Lepton-flavor violation in eta decays

Frederic Noël

Universität Bern, Institute for Theoretical Physics

ECT*: Precision tests of fundamental physics with light mesons 15.06.2023

partially based on

[Hoferichter, Menéndez, Noël; Phys. Rev. Lett. 130 (2023)]

F. Noël (Uni Bern, ITP)

LFV in η decays

Outline

Overview of LFV (in $\eta^{(\prime)}$ decays):

- 1 Motivation
- 2 Experiments and Current limits
- 3 Strategy

Constraining $P \rightarrow \bar{\mu}e$ from $\mu \rightarrow e$ conversion:

- 4 Formalism
- 5 Master Formulae
- 6 Results

Part I

Overview of LFV (in $\eta^{(\prime)}$ decays)

 $\circ~$ Search for new physics (NP): one prominent probe $\rightarrow~$ LFV

- Search for new physics (NP): one prominent probe \rightarrow LFV
- Lepton Flavour (LF) is conserved by SM
- LF is an (accidental) global symmetry

l	_epto	n ⊢la	vours	5
	е	μ	τ	
	Ve	v_{μ}	v_{τ}	

_ .

- Search for new physics (NP): one prominent probe \rightarrow LFV
- \circ Lepton Flavour (LF) is conserved by SM
- LF is an (accidental) global symmetry
- Lepton Flavour Violation (LFV)
 - neutral LFV: ν_e , ν_μ , $\nu_\tau \rightarrow$ neutrino oscillations

е	μ	τ	
ν_e	$ u_{\mu}$	ν_{τ}	

- Search for new physics (NP): one prominent probe \rightarrow LFV
- Lepton Flavour (LF) is conserved by SM
- LF is an (accidental) global symmetry
- Lepton Flavour Violation (LFV)
 - neutral LFV: ν_e , ν_μ , $\nu_\tau \rightarrow$ neutrino oscillations
 - charged LFV: e, μ, τ \rightarrow only indirectly via ν_i

- Search for new physics (NP): one prominent probe \rightarrow LFV
- \circ Lepton Flavour (LF) is conserved by SM
- LF is an (accidental) global symmetry
- Lepton Flavour Violation (LFV)
 - neutral LFV: ν_e , ν_μ , $\nu_\tau \rightarrow$ neutrino oscillations
 - charged LFV: e, μ, τ \rightarrow only indirectly via ν_i
- $\circ~$ Oberservation of CLFV would be NP

Very clean BSM signal (no competing SM)

LFV Experiments and current limits

LFV process	current limit	(planed) experiments	
$\pi^{0} ightarrow ar{\mu} e \ \eta ightarrow ar{\mu} e \ \eta' ightarrow ar{\mu} e$	$< 3.6 \cdot 10^{-10}$ [KTeV] $< 6 \cdot 10^{-6}$ [SPEC] $< 4.7 \cdot 10^{-4}$ [CLEO II]	JEF, REDTOP	
$\begin{array}{c} \pi^{0}/\eta^{(\prime)} \rightarrow \bar{\mu}e \ \gamma \\ \eta^{(\prime)}/\eta' \rightarrow \bar{\mu}e \ \pi/\eta \end{array}$	no limits		

LFV Experiments and current limits

LFV process	current limit	(planed) experiments	
$ \begin{array}{c} \pi^{0} \rightarrow \bar{\mu}e \\ \eta \rightarrow \bar{\mu}e \\ \eta' \rightarrow \bar{\mu}e \end{array} $	$< 3.6 \cdot 10^{-10}$ [KTeV] $< 6 \cdot 10^{-6}$ [SPEC] $< 4.7 \cdot 10^{-4}$ [CLEO II]	JEF, REDTOP	
$\begin{array}{c} \pi^{0}/\eta^{(\prime)} \rightarrow \bar{\mu}e \ \gamma \\ \eta^{(\prime)}/\eta^{\prime} \rightarrow \bar{\mu}e \ \pi/\eta \end{array}$	no limits		
$ \begin{array}{c} \mu \to e\gamma \\ \mu \to 3e \\ \tau \to \ell\gamma, 3\ell, \ell P, \dots \end{array} $	$\begin{array}{l} < 4.2 \cdot 10^{-13} \ [\text{MEG}] \\ < 1.0 \cdot 10^{-12} \ [\text{SINDRUM}] \\ \lesssim 10^{-8} \ [\text{Belle, LHCb, } \dots] \end{array}$	MEG II Mu3e Belle 2,	

LFV Experiments and current limits

LFV process	current limit	(planed) experiments	
$\pi^{0} ightarrow ar{\mu} e \ \eta ightarrow ar{\mu} e \ \eta' ightarrow ar{\mu} e$	$< 3.6 \cdot 10^{-10}$ [KTeV] $< 6 \cdot 10^{-6}$ [SPEC] $< 4.7 \cdot 10^{-4}$ [CLEO II]	JEF, REDTOP	
$\pi^{0}/\eta^{(\prime)} ightarrow ar{\mu} e \gamma \eta^{(\prime)}/\eta' ightarrow ar{\mu} e \pi/\eta$	no limits		
$ \begin{array}{c} \mu \to e\gamma \\ \mu \to 3e \\ \tau \to \ell\gamma, 3\ell, \ell P, \dots \end{array} $	$\begin{array}{l} < 4.2 \cdot 10^{-13} \ [\text{MEG}] \\ < 1.0 \cdot 10^{-12} \ [\text{SINDRUM}] \\ \lesssim 10^{-8} \ [\text{Belle, LHCb, } \dots] \end{array}$	MEG II Mu3e Belle 2,	
$\begin{array}{c} \operatorname{Au} \mu^{-} \to \operatorname{Au} e^{-} \\ \operatorname{Ti} \mu^{-} \to \operatorname{Ti} e^{-} \\ \operatorname{Al} \mu^{-} \to \operatorname{Al} e^{-} \end{array}$	$ < 7 \cdot 10^{-13} \text{ [SINDRUM II]} \\ < 6.1 \cdot 10^{-13} \text{ [SINDRUM II]} \\ \lesssim 10^{-17} \text{ (projected)} $	Mu2e, COMET	

