The decays $\eta^{(\prime)} \to \pi^0 \ell^+ \ell^-$ and $\eta' \to \eta \ell^+ \ell^$ in the standard model

Hannah Schäfer in collaboration with Marvin Zanke, Yannis Korte, Bastian Kubis

June 13, 2023

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

Motivation: C and CP violation

- Matter-antimatter asymmetry in the universe needs C and CP violation Sakharov 1967
- CP violation in the weak (CKM phase, C and CP violation) and strong (θ term, P and CP violation) interaction not enough to explain observed asymmetry – search for additional sources of C and CP violation
- + η is C and P eigenstate: ideal test case
- Semileptonic decay channels C and CP violating for γ^* intermediate state ightarrow see talk of H. Akdag
- C preserved for $\gamma^*\gamma^*$ intermediate state

Semileptonic $\eta^{(\prime)}$ decays in the standard model

- Calculation of $\eta^{(\prime)} \to \pi^0(\eta)\ell^+\ell^-$ based on $\eta^{(\prime)} \to \pi^0(\eta)\gamma^*\gamma^*$ (similar to $P \to \ell^+\ell^-$)
- Transition form factor needs to regularize loop integral
- Several theory calculations Llewellyn Smith 1967; Smith 1968; Cheng 1967 , ... , most recently Escribano and Royo 2020
- Models: effective operators, dispersive reconstruction, vector-meson dominance (VMD), unitarity bounds
- Today: better understanding of $\eta^{(\prime)} \to \pi^0(\eta) \gamma^* \gamma^*$, more experimental input, computational resources
- Improved calculation HS, Zanke, Korte, Kubis, in preparation

 $\pi^0(\eta)$

Modeling the hadronic part

- In ChPT, $\eta
 ightarrow \pi^0 \gamma \gamma$ is suppressed Ametller et al. 1992, Jetter 1996
 - + No $\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ tree level diagrams as $\eta^{(\prime)}, \pi^0$ neutral
 - Loop contributions suppressed (π loops violate isospin symmetry, K loops by $1/M_{K}^{2}$ and combinatorical factors)
- Dominant contribution: counter terms at $\mathcal{O}(p^6)$, estimated by resonance saturation \rightarrow **vector-meson dominance**
- Scalar rescattering contributions of moderate size Oset et al. 2003, 2008; Lu and Moussallam 2020
- Similar for η' decays Escribano, Gonzàlez-Solís, et al. 2020
- Consider lowest-lying neutral VM as exchange particles: $\rho, \omega, \phi \rightarrow$ left-hand cut in the amplitude

Matrix element for $\eta(p) \rightarrow \pi^0(p_\pi)\ell^+(p_+)\ell^-(p_-)$

$$\mathcal{M} = i \frac{\alpha^2}{\pi^2} \sum_{\mathbf{V} \in \{\rho, \omega, \phi\}} \int d^4 k \ g^{\beta \tilde{\beta}} \epsilon_{\mu\nu\alpha\beta} \epsilon_{\tilde{\mu}\tilde{\nu}\tilde{\alpha}\tilde{\beta}} P^{\alpha} k^{\mu} (P^{\tilde{\alpha}} k^{\tilde{\mu}} - P^{\tilde{\alpha}} l^{\tilde{\mu}} + k^{\tilde{\alpha}} l^{\tilde{\mu}})$$

$$P_V((P-k)^2) \mathcal{F}_{V\eta}(k^2) \mathcal{F}_{V\pi^0}((l-k)^2) P_{\gamma}(k^2) P_{\gamma}((l-k)^2)$$

$$\bar{u}_s \bigg[\gamma^{\tilde{\nu}} \frac{k - p_+ + m_\ell}{(k-p_+)^2 - m_\ell^2} \gamma^{\nu} + \gamma^{\nu} \frac{p_- - k + m_\ell}{(p_- - k)^2 - m_\ell^2} \gamma^{\tilde{\nu}} \bigg] \mathbf{v}_r$$

 $l = p_+ + p_-$

 P_V vector-meson propagator P_γ photon propagator

Form factor \mathcal{F}_{VP} : definition

$$\langle P(p)|j_{\mu}(0)|V(p_{V})\rangle = e \epsilon_{\mu\nu\alpha\beta}\epsilon^{\nu}(p_{V})p^{\alpha}q^{\beta}\mathcal{F}_{VP}(q^{2}) \qquad q = p_{V}-p$$

