Dispersive Determination of $\eta^{(\prime)}$ Transition Form Factors

Simon Holz

AEC, Institute for Theoretical Physics Universität Bern, Switzerland

Precision tests of fundamental physics with light mesons June 14, 2023

u^{b}

ALC ALBERN Swiss National Science Foundation

Hadronic light-by-light scattering

- Pre-2014 HLbL estimate based on hadronic models
- Model-independent dispersive approach: relate contributions to observables like form factors Colangelo et al. 2014
- Pseudoscalar pole contribution $(\pi^0 \text{ dominant Hoferichter et al. 2018}):$
 - : Singly-virtual transition form factor (TFF)
 - : Doubly-virtual TFF

η and η' transition form factors

• Pseudoscalar ($P=\pi^0,\,\eta,\,\eta'$) transition form factors defined by

Normalization related to di-photon decays governed by chiral anomaly:

$$\Gamma(P \to \gamma \gamma) = \frac{\pi \alpha_{\rm em}^2 M_P^3}{4} \left| F_{P\gamma^*\gamma^*}(0,0) \right|^2$$

• For pion: low-energy theorem predicts its value

Bell, Jackiw 1969; Adler 1969; Bardeen 1969

 For η and η': complicated by η-η' mixing Feldmann, Kroll, Stech 1998–2000; Escribano, Gonzàlez-Solís, Masjuan, Sánchez-Puertas 2016 on lattice: cf. Konstantin's talk on Monday

S. Holz (ITP): $\eta^{(\prime)}$ TFFs Trento, June 14, 2023

11-

 $\begin{array}{l} \mbox{Transition form factor } \eta^{(\prime)} \rightarrow \gamma \gamma^* \\ \mbox{Isospin decomposition: } F^{\rm disp}_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2,q_2^2) = F^{\eta^{(\prime)}}_{vv}(q_1^2,q_2^2) + F^{\eta^{(\prime)}}_{ss}(q_1^2,q_2^2) \\ \mbox{Reconstruction from the lowest-lying hadronic states:} \end{array}$

Isovector part:

- largest contribution: $\pi^+\pi^$ intermediate state
- Dispersively combine data on $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma$ and $e^+ e^- \rightarrow \pi^+ \pi^-$

 $\begin{array}{l} \mbox{Transition form factor } \eta^{(\prime)} \rightarrow \gamma \gamma^* \\ \mbox{Isospin decomposition: } F^{\rm disp}_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2,q_2^2) = F^{\eta^{(\prime)}}_{vv}(q_1^2,q_2^2) + F^{\eta^{(\prime)}}_{ss}(q_1^2,q_2^2) \\ \mbox{Reconstruction from the lowest-lying hadronic states:} \end{array}$

Isovector part:

- largest contribution: π⁺π⁻ intermediate state
- Dispersively combine data on $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma$ and $e^+ e^- \rightarrow \pi^+ \pi^-$

• Dominated by narrow resonances:

Isoscalar part:

 $\omega~\&~\phi$ Hanhart et al. 2013

- Employ VMD and fix couplings by exp. det. decay widths for
 - $$\begin{split} & \omega \to \eta \gamma \\ & & \eta' \to \omega \gamma \\ & \phi \to \eta^{(\prime)} \gamma \\ & & \omega, \ \phi \to e^+ e^- \end{split}$$
- $\eta :$ strong cancellation between ω and ϕ
- $\eta':$ isoscalar contribution more significant than for η (e.g. in norm $\sim 20\,\%)$

Pion vector form factor

solution of discontinuity equation: Omnès 1958

$$F_{\pi}^{V}(s) = R(s)\Omega(s)$$
, $\Omega(s) = \exp\left(\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty}\frac{\delta_{1}^{1}(\omega)}{\omega(\omega-s)}\mathsf{d}\omega
ight)$

• δ_1^1 : $I = 1 \ \pi \pi \ P$ -wave phase shift, $R(s) = (1 + \alpha_\pi s)$

$$F_{\pi}^{V,e^+e^-}(s) = \left(1 + \epsilon_{\rho\omega} \frac{s}{M_{\omega}^2 - s - iM_{\omega}\Gamma_{\omega}}\right) F_{\pi}^V(s)$$

S. Holz (ITP): $\eta^{(\prime)}$ TFFs Trento, June 14, 2023

Factorization breaking in the η and η' TFFs

 Past approaches: Application of VMD form factor in the low-energy regime

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2, q_2^2) \propto \frac{1}{q_1^2 - M_V^2} \times \frac{1}{q_2^2 - M_V^2}$$

• For high energies $(|q_1^2|,|q_2^2|
ightarrow\infty)$ pQCD predicts Walsh, Zerwas 1972

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2, q_2^2) \propto \frac{1}{q_1^2 + q_2^2}$$