 \rightarrow stringent bounds on LFV

• Experimental Setup:

• Conversion process:

- \circ Experimental signature: e^- with $q pprox m_\mu$
- \circ Only background: decay in orbit $\mu^-
 ightarrow
 u_\mu ar
 u_e e^-$ (spectrum)
- $\circ~$ Normalisation: muon capture $\mu\left(\textit{A},\textit{Z}\right)\rightarrow\nu_{\mu}\left(\textit{A},\textit{Z}-1\right)$

- \circ Experimental signature: e^- with $qpprox m_\mu$
- \circ Only background: decay in orbit $\mu^-
 ightarrow
 u_\mu ar
 u_e e^-$ (spectrum)
- $\circ~$ Normalisation: muon capture $\mu\left(\textit{A},\textit{Z}\right)\rightarrow\nu_{\mu}\left(\textit{A},\textit{Z}-1\right)$
- Distinction between:
 - $\circ~$ Spin-independent (SI) \rightarrow coherent enhancement ($\sim \# \textit{N})$
 - \circ Spin-dependent (SD) \rightarrow non-coherent (only $J_{nucl.} \neq 0$)

Probes pseudoscalar P, axialvector A and gluonic $G\tilde{G}$ operators

Probes pseudoscalar P, axialvector A and gluonic $G\tilde{G}$ operators

• The same operators appear (among others) in $\mu \rightarrow e$ conversion:

Probes pseudoscalar P, axialvector A and gluonic $G\tilde{G}$ operators

• The same operators appear (among others) in $\mu \rightarrow e$ conversion:

Goal: Use limits on $\mu \rightarrow e$ conversion to derive limits on $P \rightarrow \overline{\mu}e$

• also suggested in [Gan et al., 2022]

Part II

Constraining $P ightarrow ar{\mu} e$ from $\mu ightarrow e$ conversion

Standard Model EFT

• Model-independent effective field theory description of BSM physics with higher dimensional operators obeying all SM symmetries:

$$\mathcal{L}^{\mathsf{SM}\;\mathsf{EFT}} = \mathcal{L}^{\mathsf{SM}} + rac{1}{\Lambda}\mathcal{L}^{(5)} + rac{1}{\Lambda^2}\mathcal{L}^{(6)} + \dots$$

• Can be seen as the low-energy effective theory of any theory introducing new physics at high energies

Standard Model EFT

• Model-independent effective field theory description of BSM physics with higher dimensional operators obeying all SM symmetries:

$$\mathcal{L}^{\mathsf{SM}\;\mathsf{EFT}} = \mathcal{L}^{\mathsf{SM}} + rac{1}{\Lambda}\mathcal{L}^{(5)} + rac{1}{\Lambda^2}\mathcal{L}^{(6)} + \dots$$

- Can be seen as the low-energy effective theory of any theory introducing new physics at high energies
- Naturally contains LFV operators:

Standard Model EFT

• Model-independent effective field theory description of BSM physics with higher dimensional operators obeying all SM symmetries:

$$\mathcal{L}^{\mathsf{SM}\;\mathsf{EFT}} = \mathcal{L}^{\mathsf{SM}} + \frac{1}{\Lambda}\mathcal{L}^{(5)} + \frac{1}{\Lambda^2}\mathcal{L}^{(6)} + \dots$$

- Can be seen as the low-energy effective theory of any theory introducing new physics at high energies
- Naturally contains LFV operators:

Can be used to describe all LFV processes in a model-independent way

Procedure

Observation

 $P
ightarrow ar{\mu} e$ is mediated by the same operators as SD $\mu
ightarrow e$ conversion

Procedure

Observation

$$P
ightarrow ar{\mu} e$$
 is mediated by the same operators as SD $\mu
ightarrow e$ conversion

• relevant part of effective Lagrangian:

Procedure

Observation

$$P
ightarrow ar{\mu} e$$
 is mediated by the same operators as SD $\mu
ightarrow e$ conversion

 $\circ\;$ relevant part of effective Lagrangian:

Fundamental Idea

Translate the strong limits of $\mu \rightarrow e$ conversion onto $P \rightarrow \bar{\mu}e$

 \rightarrow Need: Masterformula for both processes in terms of these operators

$P \rightarrow \bar{\mu} e$

Master Formula: $P \rightarrow \mu e$

Master Formula: $P \rightarrow \mu e$

Master Formula: $P \rightarrow \mu e$

 $\circ~$ only contributions from:

 $P, A, G\tilde{G}$

Master Formula: $P \rightarrow \mu e$

 $\circ~$ only contributions from:

 $P, A, G\tilde{G}$

- hadronic matrix elements from lattice-QCD and phenomenology
- \circ Ward identity:

