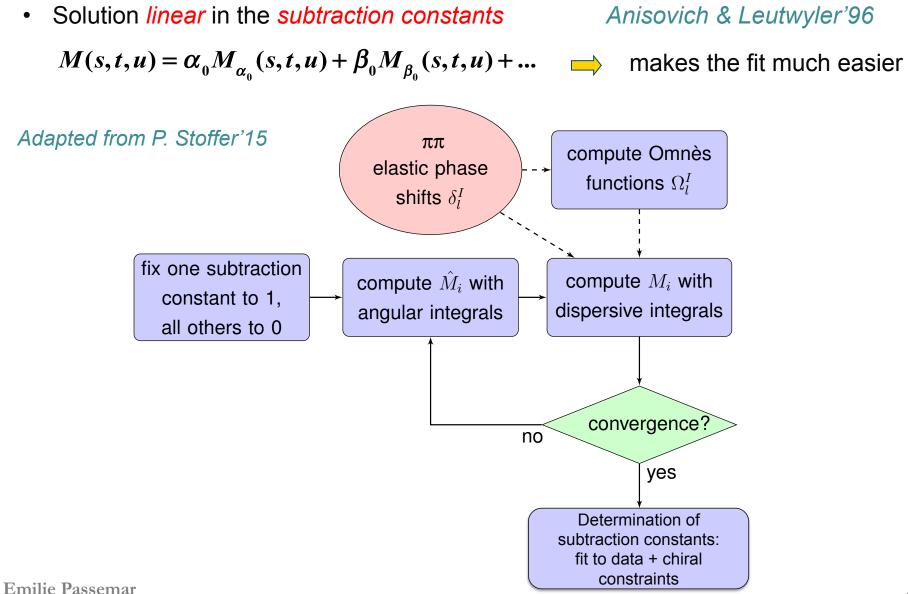
2.12 Comparison of results for α

Experimental Facilities and Role of JLab 12

M. J. Amaryan et al. CLAS Analysis Proposal, (2014)

π	e⁺ e⁻ γ			
η	e⁺ e⁻ γ	<i>π</i> ⁺ <i>π</i> ⁻ γ	$\pi^+\pi^-\pi^0,$ $\pi^+\pi^-$	π ⁺ π ⁻ e ⁺ e ⁻
η΄	e⁺ e⁻ γ	<i>π⁺</i> π⁻ γ	π ⁺ π ⁻ π ⁰ , π ⁺ π ⁻	π ⁺ π ⁻ η, π ⁺ π ⁻ e ⁺ e ⁻
ρ		<i>π</i> ⁺ <i>π</i> ⁻ γ		
ω	<i>e</i> ⁺ <i>e</i> ⁻ π ⁰	π⁺ π⁻ γ	$\pi^+\pi^-\pi^0$	
φ			$\pi^+\pi^-\pi^0$	π⁺ π⁻ η

2.3 Computation of the amplitude


- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

$$p \ll \Lambda_{_H} = 4\pi F_{\pi} \sim 1 \text{ GeV}$$

2.5 Iterative Procedure

2.6 Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III
 Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_I Subtraction constants Taylor coefficients

$$M_{0}(s) = A_{0} + B_{0}s + C_{0}s^{2} + D_{0}s^{3} + \dots$$
$$M_{1}(s) = A_{1} + B_{1}s + C_{1}s^{2} + \dots$$
$$M_{2}(s) = A_{2} + B_{2}s + C_{2}s^{2} + D_{2}s^{3} + \dots$$

• Gauge freedom in the decomposition of M(s,t,u)

2.7 Subtraction constants

Build some gauge independent combinations of Taylor coefficients

$$H_{0} = A_{0} + \frac{4}{3}A_{2} + s_{0}\left(B_{0} + \frac{4}{3}B_{2}\right) \qquad H_{0}^{ChPT} = \mathbf{1} + \mathbf{0}.\mathbf{176} + O\left(p^{4}\right)$$

$$H_{1} = A_{1} + \frac{1}{9}\left(3B_{0} - 5B_{2}\right) - 3C_{2}s_{0} \qquad \Longrightarrow \qquad h_{1}^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(\mathbf{1} - \mathbf{0}.\mathbf{21} + O\left(p^{4}\right)\right)$$

$$H_{2} = C_{0} + \frac{4}{3}C_{2}, \qquad H_{3} = B_{1} + C_{2} \qquad h_{2}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(\mathbf{4}.9 + O\left(p^{4}\right)\right)$$