- Previous VMD calculations: constant instead of energy-dependent form factors real photons
- Energy dependence virtual photons; otherwise, loop integral generally not convergent
- + Form factor \mathcal{F}_{VP} modeled via VMD
- Possible combinations of V and V_i determined by isospin and U(3) symmetry

$$\begin{array}{c|cccc} & & & & & & & \\ & & & & & & & & \\ \hline V & \rho & & & \phi & & \rho & & \phi \\ V_i & \omega^{(\prime)} & \rho^{(\prime)} & \rho^{(\prime)} & \rho^{(\prime)} & \rho^{(\prime)} & \omega^{(\prime)} & \phi^{(\prime)} \end{array}$$

Form factor \mathcal{F}_{VP} : parametrization

• Coupling for real photons fixed phenomenologically by $V \rightarrow P\gamma/P \rightarrow V\gamma$ decays, signs by U(3) flavor symmetry

$$\mathcal{F}_{VP}(q^2=0)=\mathcal{C}_{VP\gamma}\equiv\mathcal{F}_{VP}^{\mathsf{PL}}$$
 point-like (PL)

• Simplest parametrization with $\mathcal{O}(q^{-2})$ asymptotic behavior: monopole model (MP)

$$\mathcal{F}_{VP}^{\mathsf{MP}}(q^2) = C_{VP\gamma} M_{V_i}^2 P_{V_i}(q^2)$$

• Expected high energy behavior $\mathcal{O}(q^{-4})$ Cherniyak et al. 1984 \rightarrow dipole model (DP), include next-higher multiplet of VM, $\rho' = \rho^0(1450), \omega' = \omega(1420), \phi' = \phi(1680)$ $\mathcal{F}_{VP}^{DP}(q^2) = C_{VP\gamma} [(1 - \epsilon_{V_i})M_{V_i}^2 P_{V_i}(q^2) + \epsilon_{V_i}M_{V_i'}^2 P_{V_i'}(q^2)],$

 ϵ_{V_i} tuned such that $\mathcal{O}(q^{-2})$ terms cancel

Spectral representation of vector meson propagators

• ω and ϕ narrow resonances \rightarrow Breit-Wigner (BW) propagators good description

$$P_V^{\rm BW}(q^2) = \frac{1}{q^2 - M_V^2 + iM_V\Gamma_V}$$

- Not true for $\rho^{(\prime)}, \omega^\prime, \phi^\prime \rightarrow$ dispersively improved propagator

$$P_V^{\text{disp}}(q^2) = -\frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} dx \, \frac{\text{Im}\left[P_V^{\text{BW}}(x)\right]}{q^2 - x + i\epsilon}$$

with $\text{Im}\left[P_V^{\text{BW}}(x)\right] = \frac{-\sqrt{x} \, \Gamma_V(x)}{(x - M_V^2)^2 + x \Gamma_V(x)^2}$

• Energy-dependent widths avoid unphysical imaginary parts

Strategies to solve the loop integral

· Separation of spinor part in matrix element

$$\mathcal{M} = 16\pi^2 \alpha^2 \left[\mathcal{M}_{\text{QED}}^{uv} \mathcal{M}_{\text{H}}^{uv} + \mathcal{M}_{\text{QED}}^{u0v} \mathcal{M}_{\text{H}}^{u0v} \right]$$

 $\mathcal{M}_{QED}^{uv} = \bar{u}_s v_r, \quad \mathcal{M}_{QED}^{u0v} = \bar{u}_s p_0 v_r$

• Separation of hadronic part according to coupling constants \rightarrow uncertainty estimation: ΔC_V dominant

$$\mathcal{M}_{\mathrm{H}}^{u(0)v} = \sum_{V} \mathcal{C}_{V} \mathcal{M}_{V}^{u(0)v}, \quad \mathcal{C}_{V} = \mathcal{C}_{V\eta^{(\prime)}\gamma} \mathcal{C}_{V[\pi^{0}/\eta]\gamma}$$

- Passarino-Veltman decomposition Passarino, Veltman; 't Hooft, Veltman 1979 of $\mathcal{M}_V^{u(0)v}$ using package *FeynCalc* Mertig 1990, Shtabovenko 2016, 2020
- Numerical evaluation with *Collier* Denner and Dittmaier 2003, 2006, 2011 [*C++* interface for native *Fortran* library]