 $b_q f_P^q M_P^2 = b_q h_P^q - a_P$

	π	η		η'	
		Pheno	Lattice	Pheno	Lattice
$\frac{b_u f_p^u}{F_{\pi}}$	1	0.80	0.77	0.66	0.56
$\frac{b_d f_p^d}{F_{\pi}}$	-1	0.80	0.77	0.66	0.56
$\frac{b_s f_p^s}{F_{\pi}}$	0	-1.26	-1.17	1.45	1.50
$a_P [\text{GeV}^3]$	0	-	-0.017	-	-0.038
$a_P^{FKS} [GeV^3]$	0	-0.022	-0.021	-0.056	-0.048
h_P^q		Ward identity			

Phenomenology: [Escribano et al., 2016] Lattice-QCD: [Bali et al., 2021]

SD $\mu \rightarrow e$

Master Formula: SD $\mu \rightarrow e$ conversion

SD $\mu \rightarrow e$

Master Formula: SD $\mu \rightarrow e$ conversion

SD $\mu \rightarrow e$

Master Formula: SD $\mu \rightarrow e$ conversion

F. Noël (Uni Bern, ITP)

LFV in η decays

15.06.23 12 / 16

Master Formula: SD $\mu \rightarrow e$ conversion

Deduced Limits (individual)

 $\circ~$ Use limits on $\mu
ightarrow e$ conversion to derive limits on $P
ightarrow ar{\mu} e$

Deduced Limits (individual)

 $\circ~$ Use limits on $\mu
ightarrow e$ conversion to derive limits on $P
ightarrow ar{\mu} e$

• In general the operators do not appear in the same linear combinations

Deduced Limits (individual)

 $\circ~$ Use limits on $\mu
ightarrow e$ conversion to derive limits on $P
ightarrow ar{\mu} e$

In general the operators do not appear in the same linear combinations
If we consider one operator at a time, the transition is immediate:

$\mu ightarrow e$ (exp.)	$P ightarrow ar{\mu} e$ (derived)	current limit
$BR_{Ti} < 6.1 \times 10^{-13}$	$egin{array}{l} {\sf BR}_{\pi^0} &\lesssim 4 imes 10^{-17} \ {\sf BR}_{\eta} &\lesssim 5 imes 10^{-13} \ {\sf BR}_{\eta'} &\lesssim 7 imes 10^{-14} \end{array}$	$< 3.6 imes 10^{-10} \ < 6.0 imes 10^{-6} \ < 4.7 imes 10^{-4}$

(scan over all "one operator at a time"-scenarios and choices for constants)

Deduced Limits (individual)

 $\circ~$ Use limits on $\mu
ightarrow e$ conversion to derive limits on $P
ightarrow ar{\mu} e$

In general the operators do not appear in the same linear combinations
If we consider one operator at a time, the transition is immediate:

$\mu ightarrow e$ (exp.)	$P ightarrow ar{\mu} e$ (derived)	current limit
$BR_{Ti} < 6.1 \times 10^{-13}$	$egin{array}{l} {\sf BR}_{\pi^0} &\lesssim 4 imes 10^{-17} \ {\sf BR}_{\eta} &\lesssim 5 imes 10^{-13} \ {\sf BR}_{\eta'} &\lesssim 7 imes 10^{-14} \end{array}$	$\begin{array}{l} < 3.6 \times 10^{-10} \\ < 6.0 \times 10^{-6} \\ < 4.7 \times 10^{-4} \end{array}$

(scan over all "one operator at a time"-scenarios and choices for constants)

Derived limits are several orders of magnitude better!

For rigorous limits we need to scan over all Wilson coefficients:

For rigorous limits we need to scan over all Wilson coefficients:

 $\circ\,$ Want linear combination of operators to

- \circ minimise $\mu \rightarrow e$ conversion
- \circ maximise $P \rightarrow \bar{\mu}e$

 \rightarrow \exists fine-tuned solution to make $\mu \rightarrow e$ conversion vanish

For rigorous limits we need to scan over all Wilson coefficients:

 $\circ\,$ Want linear combination of operators to

- \circ minimise $\mu \rightarrow e$ conversion
- \circ maximise $P \rightarrow \bar{\mu}e$
- \rightarrow \exists fine-tuned solution to make $\mu \rightarrow e$ conversion vanish
- In this scenario $\pi^0 \rightarrow \bar{\mu} e$ vanishes as well:

rigorous limit: $Br_{\pi^0 \to \bar{\mu}e} < 1.0 \times 10^{-13}$ (exp: $< 3.6 \cdot 10^{-10}$)

For rigorous limits we need to scan over all Wilson coefficients:

 $\circ\,$ Want linear combination of operators to

- \circ minimise $\mu \rightarrow e$ conversion
- \circ maximise $P \rightarrow \bar{\mu}e$
- \rightarrow \exists fine-tuned solution to make $\mu \rightarrow e$ conversion vanish
- In this scenario $\pi^0 \rightarrow \bar{\mu} e$ vanishes as well:

rigorous limit: Br
$$_{\pi^0 \to \bar{\mu}e} < 1.0 \times 10^{-13}$$
 (exp: $< 3.6 \cdot 10^{-10}$)

• However, $\eta^{(\prime)} \rightarrow \bar{\mu}e$ can still be non-zero: $\rightarrow Br_{\eta^{(\prime)} \rightarrow \bar{\mu}e}$ with sufficient fine-tuning in principle unbound

For rigorous limits we need to scan over all Wilson coefficients:

 $\circ\,$ Want linear combination of operators to

- \circ minimise $\mu \rightarrow e$ conversion
- \circ maximise $P \rightarrow \bar{\mu}e$
- \rightarrow \exists fine-tuned solution to make $\mu \rightarrow e$ conversion vanish
- In this scenario $\pi^0 \rightarrow \bar{\mu} e$ vanishes as well:

rigorous limit:
$$Br_{\pi^0 \to \bar{\mu}e} < 1.0 \times 10^{-13}$$
 (exp: $< 3.6 \cdot 10^{-10}$)