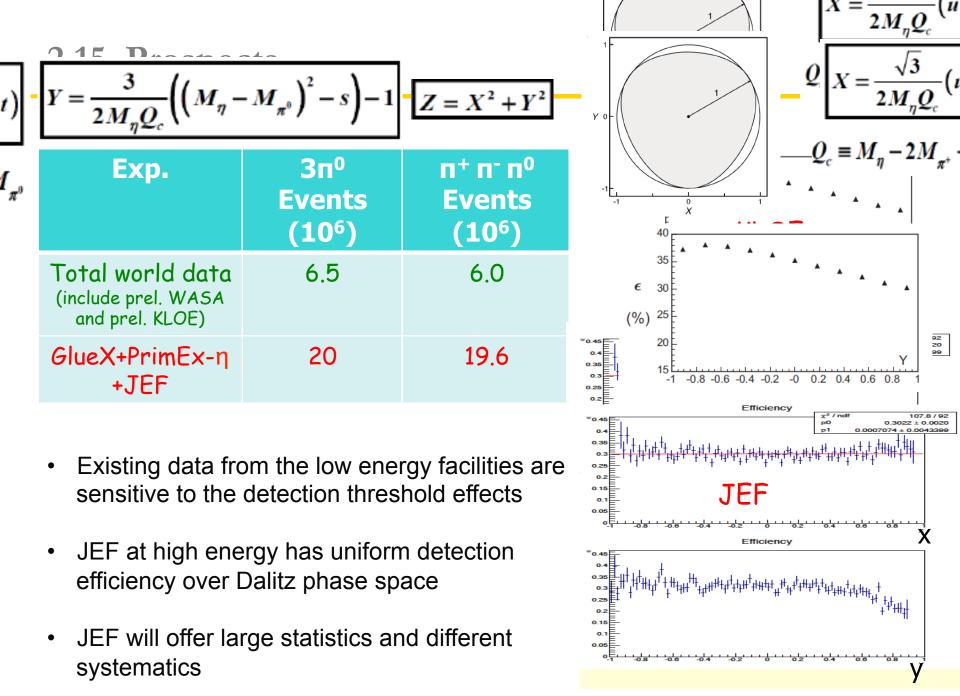
$$H_{4} = D_{0} + \frac{4}{3}D_{2}, \qquad H_{5} = C_{1} - 3D_{2} \qquad h_{3}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(\mathbf{1}.3 + O\left(p^{4}\right)\right)$$

$$\chi^{2}_{theo} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}} \right)^{2}$$

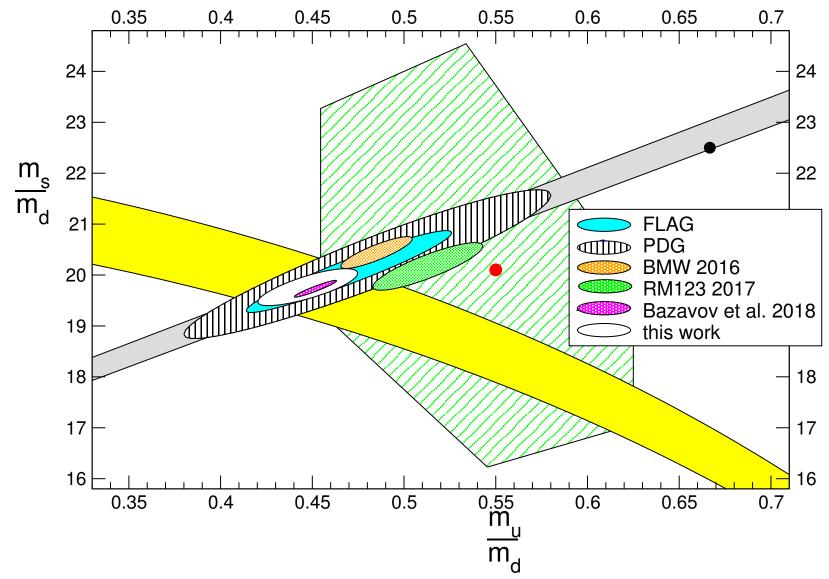
$$\sigma_{\boldsymbol{h}_{i}^{ChPT}}=0.3\left|\boldsymbol{h}_{i}^{NLO}-\boldsymbol{h}_{i}^{LO}\right|$$