Observables: branching ratio BR and $\widehat{\text{BR}}$

•
$$\mathsf{BR}(\eta^{(\prime)} \to [\pi^0/\eta]\ell^+\ell^-) = \frac{\Gamma}{\Gamma_{\eta^{(\prime)}}}$$

$$\cdot \ \widehat{\mathsf{BR}}(\eta^{(\prime)} \to [\pi^0/\eta]\ell^+\ell^-) = \frac{\frac{\mathsf{BR}(\eta^{(\prime)} \to [\pi^0/\eta]\ell^+\ell^-)}{\mathsf{BR}(\eta^{(\prime)} \to [\pi^0/\eta]\gamma\gamma)}$$

 $\rightarrow \Delta C_V$ cancel partially

 $\cdot\,$ Calculation of ${\rm BR}(\eta^{(\prime)} \to [\pi^0/\eta]\gamma\gamma)$ in the same framework

 Numerical integration (phase space and spectral parameters) with *Cuhre* and *Vegas* algorithms from *Cuba* library Hahn 2005 → numerical uncertainties negligible

Results: Dalitz plot

Results: Dalitz plot

- Electrons in the final state: largest contribution for $s = m_{\ell\ell}^2$ very close to lower threshold
 - → important for numerical integration and experimental measurement
- Muons: distribution more centered and spread out

Results: singly-differential decay width

- + $\log(s)$ singularity from $\gamma^*\gamma^*$ intermediate state present in e^+e^- channel
- + Further away from $\mu^+\mu^-$ -channel phase space

		PL / 10 ⁻⁹	MP / 10 ⁻⁹	DP / 10 ⁻⁹	ER / 10 ⁻⁹
$\eta ightarrow \pi^0 e^+ e^-$	CW VW	2.10(23) 2.06(22)	1.35(15) 1.40(15)	1.33(15) 1.36(15)	2.0(1)(1)(1)
$\eta \to \pi^0 \mu^+ \mu^-$	CW VW	1.37(15) 1.32(14)	0.70(8) 0.71(8)	0.66(7) 0.67(7)	1.1(1)(1)(1)
$\eta' ightarrow \pi^0 e^+ e^-$	CW VW	3.82(33) 3.81(33)	3.08(27) 3.30(28)	3.14(27) 3.30(28)	4.5(3)(4)(4)
$\eta' o \pi^0 \mu^+ \mu^-$	CW VW	2.57(23) 2.53(23)	1.69(15) 1.81(16)	1.68(15) 1.81(16)	1.7(1)(2)(2)
$\eta' ightarrow \eta e^+ e^-$	CW VW	0.53(4) 0.51(4)	0.48(4) 0.50(4)	0.49(4) 0.50(4)	0.43(3)(2)(18)
$\eta' ightarrow \eta \mu^+ \mu^-$	CW VW	0.287(26) 0.280(25)	0.213(18) 0.225(20)	0.207(18) 0.240(21)	0.15(1)(1)(5)

		PL / 10 ⁻⁹	MP / 10 ⁻⁹	DP / 10 ⁻⁹	ER / 10 ⁻⁹
$\eta ightarrow \pi^0 e^+ e^-$	CW VW	2.10(23) 2.06(22)	1.35(15) 1.40(15)	1.33(15) 1.36(15)	2.0(1)(1)(1)
$\eta \to \pi^0 \mu^+ \mu^-$	CW VW	1.37(15) 1.32(14)	0.70(8) 0.71(8)	0.66(7) 0.67(7)	1.1(1)(1)(1)
$\eta' ightarrow \pi^0 e^+ e^-$	CW VW	3.82(33) 3.81(33)	3.08(27) 3.30(28)	3.14(27) 3.30(28)	4.5(3)(4)(4)
$\eta' o \pi^0 \mu^+ \mu^-$	CW VW	2.57(23) 2.53(23)	1.69(15) 1.81(16)	1.68(15) 1.81(16)	1.7(1)(2)(2)
$\eta' ightarrow \eta e^+ e^-$	CW VW	0.53(4) 0.51(4)	0.48(4) 0.50(4)	0.49(4) 0.50(4)	0.43(3)(2)(18)
$\eta' ightarrow \eta \mu^+ \mu^-$	CW VW	0.287(26) 0.280(25)	0.213(18) 0.225(20)	0.207(18) 0.240(21)	0.15(1)(1)(5)