• However, $\eta^{(\prime)} \rightarrow \bar{\mu}e$ can still be non-zero: $\rightarrow \operatorname{Br}_{\eta^{(\prime)} \rightarrow \bar{\mu}e}$ with sufficient fine-tuning in principle unbound

- $\circ~$ easily spoilt by RG corrections
- $\circ~$ contributing to SI $\mu
 ightarrow e$ conversion

15.06.23

Outlook

With values from Mu2e or COMET the limits become even stronger

Outlook

With values from Mu2e or COMET the limits become even stronger

• Combining the limits from Ti and Al we find:

Summary:

- $\circ~$ Connection between LFV decays of light pseudoscalars and $\mu \rightarrow e~$ conversion
- $\circ~$ Description of both processes with LFV EFT operators

Summary:

- $\circ~$ Connection between LFV decays of light pseudoscalars and $\mu \rightarrow e~$ conversion
- $\circ~$ Description of both processes with LFV EFT operators
- Derived indirect limits for $P \rightarrow \bar{\mu}e$ surpass the direct ones by several orders of magnitude \rightarrow going beyond the "one operator at a time"-strategy

Summary:

- $\circ~$ Connection between LFV decays of light pseudoscalars and $\mu \rightarrow e~$ conversion
- $\circ~$ Description of both processes with LFV EFT operators
- Derived indirect limits for $P \rightarrow \bar{\mu}e$ surpass the direct ones by several orders of magnitude \rightarrow going beyond the "one operator at a time"-strategy
- $\circ\,$ Fine-tuning may relax limits, but RG corrections limit cancellation

Summary:

- $\circ~$ Connection between LFV decays of light pseudoscalars and $\mu \rightarrow e~$ conversion
- $\circ~$ Description of both processes with LFV EFT operators
- Derived indirect limits for $P \rightarrow \bar{\mu}e$ surpass the direct ones by several orders of magnitude \rightarrow going beyond the "one operator at a time"-strategy
- $\circ~$ Fine-tuning may relax limits, but RG corrections limit cancellation

Results suggest that potential LFV signals at $\eta^{(\prime)}\text{-}\mathsf{factories}$ are already severely constrained

Summary:

- $\circ~$ Connection between LFV decays of light pseudoscalars and $\mu \rightarrow e~$ conversion
- $\circ~$ Description of both processes with LFV EFT operators
- Derived indirect limits for $P \rightarrow \bar{\mu}e$ surpass the direct ones by several orders of magnitude \rightarrow going beyond the "one operator at a time"-strategy
- $\circ~$ Fine-tuning may relax limits, but RG corrections limit cancellation

Results suggest that potential LFV signals at $\eta^{(\prime)}\text{-}\mathsf{factories}$ are already severely constrained

<u>Outlook:</u>

• Future results from Mu2e and COMET can further improve these limits

Summary:

- $\circ~$ Connection between LFV decays of light pseudoscalars and $\mu \rightarrow e~$ conversion
- $\circ~$ Description of both processes with LFV EFT operators
- Derived indirect limits for $P \rightarrow \bar{\mu}e$ surpass the direct ones by several orders of magnitude \rightarrow going beyond the "one operator at a time"-strategy
- $\circ~$ Fine-tuning may relax limits, but RG corrections limit cancellation

Results suggest that potential LFV signals at $\eta^{(\prime)}\text{-}\mathsf{factories}$ are already severely constrained

<u>Outlook:</u>

- Future results from Mu2e and COMET can further improve these limits
- $\circ\,$ General treatment of $\mu \to e$ conversion: beyond SI or SD, combining nuclear and bound state physics
- $\circ~$ nucleus calculations from ab-initio methods

F. Noël (Uni Bern, ITP)

Thank you for your attention!

References I

Hoferichter, M., J. Menéndez, and F. Noël (Apr. 2022).

"Improved limits on lepton-flavor-violating decays of light pseudoscalars via spin-dependent $\mu \rightarrow e$ conversion in nuclei". In: arXiv: 2204.06005 [hep-ph].

Baldini, A. M. et al. (2016).

"Search for the lepton flavour violating decay $\mu^+ \to {\rm e}^+ \gamma$ with the full dataset of the MEG experiment".

In: Eur. Phys. J. C 76.8, p. 434. DOI: 10.1140/epjc/s10052-016-4271-x. arXiv: 1605.05081 [hep-ex].

- Bellgardt, U. et al. (1988). "Search for the Decay mu+ —> e+ e+ e-". In: Nucl. Phys. B 299, pp. 1–6. DOI: 10.1016/0550-3213(88)90462-2.
- Wintz, P. (1998). "Results of the SINDRUM-II experiment".

In: Conf. Proc. C 980420. Ed. by H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, pp. 534-546.

