Dalitz Plot Analysis of $\eta' \rightarrow \eta \pi^+ \pi^-$ with **GlueX** Data

Olga Cortés Becerra

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Motivation for $\eta' \rightarrow \eta \pi^+ \pi^-$

- The chiral perturbation theory represents the appropriate theoretical framework to investigate low-energy hadronic physics of light meson decays.
- • $\eta' \rightarrow \eta \pi \pi$ decay is a good test for extensions of $SU(3) \times SU(3)$ Chiral Perturbation Theory (ChPT) [J. Bijnens]

 $\mathcal{L}_{QCD}(q,\bar{q},g) \to Effective theory \to \mathcal{L}_{ChPT}(\pi,K,\eta)$

 $\mathcal{L}_{ChPT} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$

Decay width for $\eta' \to \eta \pi^+ \pi^-$ M matrix elements have info of the intermediate resonances

• This decay can be explained by exchange of scalar resonances: $f_0(500), f_0(980), a_0(980)$

G-parity prevents vectors from contributing

The decay of $\eta' \rightarrow \eta \pi \pi$ can be dominated by the contributions of the intermediate S-wave resonances σ , a_0 and f_0 , and their interference on the Dalitz plots

[B. Borasoy, R. Nissler]

$$\tau(\eta' \to \eta \pi^+ \pi^-) = \frac{1}{2.m_{\eta'}} \int |M|^2$$

Decay width for $\eta' \to \eta \pi^+ \pi^-$ M matrix elements have info of the intermediate resonances

• This decay can be explained by exchange of scalar resonances: $f_0(500), f_0(980), a_0(980)$

G-parity prevents vectors from contributing

The decay of $\eta' \rightarrow \eta \pi \pi$ can be dominated by the contributions of the intermediate S-wave resonances σ , a_0 and f_0 , and their interference on the Dalitz plots

[B. Borasoy, R. Nissler]

$$\tau(\eta' \to \eta \pi^+ \pi^-) = \frac{1}{2.m_{\eta'}} \int |M|^2$$

$\eta' \rightarrow \eta \pi^+ \pi^-$

• Opportunity to constrain $\eta\pi$ scattering

• Dispersive analysis of the decay amplitude [Bastian Kubis et al.]:

Dalitz plot boundaries

S. Gonz.lez-Sol.s, E. Passemar, Eur. Phys. J. C 78 (2018) 758, arXiv:1807.04313 [hep-ph].

Parametrization of the Dalitz Plot

Previous experimental results and theoretical predictions There are many discrepancies, the picture is not complete

Previous experimental results and theoretical predictions There are many discrepancies, the picture is not complete

Experimental and theoretical Dalitz parameters for $\eta' \rightarrow \eta \pi^+ \pi^-$

Experimental and theoretical Dalitz parameters for $\eta' \rightarrow \eta \pi^+ \pi^-$

Jefferson Lab,

anter anter anter

Newport News, VA

- 111

200.0000

T. 6

Jefferson Lab,

Injector

Newport News, VA

Jorth Accelerator

- 111

100 NIND

Gluex Experiment

Coherent Bremsstrahlung of 12 GeV electron beam on 50μ m radiator

Beam energy tagged with a precision of $E_{\gamma} < 25$ MeV

GlueX Spectrometer

Phase	Run Period	Luminosity
GlueX-I	2017-2018	439.6 pb ⁻¹
GlueX-II	2020-2025?	386.2 pb ⁻¹ (20

Mermetic detector

Exclusive reaction

GlueX

Main Goal: Search for hybrid mesons (exotic and non-exotic). Not in this talk!

Main Goal: Search for hybrid mesons (exotic and non-exotic). Not in this talk!

GlueX

Main Goal: Search for hybrid mesons (exotic and non-exotic). Not in this talk!

Other physics opportunities:

 Dalitz-plot analysis of light meson decays $(\eta, \eta', \omega, \text{etc.})$

Gluons

All the visible matter in the universe is made of q ons. They form the particles studied at lefterson

$$\eta' \to \eta \pi^+ \pi^-$$

 $\eta' \to \eta \pi^0 \pi^0$

Shaheli Rakshit FSU

GlueX

Main Goal: Search for hybrid mesons (exotic and non-exotic). Not in this talk!