		PL / 10 ⁻⁹	MP / 10 ⁻⁹	DP / 10 ⁻⁹	ER / 10 ⁻⁹
$\eta \to \pi^0 e^+ e^-$	CW VW	2.10(23) 2.06(22)	1.35(15) 1.40(15)	1.33(15) 1.36(15)	2.0(1)(1)(1)
$\eta \to \pi^0 \mu^+ \mu^-$	CW VW	1.37(15) 1.32(14)	0.70(8) 0.71(8)	0.66(7) 0.67(7)	1.1(1)(1)(1)
$\eta' \to \pi^0 e^+ e^-$	CW VW	3.82(33) 3.81(33)	3.08(27) 3.30(28)	3.14(27) 3.30(28)	4.5(3)(4)(4)
$\eta' \to \pi^0 \mu^+ \mu^-$	CW VW	2.57(23) 2.53(23)	1.69(15) 1.81(16)	1.68(15) 1.81(16)	1.7(1)(2)(2)
$\eta' \to \eta e^+ e^-$	CW VW	0.53(4) 0.51(4)	0.48(4) 0.50(4)	0.49(4) 0.50(4)	0.43(3)(2)(18)
$\eta' ightarrow \eta \mu^+ \mu^-$	CW VW	0.287(26) 0.280(25)	0.213(18) 0.225(20)	0.207(18) 0.240(21)	0.15(1)(1)(5)

		PL / 10 ⁻⁹	MP / 10 ⁻⁹	DP / 10 ⁻⁹	ER / 10 ⁻⁹
$\eta ightarrow \pi^0 e^+ e^-$	CW VW	2.10(23) 2.06(22)	1.35(15) 1.40(15)	1.33(15) 1.36(15)	2.0(1)(1)(1)
$\eta \to \pi^0 \mu^+ \mu^-$	CW VW	1.37(15) 1.32(14)	0.70(8) 0.71(8)	0.66(7) 0.67(7)	1.1(1)(1)(1)
$\eta' ightarrow \pi^0 e^+ e^-$	CW VW	3.82(33) 3.81(33)	3.08(27) 3.30(28)	3.14(27) 3.30(28)	4.5(3)(4)(4)
$\eta' \to \pi^0 \mu^+ \mu^-$	CW VW	2.57(23) 2.53(23)	1.69(15) 1.81(16)	1.68(15) 1.81(16)	1.7(1)(2)(2)
$\eta' ightarrow \eta e^+ e^-$	CW VW	0.53(4) 0.51(4)	0.48(4) 0.50(4)	0.49(4) 0.50(4)	0.43(3)(2)(18)
$\eta' ightarrow \eta \mu^+ \mu^-$	CW VW	0.287(26) 0.280(25)	0.213(18) 0.225(20)	0.207(18) 0.240(21)	0.15(1)(1)(5)

		PL / 10 ⁻⁹	MP / 10 ⁻⁹	DP / 10 ⁻⁹	ER / 10 ⁻⁹
$\eta ightarrow \pi^0 e^+ e^-$	CW VW	2.10(23) 2.06(22)	1.35(15) 1.40(15)	1.33(15) 1.36(15)	2.0(1)(1)(1)
$\eta \to \pi^0 \mu^+ \mu^-$	CW VW	1.37(15) 1.32(14)	0.70(8) 0.71(8)	0.66(7) 0.67(7)	1.1(1)(1)(1)
$\eta' ightarrow \pi^0 e^+ e^-$	CW VW	3.82(33) 3.81(33)	3.08(27) 3.30(28)	3.14(27) 3.30(28)	4.5(3)(4)(4)
$\eta' \to \pi^0 \mu^+ \mu^-$	CW VW	2.57(23) 2.53(23)	1.69(15) 1.81(16)	1.68(15) 1.81(16)	1.7(1)(2)(2)
$\eta' ightarrow \eta e^+ e^-$	CW VW	0.53(4) 0.51(4)	0.48(4) 0.50(4)	0.49(4) 0.50(4)	0.43(3)(2)(18)
$\eta' ightarrow \eta \mu^+ \mu^-$	CW VW	0.287(26) 0.280(25)	0.213(18) 0.225(20)	0.207(18) 0.240(21)	0.15(1)(1)(5)