- Bertl, W. H. et al. (2006). "A Search for muon to electron conversion in muonic gold". In: Eur. Phys. J. C 47, pp. 337–346. DOI: 10.1140/epjc/s2006-02582-x.
- Baldini, A. M. et al. (2018). "The design of the MEG II experiment". In: Eur. Phys. J. C 78.5, p. 380. DOI: 10.1140/epjc/s10052-018-5845-6. arXiv: 1801.04688 [physics.ins-det].
- Arndt, K. et al. (2021). "Technical design of the phase I Mu3e experiment". In: Nucl. Instrum. Meth. A 1014, p. 165679. DOI: 10.1016/j.nima.2021.165679. arXiv: 2009.11690 [physics.ins-det].
- Aiba, M. et al. (Nov. 2021). "Science Case for the new High-Intensity Muon Beams HIMB at PSI". In: arXiv: 2111.05788 [hep-ex].
- Bartoszek, L. et al. (Oct. 2014). "Mu2e Technical Design Report". In: DOI: 10.2172/1172555. arXiv: 1501.05241 [physics.ins-det].
- Abramishvili, R. et al. (2020). "COMET Phase-I Technical Design Report". In: PTEP 2020.3, p. 033C01. DOI: 10.1093/ptep/ptz125. arXiv: 1812.09018 [physics.ins-det].
- Appel, R. et al. (2000). "An Improved limit on the rate of decay K+ -> pi+ muon+ e-". In: Phys. Rev. Lett. 85, pp. 2450-2453. DOI: 10.1103/PhysRevLett.85.2450. arXiv: hep-ex/0005016.
- Cortina Gil, E. et al. (2021). "Search for Lepton Number and Flavor Violation in K^+ and π^0 Decays".

In: Phys. Rev. Lett. 127.13, p. 131802. DOI: 10.1103/PhysRevLett.127.131802. arXiv: 2105.06759 [hep-ex].

Abouzaid, E. et al. (2008). "Search for lepton flavor violating decays of the neutral kaon". In: Phys. Rev. Lett. 100, p. 131803. DOI: 10.1103/PhysRevLett.100.131803. arXiv: 0711.3472 [hep-ex].

References II

- White, D. B. et al. (1996). "Search for the decays eta —> mu e and eta —> e+ e-". In: *Phys. Rev. D* 53, pp. 6658–6661. DOI: 10.1103/PhysRevD.53.6658.
- Briere, R. A. et al. (2000). "Rare decays of the eta-prime". In: Phys. Rev. Lett. 84, pp. 26–30. DOI: 10.1103/PhysRevLett.84.26. arXiv: hep-ex/9907046.
- Gan, L. et al. (n.d.). Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory (JEF) Experiment, JLab proposal. https://www.jlab.org/exp_prog/proposals/14/PR12-14-004.pdf.
- Elam, J. et al. (Mar. 2022). "The REDTOP experiment: Rare η/η' Decays To Probe New Physics". In: arXiv: 2203.07651 [hep-ex].
- Suzuki, T., D. F. Measday, and J. P. Roalsvig (1987). "Total Nuclear Capture Rates for Negative Muons". In: Phys. Rev. C 35, p. 2212. DOI: 10.1103/PhysRevC.35.2212.
- Gan, L. et al. (2022). "Precision tests of fundamental physics with η and η' mesons". In: Phys. Rept. 945, pp. 1–105. DOI: 10.1016/j.physrep.2021.11.001. arXiv: 2007.00664 [hep-ph].
- Escribano, R. et al. (2016). "
 ⁿ transition form factor from space- and timelike experimental data". In: Phys. Rev. D 94.5, p. 054033. DOI: 10.1103/PhysRevD.94.054033. arXiv: 1512.07520 [hep-ph].
- Bali, G. S. et al. (2021). "Masses and decay constants of the η and η' mesons from lattice QCD". In: JHEP 08, p. 137. DOI: 10.1007/JHEP08(2021)137. arXiv: 2106.05398 [hep-lat].
- Kitano, R., M. Koike, and Y. Okada (2002).
 - "Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei".
 - In: Phys. Rev. D 66. [Erratum: Phys. Rev. D 76, 059902 (2007)], p. 096002. DOI: 10.1103/PhysRevD.76.059902. arXiv: hep-ph/0203110.
- Hoferichter, M., J. Menéndez, and A. Schwenk (Oct. 2020).
 - "Coherent elastic neutrino-nucleus scattering: EFT analysis and nuclear responses". In: Phys. Rev. D 102.7, p. 074018. DOI: 10.1103/PhysRevD.102.074018. arXiv: 2007.08529 [hep-ph].
- Airapetian, A. et al. (2007). "Precise determination of the spin structure function g(1) of the proton, deuteron and neutron". In: Phys. Rev. D 75, p. 012007. DOI: 10.1103/PhysRevD.75.012007. arXiv: hep-ex/0609039.

Backup-Slides

 $\circ~$ No interaction with elementary particles, but with a whole nucleus

 $\circ~$ No interaction with elementary particles, but with a whole nucleus

 $\circ~$ No interaction with elementary particles, but with a whole nucleus

Effective description by separation of the appearing scales

 $\circ \quad \text{EFT operators from Lagranian:} \quad {}^{L^{\Gamma} \in \{e\bar{\mathbf{v}}\mu, e_{\bar{\mathbf{v}}}\gamma, \mu\mu, e_{\bar{\mathbf{v}}}\sigma_{\mu\nu}\mu\},} \quad (\Gamma = S, P, V, A, T, D, GG, G\bar{G}) \\ \mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^{2}} \sum_{\Gamma} \quad C_{q}^{\Gamma} \left(\mathcal{L}^{\Gamma} \cdot Q^{\Gamma, q} \right) \quad {}^{Q^{\Gamma, q} \in \{\bar{q}q, \bar{q}\gamma^{5}q, \bar{q}\gamma^{\mu}q, \bar{q}\gamma^{\mu}\gamma^{5}q, \bar{q}\sigma^{\mu\nu}q, F^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G$