Other physics opportunities:

- Dalitz-plot analysis of light meson decays $(\eta, \eta', \omega, \text{etc.})$
- Hyperon studies
- **N***

Gluons

All the visible matter in the universe is made of ap ons. They form the particles studied at Jefferson

$$\eta' \to \eta \pi^+ \pi^-$$

 $\eta' \to \eta \pi^0 \pi^0$

Shaheli Rakshit FSU

Confidence level cut $FOM = \frac{S}{\sqrt{S+B}}$ Signal fraction within 3σ is ~97.2%

- Exclusively reconstruct
- Kinematically fit 4-momentum conservation utilizing tagged photon beam energy with mass constrains on intermediate particles (η)
- Background estimated through fits to ²¹⁰ invariant mass distribution $M(\pi^+\pi^-\eta)$

Yield Estimate

I/O Studies: Naïve acceptance

- Using AmpTools
 - Maximum likelihood event by event fitter
 - Generates pseudodata for validity and bias studies

Toy Acceptance

Toy Acceptance Dalitz Analysis η'#toηππ

- pseudodata generated with BESIII (2018) results
- Toy Acceptance
- no background
- 100k generated MC events

Fit comparison **Minuit uncertainties**

	BESIII (2018)	my Fit
а	$-5.60 \times 10^{-2} \pm 4.0 \times 10^{-3}$	$-5.22 \times 10^{-2} \pm 4.9 \times 10^{-3}$
b	$-4.9 \times 10^{-2} \pm 6.0 \times 10^{-3}$	$-4.6 \times 10^{-2} \pm 9.4 \times 10^{-3}$
С	$2.7 \times 10^{-3} \pm 2.4 \times 10^{-3}$	$2.0 \times 10^{-3} \pm 3.61 \times 10^{-3}$
d	$-6.3 \times 10^{-2} \pm 4.0 \times 10^{-3}$	$-6.69 \times 10^{-2} \pm 9.4 \times 10^{-3}$

my Fit

$$5.22 \times 10^{-2} \pm 4.9 \times 10^{-3}$$

 $5.6 \times 10^{-2} \pm 9.4 \times 10^{-3}$
 $0 \times 10^{-3} \pm 3.61 \times 10^{-3}$
 $5.69 \times 10^{-2} \pm 9.4 \times 10^{-3}$

Real Acceptance:

Acceptance

~Average acceptance is 5%

Real acceptance

Dalitz Analysis η'#toη $\pi\pi$

- pseudodata generated with BESIII (2018) results
- Real acceptance: Laget model for the production.
- 100M generated MC events

Fit comparison Minuit uncertainties

	BESIII (2018)	my Fit
a	$-5.60 \times 10^{-2} \pm 4.0 \times 10^{-3}$	$-5.31 \times 10^{-2} \pm 4.5 \times 10^{-3}$
b	$-4.9 \times 10^{-2} \pm 6.0 \times 10^{-3}$	$-4.53 \times 10^{-2} \pm 8.4 \times 10^{-3}$
С	$2.7 \times 10^{-3} \pm 2.4 \times 10^{-3}$	$8.41 \times 10^{-4} \pm 2.3 \times 10^{-3}$
d	$-6.3 \times 10^{-2} \pm 4.0 \times 10^{-3}$	$-5.84 \times 10^{-2} \pm 8.8 \times 10^{-3}$

Previous experiments

GAMS 2000

U70

Charge exchange:

 $\pi^- p \rightarrow \eta' n$ 0.54×10^4

 $\eta'
ightarrow \eta \pi^0 \pi^0$

VES

Charge exchange: $\pi^- p \rightarrow \eta' n$ 1.4×10^4 Diffractive: $\pi^- N \rightarrow \eta' \pi^- N$ 0.7×10^4 Phys. Lett. B 651, 22(2007)

GAMS 4_{π} U70 Charge exchange: $\pi^- p \rightarrow \eta' n$ 1.5×10^4 Phys. At. Nucl. 72, 231 (2009)

A2 Collaboration MAMI Photoproduced: $\gamma p \rightarrow p \eta'$ 12.3×10^4 PRD98, 012001(2018)

BESIII **BEPC II** $J/\psi \rightarrow \gamma \eta'$ 5.63×10^4 Background level < 1% PRD**97**, 012001 (2018)

Dalitz Parameters from theory and previous measurements

Cusp results from A2 collaboration

Results shown in the A2 paper. Ratio of the experimental distribution to their normalized MC Phase space. The data points represent two independent analyses presented in the paper. The vertical lines show the position of the mass of two charged pions. **Green** and **magenta** lines represent the results fit with two different parametrizations and **black** fit result with NREFT amplitude.