Comparison to experiment

Branching ratio						
	DP VW	exp.limit				
$\eta ightarrow \pi^0 e^+ e^-$	1.36(15) × 10 ⁻⁹	$< 7.5 imes 10^{-6}$	Adlarson et al. 2018			
$\eta \to \pi^0 \mu^+ \mu^-$	$6.7(7) \times 10^{-10}$	$< 5 \times 10^{-6}$	Dzhelyadin et al. 1981			
$\eta' ightarrow \pi^0 e^+ e^-$	$3.30(28) \times 10^{-9}$	$< 1.4 \times 10^{-3}$	Briere et al. 2000			
$\eta' \to \pi^0 \mu^+ \mu^-$	$1.81(16) \times 10^{-9}$	$< 6 \times 10^{-5}$	Dzhelyadin et al. 1981			
$\eta' ightarrow \eta e^+ e^-$	$5.0(4) \times 10^{-10}$	$< 2.4 \times 10^{-3}$	Briere et al. 2000			
$\eta' \to \eta \mu^+ \mu^-$	$2.40(21) \times 10^{-10}$	$< 1.5 \times 10^{-5}$	Dzhelyadin et al. 1981			

REDTOP might provide comparable results Gatto 2019

Ratio of branching ratios $\widehat{BR} = BR_{\ell^+\ell^-}/BR_{\gamma\gamma}$

	$BR_{\gamma\gamma}$		B R
$\eta ightarrow \pi^0 \gamma \gamma$	1 10(12) 10-4	$\eta ightarrow \pi^0 e^+ e^-$	$1.1531(4) \times 10^{-5}$
	1.16(15) × 10	$\eta \to \pi^0 \mu^+ \mu^-$	$5.647(5) \times 10^{-6}$
$\eta' \to \pi^0 \gamma \gamma$	2.81(18) × 10 ⁻³	$\eta' \to \pi^0 e^+ e^-$	$1.18(6) \times 10^{-6}$
		$\eta' \to \pi^0 \mu^+ \mu^-$	$6.5(4) \times 10^{-7}$
$\eta' \to \eta \gamma \gamma$	$1.10(8) \times 10^{-4}$	$\eta' ightarrow \eta e^+ e^-$	$4.56(7) \times 10^{-6}$
		$\eta' \to \eta \mu^+ \mu^-$	$2.18(4) \times 10^{-6}$

- Tension in BR($\eta \rightarrow \pi^0 \gamma \gamma$), experimentally and theoretically – our result is compatible with latest KLOE-2 result BR($\eta \rightarrow \pi^0 \gamma \gamma$) = (1.21 ± 0.13 ± 0.28) × 10⁻⁴ Gauzzi 2022
- BR $(\eta'
 ightarrow [\pi^0/\eta]\gamma\gamma)$ compatible with PDG results Zyla et al. 2020

Scalar rescattering corrections

- Helicity suppressed: coupling of scalar resonance to leptons needs spin flip $\sim m_\ell$
- Start from $\eta \to \pi^0 \gamma \gamma$ (cf. B. Moussallam's talk, Lu and Moussallam 2020)

 $\langle \gamma(q_1,\lambda)\gamma(q_2,\lambda')|S|\eta(P)\pi^0(p_0)\rangle \sim e^{i(\lambda-\lambda')\varphi}L_{\lambda\lambda'}(s,t)$

- Helicity amplitudes L_{++} and L_{+-} , neglect *D* and higher waves $\rightarrow \mathcal{M}^{\text{scalar}} \sim L_{++} \sim \ell^0_{++}(s)$
- Dispersion relation for S-wave helicity amplitude $\ell^0_{++}(s)$ with coupled-channel formalism ($\pi^0\eta$ and $K\bar{K}$)
- Isolate S-wave amplitude by subtracting VMD contribution _{16/18}

 $|\overline{\mathcal{M}}|^{2} = |\overline{\mathcal{M}^{\text{VMD}}}|^{2} + |\overline{\mathcal{M}^{\text{resc}}}|^{2} + 2\text{Re}\left(\mathcal{M}^{\text{resc}}\mathcal{M}^{\text{VMD}*}\right)$