 $\circ~$ No interaction with elementary particles, but with a whole nucleus

- $\circ \quad \text{EFT operators from Lagranian:} \quad {}^{L^{\Gamma} \in \{e\bar{\mathbf{v}}\mu, e_{\bar{\mathbf{v}}}\gamma,\mu\mu, e_{\bar{\mathbf{v}}}\sigma_{\mu\nu}\mu\}, \quad (\Gamma = S, P, V, A, T, D, GG, G\bar{G})} \\ \mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^{2}} \sum_{\Gamma} \quad C_{q}^{\Gamma} \left(\mathcal{L}^{\Gamma} \cdot Q^{\Gamma,q} \right) \quad {}^{Q^{\Gamma,q} \in \{\bar{q}q, \bar{q}\gamma^{5}q, \bar{q}\gamma^{\mu}\gamma^{5}q, \bar{q}\sigma^{\mu\nu}q, F^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu$
- $\begin{array}{l} \circ \quad \text{hadronic matrix elements:} \\ \left\langle N \right| \left. Q^{\Gamma,q} \left| N \right\rangle \rightarrow \sim \mathcal{F}_{q,N}^{\Gamma,i} \left. \bar{u}_N \mathcal{O}_i u_N \right. \xrightarrow{\text{non.rel.}} \sim \bar{u}_N^{\text{NR}} \mathcal{O}_i^{\text{NR}} u_N^{\text{NR}} \\ \\ \left. \mathcal{O}_i^{\text{NR}} \in \left\{ 1, \vec{\sigma}, \vec{\nabla}, \dots \text{and all combinations} \right\} \end{array} \right\}$

 $\circ~$ No interaction with elementary particles, but with a whole nucleus

- $\circ \quad \text{EFT operators from Lagranian:} \quad {}^{L^{\Gamma} \in \{e\bar{\mathbf{v}}\mu, e_{\bar{\mathbf{v}}}\gamma,\mu\mu, e_{\bar{\mathbf{v}}}\sigma_{\mu\nu}\mu\}, \quad (\Gamma = S, P, V, A, T, D, GG, G\bar{G})} \\ \mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^{2}} \sum_{\Gamma} \quad C_{q}^{\Gamma} \left(\mathcal{L}^{\Gamma} \cdot Q^{\Gamma,q} \right) \quad {}^{Q^{\Gamma,q} \in \{\bar{q}q, \bar{q}\gamma^{5}q, \bar{q}\gamma^{\mu}\gamma^{5}q, \bar{q}\sigma^{\mu\nu}q, F^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu$
- $\begin{array}{ll} \circ & \text{hadronic matrix elements:} \\ \langle N \mid Q^{\Gamma,q} \mid N \rangle \rightarrow \sim \mathcal{F}_{q,N}^{\Gamma,i} \, \bar{u}_N \mathcal{O}_i u_N & \xrightarrow{\text{non.rel.}} \sim \bar{u}_N^{\text{NR}} \mathcal{O}_i^{\text{NR}} u_N^{\text{NR}} \\ \circ & \text{nuclear multipoles (shell-model):} & \mathcal{O}_i^{\text{NR}} \in \{1, \vec{\sigma}, \vec{\nabla}, ... \text{and all combinations}\} \\ \langle M \mid \mathcal{O}_i^{\text{NR}} \mid M \rangle \rightarrow \sim \mathcal{F}^{\mathcal{S}_N} & \mathcal{S} \in \{M, \Sigma^{(\prime)}, \Phi^{(\prime\prime)}, \Omega^{(\prime\prime)}, \Gamma^{(\prime)}, \Pi^{(\prime\prime)}, \Theta^{(\prime\prime)}\} \end{array}$

 $\circ~$ No interaction with elementary particles, but with a whole nucleus

- $\circ \quad \text{EFT operators from Lagranian:} \quad {}^{L^{\Gamma} \in \{e\bar{\mathbf{y}}\mu, e_{\bar{\mathbf{y}}}\gamma, \mu, \mu, e_{\bar{\mathbf{y}}}\sigma_{\mu\nu}\mu\}}, \quad (\Gamma = S, P, V, A, T, D, GG, G\bar{G}) \\ \mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^{2}} \sum_{\Gamma} \quad C_{q}^{\Gamma} \left(\mathcal{L}^{\Gamma} \cdot Q^{\Gamma, q} \right) \quad {}^{Q^{\Gamma, q} \in \{\bar{q}q, \bar{q}\gamma^{5}q, \bar{q}\gamma^{\mu}\gamma^{5}q, \bar{q}\sigma^{\mu\nu}q, F^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{a}G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu}, G_{\mu\nu}^{\mu\nu},$
- $\begin{array}{l} \circ \quad \text{hadronic matrix elements:} \\ \langle N \mid Q^{\Gamma,q} \mid N \rangle \rightarrow \sim \mathcal{F}_{q,N}^{\Gamma,i} \; \bar{u}_N \mathcal{O}_i u_N & \xrightarrow{\text{non.rel.}} \sim \bar{u}_N^{\text{NR}} \mathcal{O}_i^{\text{NR}} u_N^{\text{NR}} \\ \circ \quad \text{nuclear multipoles (shell-model):} & \mathcal{O}_i^{\text{NR}} \in \{\mathbb{1}, \vec{\sigma}, \vec{\nabla}, \dots \text{and all combinations}\} \\ \langle M \mid \mathcal{O}_i^{\text{NR}} \mid M \rangle \rightarrow \sim \mathcal{F}^{S_N} & \mathcal{S} \in \{M, \Sigma^{(\prime\prime)}, \Phi^{(\prime\prime)}, \Omega^{(\prime\prime)}, \Gamma^{(\prime\prime)}, \Pi^{(\prime\prime)}, \Theta^{(\prime\prime)}\} \\ \circ \quad \text{bound state physics (numerical):} \end{array}$
 - $\langle \tilde{e} | L^{\Gamma} | \mu(1s) \rangle \rightarrow \sim \overline{\Psi_e} \mathcal{O}_{\Gamma} \Psi_{\mu} \text{ with } \Psi_e, \Psi_{\mu} \xleftarrow{\text{Dirac-eq.}} V(r) \leftarrow \rho_{ch}(r)$