Optimizing $\eta' \rightarrow \eta \pi^0 \pi^0$ **selection at GlueX**

- Exclusively reconstruct $\gamma p \rightarrow \eta' p$, with $\eta' \rightarrow \eta \pi^0 \pi^0 \rightarrow 6\gamma$
- Kinematically fit 4-momentum conservation utilizing tagged photon beam energy with no mass constrains on intermediate particles (η, π^0)
- Background estimated through fits to invariant mass distribution $M(6\gamma)$

Figure of merit vs Confidence Level

Yield comparison

Experiment	Yield $(\times 10^4)$
GAMS200	0.54
GAMS	1.5
VES	2.1
BESIII(2018)	5.63
A2	12.3
GlueX-I (Our estimate)	~10*
GlueX-II	$3 \times \text{GlueX-I}$

Conclusion

- $\eta' \rightarrow \eta \pi^+ \pi^-$.
- We have done a yield estimation for the neutral decay of $\eta' \to \eta \pi^0 \pi^0$.
- previous experiments.
- Different production processes make different systematics, this makes decay at BESIII.
- Working on rejecting backgrounds.

This work is funded in part by DOE grant DE-SC0016583. GlueX acknowledges the support of several funding agencies and computing facilities: http://gluex.org/thanks

We have done a feasibility study for the Dalitz plot analysis of the charged decay

Our estimate of the yield from all GlueX-I indicates a competitive dataset with

interesting the comparison of GlueX low energy photoproduction to the J/ψ

Backup

Selection

cuts	
Photon energy	
BCAL/FCAL fiducial cut	
Proton minimum momentum	
proton, pion PID	
vertex	
Kin fit Likelihood	
missing mass	

 $\gamma p \rightarrow p \eta'$ $\eta' \to \eta \pi^+ \pi^ \eta \rightarrow \gamma \gamma$

value

 $E_{\gamma} > 0.1 \text{GeV}$

 $\theta_{\gamma} \leq 10.3^{\circ}, \theta \gamma \geq 11.9^{\circ}$

 $|\vec{p}_{p}| > 0.3 \text{GeV}/c$

standard CDC dE/dx cut

52cm $\leq Z \leq 78$ cm

> 10⁻⁶

 $Abs(M_X) < 0.05 \text{GeV}/c^2$

- 2017: ver 55
- m_{η} constrained
- pippimeta___B4

Event Selection

Event Selection

 $\gamma p \rightarrow p \eta$ $\eta' \to \eta \pi^+ \pi^ \eta \to \gamma \gamma$

Event Selection Choosing good photons

 $\gamma p \rightarrow$ $\rightarrow \eta \pi^+ \pi^ \eta'$

Event Selection Choosing good photons

 $\eta \pi^+ \pi^-$

Event Selection Choosing good protons/ charged particles

Event Selection Choosing good protons/ charged particles

Event Selection

Event Selection Right incoming photon

Theory Chiral Perturbation Theory

 $\mathcal{L}_{QCD}(q,\bar{q},g) \rightarrow Effective theory \rightarrow \mathcal{L}_{ChPT}(\pi,K,\eta)$

$\mathcal{L}_{ChPT} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$

Invariant mass of intermediate particles

CHARGED DECAY: $\eta' \rightarrow \eta \pi^+ \pi^-$

Invariant mass of η'

MC: binning

CHARGED DECAY: $\eta' \rightarrow \eta \pi^+ \pi^-$

 $\sigma = 0.06$ Binning $\sim 3\sigma \rightarrow 12$ bins

Background Subtraction NEUTRAL DECAY: $\eta' \rightarrow \eta \pi^0 \pi^0$

Preliminary