		Branching ratio	
	VMD	rescattering	mixed
$\eta \to \pi^0 e^+ e^-$	1.36(15) × 10 ⁻⁹	2.51(9) × 10 ⁻¹³	$4.63(31) \times 10^{-13}$
$\eta \to \pi^0 \mu^+ \mu^-$	$6.7(7) \times 10^{-10}$	$2.76(11) \times 10^{-11}$	$-2.63(15) \times 10^{-11}$

- $\cdot\,$ BRs, as expected, of $\mathcal{O}(10^{-2})-\mathcal{O}(10^{-4})$ of the VMD results
- Expect results of similar order for η^\prime channels
- Negligible compared to experimental uncertainties from the coupling constants

Discussion

- Results in the same range as previous calculations
- Higher confidence with results as we took into account
 - · photon virtualities \rightarrow energy-dependent form factors
 - correct high-energy behavior of form factors
 - dispersively improved vector meson propagators
 - compared different parameterizations
 - compared different integration algorithms
 - estimated S-channel correction to be indeed small
- Prospect of improved experimental precision
 → comparison to experimental results in the future?

Spares

Energy-dependent widths

 $\cdot \rho$ meson

$$\Gamma_{\rho}(q^{2}) = \theta(q^{2} - 4M_{\pi^{\pm}}^{2}) \frac{\gamma_{\rho \to \pi^{+}\pi^{-}}(q^{2})}{\gamma_{\rho \to \pi^{+}\pi^{-}}(M_{\rho}^{2})} f(q^{2}) \Gamma_{\rho}$$

with $\gamma_{\rho \to \pi^{+}\pi^{-}}(q^{2}) = \frac{(q^{2} - 4M_{\pi^{\pm}}^{2})^{3/2}}{q^{2}}$
barrier factors $f(q^{2}) = \frac{\sqrt{q^{2}}}{M_{\rho}} \frac{M_{\rho}^{2} - 4M_{\pi^{\pm}}^{2} + 4p_{R}^{2}}{q^{2} - 4M_{\pi^{\pm}}^{2} + 4p_{R}^{2}}$

Adolph et al. 2017; Hippel and Quigg 1972

* ρ', ω', ϕ' mesons

$$\Gamma_{V'}(q^2) = \theta(q^2 - (M_V + M_P)^2) \frac{\gamma_{V' \to VP}(q^2)}{\gamma_{V' \to VP}(M_{V'}^2)} \Gamma_{V'}$$

with $\gamma_{V' \to VP}(q^2) = \frac{\lambda(q^2, M_V^2, M_P^2)^{3/2}}{(q^2)^{3/2}}$

Results: singly-differential decay width

Results: singly-differential decay width

Passarino-Veltman reduction: general loop integral

$$T_{\mu_{1}...\mu_{M}}^{N}(p_{1},...,p_{N},m_{0},...,m_{N-1}) = \underbrace{\frac{p_{N}}{p_{N}}}_{p_{N-1}} \underbrace{\frac{p_{1}}{k} + p_{1} + ... + p_{N-1}}_{p_{N-1}}$$
$$= \frac{(2\pi)^{4-D}}{i\pi^{2}} \int d^{D}k \frac{k_{\mu_{1}}...k_{\mu_{M}}}{(k^{2} - m_{0}^{2})[(k + p_{1})^{2} - m_{1}^{2}]...[(k + p_{1} + ... + p_{N})^{2} - m_{N-1}^{2}]}$$

Passarino-Veltman reduction: scalar integrals

- Define
 - · $A_0(m_0)$
 - $B_0(p, m_0, m_1)$
 - $C_0(p_1, p_2, m_0, m_1, m_2)$
 - $D_0(p_1, p_2, p_3, m_0, m_1, m_2, m_3)$

as integrals without loop momentum in the numerator

- Can reduce any integral of shape *T* to those four scalar integrals
- Calculate coefficients
- General solutions to A_0, B_0, C_0, D_0 are known 't Hooft and Veltman 1979
- Numerical evaluation can be tedious; use e.g. *Collier* Denner and Dittmaier 2003, 2006, 2011

CPT conserved in the Standard Model, but not individually Different classes of violations:

- C, P, T violated (e.g. weak interaction \rightarrow direct/indirect CP violation in e.g. kaon decays)
- T=CP even, C and P odd (e.g. w.i. without CKM phase)
- + T=CP odd, P odd: TOPO (e.g. QCD θ term \rightarrow neutron EDM)
- + T=CP odd, P even (\rightarrow C odd): TOPE