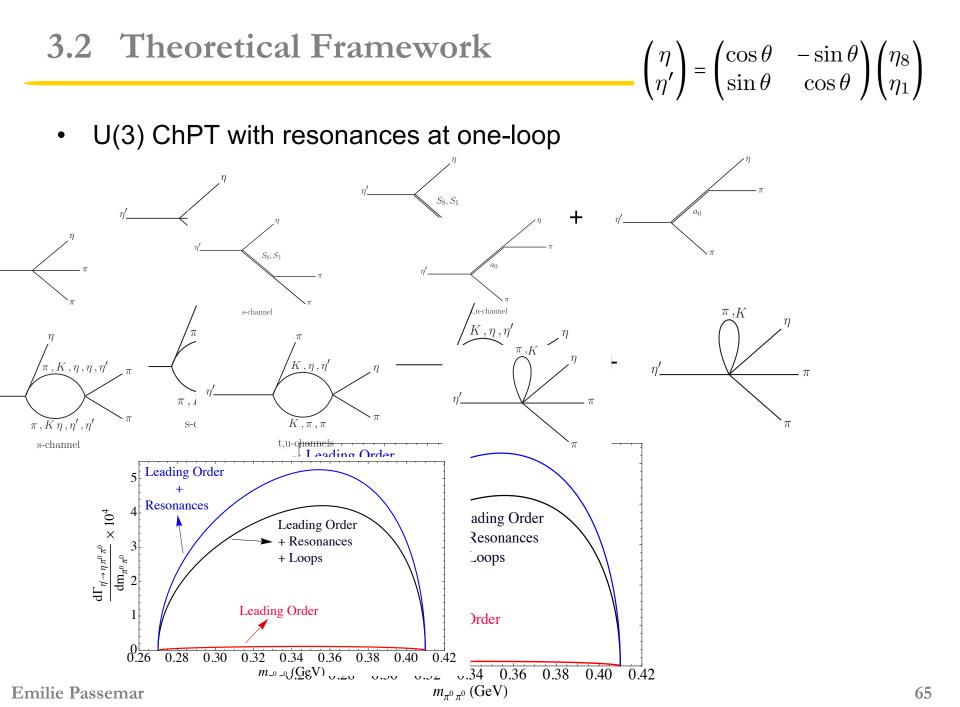
 $h_i \equiv \frac{H_i}{H_0}$

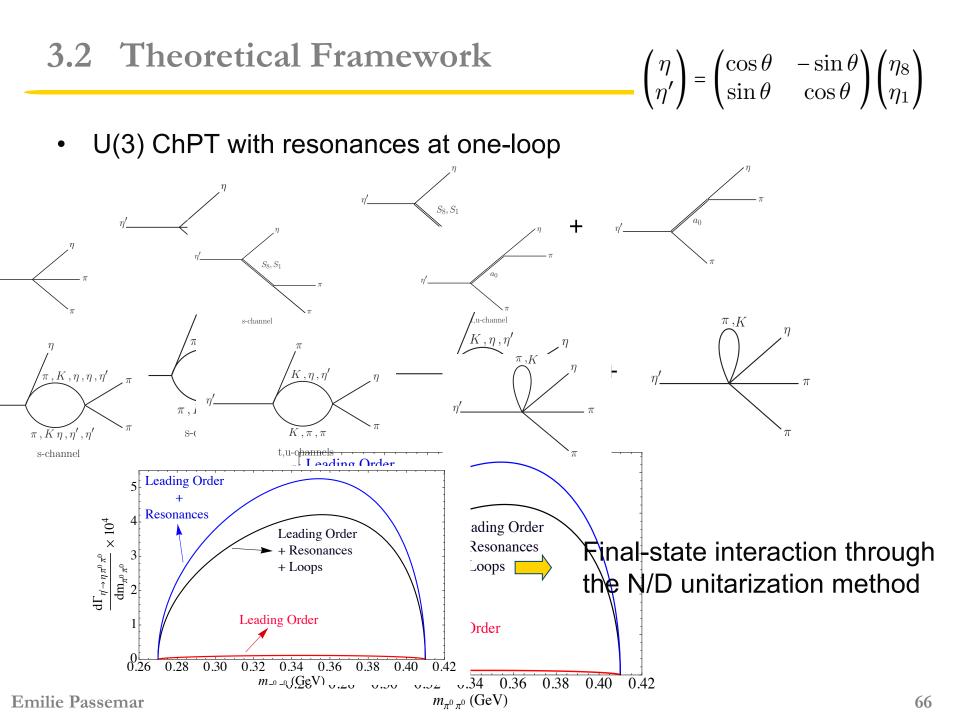
Isospin breaking corrections


Dispersive calculations in the isospin limit

 to fit to data one has to include
 isospin breaking corrections


•
$$M_{c/n}(s,t,u) = M_{disp}(s,t,u) \frac{M_{DKM}(s,t,u)}{\tilde{M}_{GL}(s,t,u)}$$
 with M_{DKM} : amplitude at one loop with $\mathcal{O}(e^2m)$ effects
 $Ditsche, Kubis, Meissner'09$


$$M_{GL}$$
: amplitude at one loop in the isospin limit
$$Gasser \& Leutwyler' 85$$
Kinematic map: isospin symmetric boundaries
$$M_{GL} \rightarrow \tilde{M}_{GL}$$


$$M_{GL} \rightarrow \tilde{M}_{GL}$$

2.14 Comparison with Lattice

3.2 Theoretical Framework

• Unitarity relations

$$\operatorname{Im} \mathcal{M}_{\eta' \to \eta \pi \pi} = \frac{1}{2} \sum_{n} (2\pi)^4 \, \delta^4 \left(p_{\eta} + p_1 + p_2 - p_n \right) \mathcal{T}_{n \to \eta \pi \pi}^* \mathcal{M}_{\eta' \to n}$$

 A dispersive analysis also exists by *Isken et al.*'17 but here we include D waves as well as kaon loops

n'