6/13

 $\mathcal{M} \sim$

 $\circ\,$ effective Lagrangian with all possible quark and gluon operators:

 $\Gamma \in S, P, V, A, T, D, GG, G\tilde{G}$

• effective Lagrangian with all possible quark and gluon operators:

$\Gamma \in S, P, V, A, T, D, GG, G\tilde{G}$

• hadronic matrix elements (including higher order terms): $F_{a,N}^{\Gamma,i}$

$$\mathcal{M} \sim \sum_{\Gamma, q, i, N,} C_q^{\Gamma} \cdot \mathcal{F}_{q, N}^{\Gamma, i}(\vec{q})$$
F. Noël (Uni Bern, ITP) LEV in *y* decays 15.06.23 6/13

 $\circ~$ effective Lagrangian with all possible quark and gluon operators:

 $\Gamma \in S, P, V, A, T, D, GG, G\tilde{G}$

hadronic matrix elements (including higher order terms): F^{Γ,i}_{q,N}
 nuclear multipoles (beyond SD and SI):

 $S \in M, \Sigma^{(\prime\prime)}, \Phi^{(\prime\prime)}, \Delta^{(\prime\prime)}, \Omega^{(\prime\prime)}, \Gamma^{(\prime\prime)}, \Pi^{(\prime\prime)}, \Theta^{(\prime\prime)}, \dots$ (?)

 $\circ~$ effective Lagrangian with all possible quark and gluon operators:

 $\Gamma \in S, P, V, A, T, D, GG, G\tilde{G}$

hadronic matrix elements (including higher order terms): F^{Γ,i}_{q,N}
 nuclear multipoles (beyond SD and SI):

 $S \in M, \Sigma^{(\prime\prime)}, \Phi^{(\prime\prime)}, \Delta^{(\prime\prime)}, \Omega^{(\prime\prime)}, \Gamma^{(\prime\prime)}, \Pi^{(\prime\prime)}, \Theta^{(\prime\prime)}, \dots$ (?)

 $\circ\,$ full numerical solution of muon and electron wave functions

$$\mathcal{M} \sim \int \frac{\mathrm{d}^{3} q}{(2\pi)^{3}} \sum_{\Gamma, q, i, N, S} \qquad \qquad \mathcal{C}_{q}^{\Gamma} \cdot \mathcal{F}_{q, N}^{\Gamma, i}(\vec{q}) \cdot \mathcal{F}^{\mathcal{S}_{N}}(\vec{q}) \cdot \underbrace{\widetilde{\Psi_{e}}\mathcal{O}_{\Gamma}\Psi_{\mu}}(\vec{q})$$

 $\circ~$ effective Lagrangian with all possible quark and gluon operators:

 $\Gamma \in S, P, V, A, T, D, GG, G\tilde{G}$

hadronic matrix elements (including higher order terms): F^{Γ,i}_{q,N}
 nuclear multipoles (beyond SD and SI):

 $S \in M, \Sigma^{(\prime\prime)}, \Phi^{(\prime\prime)}, \Delta^{(\prime\prime)}, \Omega^{(\prime\prime)}, \Gamma^{(\prime\prime)}, \Pi^{(\prime\prime)}, \Theta^{(\prime\prime)}, \dots$ (?)

 $\circ\,$ full numerical solution of muon and electron wave functions

$$\mathcal{M} \sim \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \sum_{\Gamma,q,i,N,\mathcal{S}} \mathcal{K}_{q,N}^{\Gamma,i,\mathcal{S}_{N}}(\vec{q}) \cdot \mathcal{C}_{q}^{\Gamma} \cdot \mathcal{F}_{q,N}^{\Gamma,i}(\vec{q}) \cdot \mathcal{F}^{\mathcal{S}_{N}}(\vec{q}) \cdot \underbrace{\widetilde{\Psi_{e}}\mathcal{O}_{\Gamma}\Psi_{\mu}}(\vec{q})$$

Formfactors and nuclear response

• Need to incorporate quark-level description of interactions into hadron- and nucleus-level processes

Formfactors and nuclear response

- Need to incorporate quark-level description of interactions into hadron- and nucleus-level processes
- Requires hadronic matrix-elements ...

 \circ ... for each operator *P*, *A*, $G\tilde{G}$ (gluons not shown) ...

&

Formfactors and nuclear response

- Need to incorporate quark-level description of interactions into hadron- and nucleus-level processes
- Requires hadronic matrix-elements ...

- \circ ... for each operator *P*, *A*, $G\tilde{G}$ (gluons not shown) ...
- ... and nuclear responses ...

• ... in terms of multipoles, calculated in the shell-model
Formulas

Formulas I

$$\langle 0|\bar{q}\gamma^{\mu}\gamma_{5}q|P(k)\rangle = ib_{q}f_{P}^{q}k^{\mu},$$

$$\langle 0|m_{q}\bar{q}i\gamma_{5}q|P(k)\rangle = \frac{b_{q}h_{P}^{q}}{2},$$

$$\langle 0|\frac{\alpha_{s}}{4}G_{\mu\nu}^{a}\tilde{G}_{a}^{\mu\nu}|P(k)\rangle = a_{P},$$

$$(1)$$

$$0|\frac{ds}{4\pi}G^{a}_{\mu\nu}G^{\mu\nu}_{a}|P(k)\rangle = a_{P}, \qquad (3)$$

$$\langle N|\bar{q}\gamma^{\mu}\gamma_{5}q|N\rangle = g_{A}^{q,N}\langle N|\bar{N}\gamma^{\mu}\gamma_{5}N|N\rangle, \qquad (4)$$

$$m_q \langle N | \bar{q} i \gamma_5 q | N \rangle = m_N g_5^{q,N} \langle N | \bar{N} i \gamma_5 N | N \rangle, \qquad (5)$$

$$\langle N|\bar{q}\sigma^{\mu\nu}q|N\rangle = f_{1,T}^{q,N} \langle N|\bar{N}\sigma^{\mu\nu}N|N\rangle, \qquad (6)$$

$$\langle N|\frac{\alpha_s}{4\pi}G^a_{\mu\nu}\tilde{G}^{\mu\nu}_a|N\rangle = \tilde{a}_N\langle N|\bar{N}i\gamma_5N|N\rangle, \qquad (7)$$

(

Formulas II

$$\operatorname{Br}_{\mathsf{SI}}[\mu \to e] = \frac{4m_{\mu}^{5}}{\Gamma_{\mathsf{cap}}} \sum_{Y=L,R} \left| \sum_{\substack{N=p,n\\\mathcal{O}=S,V}} \bar{\mathcal{C}}_{Y}^{\mathcal{O},N} \mathcal{O}^{(N)} \right|^{2}, \tag{8}$$

$$\bar{C}_{Y}^{S,N} = \frac{1}{\Lambda^{2}} \sum_{q} C_{Y}^{S,q} \frac{m_{N}}{m_{q}} f_{q}^{N} + \frac{4\pi}{\Lambda^{3}} C_{Y}^{GG} a_{N}, \qquad (9)$$

$$\bar{C}_{Y}^{V,N} = \frac{1}{\Lambda^{2}} \sum_{q} C_{Y}^{V,q} f_{V_{q}}^{N}, \qquad (10)$$

$$S^{(N)} = V^{(N)} = \frac{(\alpha Z)^{3/2}}{4\pi} \left(\frac{Z_{\text{eff}}}{Z}\right)^2 \mathcal{F}_N^M(m_\mu^2),$$
(11)

Formulas III

$$\bar{C}^{0} = \frac{\bar{C}^{p} + \bar{C}^{n}}{2}, \qquad \bar{C}^{1} = \frac{\bar{C}^{p} - \bar{C}^{n}}{2}, \qquad (12)$$
$$g_{A}^{q,N} = g_{5}^{q,N} - \frac{\tilde{a}_{N}}{2m_{N}}, \qquad (13)$$

20

こっ

$$\tilde{a}_N = -2m_N g_A^{u,0} = -0.39(12) \text{ GeV},$$
 (14)

Formulas

Formulas IV

$$C_{Y}^{A,u} = C_{Y}^{A,d}, \qquad C_{Y}^{A,s} = -\frac{2C_{Y}^{A,u}g_{A}^{u,0}}{g_{A}^{s,N}}, \qquad (15)$$
$$\frac{C_{Y}^{P,u}}{m_{u}} = \frac{C_{Y}^{P,d}}{m_{d}}, \qquad \frac{C_{Y}^{P,s}}{m_{s}} = \frac{4\pi}{\Lambda}C_{Y}^{G\tilde{G}}\frac{2g_{A}^{u,0}}{g_{A}^{u,0} - g_{A}^{s,N}}. \qquad (16)$$

Formulas V

$$S_{00}^{\mathcal{T}} = \sum_{L} \left[\mathcal{F}_{+}^{\Sigma_{L}'}(q^{2}) \right]^{2}, \qquad S_{00}^{\mathcal{L}} = \sum_{L} \left[\mathcal{F}_{+}^{\Sigma_{L}''}(q^{2}) \right]^{2}, \qquad (17)$$

$$S_{11}^{\mathcal{T}} = \sum_{L} \left[\mathcal{F}_{-}^{\Sigma_{L}'}(q^{2}) \right]^{2}, \qquad S_{11}^{\mathcal{L}} = \sum_{L} \left[\mathcal{F}_{-}^{\Sigma_{L}''}(q^{2}) \right]^{2}, \qquad (18)$$

$$S_{01}^{\mathcal{T}} = \sum_{L} 2\mathcal{F}_{+}^{\Sigma_{L}'}(q^{2}) \mathcal{F}_{-}^{\Sigma_{L}'}(q^{2}), \qquad (19)$$

$$S_{01}^{\mathcal{L}} = \sum_{L} 2\mathcal{F}_{+}^{\Sigma_{L}''}(q^{2}) \mathcal{F}_{-}^{\Sigma_{L}''}(q^{2}), \qquad (20)$$

Formulas

Table

	π^0	η	η'
$C_Y^{A,3}$	$1.3 imes10^{-17}$	_	_
$C_Y^{A,8}$	—	$1.5 imes10^{-17}$	$4.0 imes10^{-20}$
$C_{Y}^{A,0}$	_	$2.9 imes10^{-19}$	$2.1 imes10^{-19}$
$C_Y^{P,3}$	$4.1 imes10^{-17}$	_	_
$C_{Y}^{P,8}$	_	$1.6 imes10^{-12}$	$2.1 imes10^{-14}$
$C_{Y}^{P,0}$	_	$4.1 imes10^{-12}$	$5.4 imes10^{-13}$
$C_Y^{G\tilde{G}}$	—	5.8×10^{-15}	$4.7 imes10^{-16}$