- No factorization in the singly-virtual TFFs present
- Model-independent description of intermediate energy regime with factorization breaking of paramount importance for control over uncertainties
- Recent exp. study (BaBar 2018) showed for $|q_1^2| = |q_2^2| \in [6.5, \, 45] {\rm GeV}^2$ VMD factorization is breaking down

Formalism for doubly-virtual representations

- Start from $\eta'
 ightarrow 2(\pi^+\pi^-)$ amplitude
 - describe decay via two rho resonances by hidden local symmetry (HLS) model Guo, Kubis, Wirzba 2012
 - left-hand-cut contribution due to a₂ exchange by phenomenological Lagrangian models

Final-state interaction

- in HLS amplitude: introduce pair-wise pion rescattering by replacing ρ propagators by Omnès functions
- in a_2 exchange amplitude \Rightarrow inhomogenous Omnès problem

Solution strategies for inhom. Omnès problem

Coupled integral equation(s):

• $1 \rightarrow 3$ decay amplitude:

$$A(s) = \Omega(s) \left[P_n(s) + \frac{s^n}{\pi} \int d\mu(x) \frac{\hat{A}(x)}{x - s - i\epsilon} \right]$$

• with 'hat'-function given by angular averages:

$$\hat{A}(x) = \frac{1}{2\kappa} \sum_{\ell} C_{\ell}(x,\kappa) \int_{-1}^{1} \mathrm{d}z \, z^{\ell} A(h(x,z))$$

with Kacser function

$$\kappa(x, M_1^2, M_2^2) = \sqrt{1 - 4M_3^2/x}\sqrt{x - (M_1 - M_3)^2}\sqrt{x - (M_1 + M_3)^2}$$

- and path $h(x,z) = \left[M_1^2 + 3M_3^2 x + z\kappa(x,M_1^2,M_3^2)\right]/2$
- κ adds complex analytic structure with branch points and cuts

Solution strategies for inhom. Omnès problem Coupled integral equation(s):

• $1 \rightarrow 3$ decay amplitude:

$$A(s) = \Omega(s) \left[P_n(s) + \frac{s^n}{\pi} \int d\mu(x) \frac{\hat{A}(x)}{x - s - i\epsilon} \right]$$

• with 'hat'-function given by angular averages:

$$\hat{A}(x) = \frac{1}{2\kappa} \sum_{\ell} C_{\ell}(x,\kappa) \int_{-1}^{1} \mathrm{d}z \, z^{\ell} A(h(x,z))$$

Solution strategies for inhom. Omnès problem Coupled integral equation(s):

• $1 \rightarrow 3$ decay amplitude:

$$A(s) = \Omega(s) \left[P_n(s) + \frac{s^n}{\pi} \int d\mu(x) \frac{\hat{A}(x)}{x - s - i\epsilon} \right]$$

• with 'hat'-function given by angular averages:

$$\hat{A}(x) = \frac{1}{2\kappa} \sum_{\ell} C_{\ell}(x,\kappa) \int_{-1}^{1} \mathrm{d}z \, z^{\ell} A(h(x,z))$$

- Alternative approach by Gasser and Rusetsky, 2018
 - deform path of dispersion integral
 - applied by them to $\eta
 ightarrow 3\pi \Rightarrow$

Inhomogeneous Omnès problem in $\eta'
ightarrow 2(\pi^+\pi^-)$

Solution (P-wave) expressed in twice subtracted dispersion integral

$$\tilde{\mathcal{F}}(t,k^2) = \left[P(t) + \frac{t^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\mathrm{d}\tau}{\tau^2} \frac{\hat{G}(\tau,k^2)\sin\delta_1^1(\tau)}{(\tau-t-i\epsilon)|\Omega(\tau)|}\right] \Omega(t)$$

• Inhomogeneity \hat{G} known for phenomenological model, but challenges direct evaluation due to singularity structure

 deform path of integration into complex plane (inspired by ideas of Gasser, Rusetsky 2018)

Strategy for going into the complex plane

Dispersion integral:

$$\int_{\Gamma} \frac{\mathrm{d}\tau}{\tau^2} \frac{\hat{G}(\tau, k^2) \sin \delta_1^1(\tau)}{(\tau - t - i\epsilon) |\Omega(\tau)|}$$

1 deal with phase shift for complex arguments

Strategy for going into the complex plane

Dispersion integral:

$$\int_{\Gamma} \frac{\mathrm{d}\tau}{\tau^2} \frac{\hat{G}(\tau, k^2) \sin \delta_1^1(\tau)}{(\tau - t - i\epsilon) |\Omega(\tau)|}$$

1 deal with phase shift for complex arguments

2 analytically continue inhomogeneity function

Strategy for going into the complex plane

Dispersion integral:

$$\int_{\Gamma} \frac{\mathrm{d}\tau}{\tau^2} \frac{\hat{G}(\tau, k^2) \sin \delta_1^1(\tau)}{(\tau - t - i\epsilon) |\Omega(\tau)|}$$

- 1 deal with phase shift for complex arguments
- 2 analytically continue inhomogeneity function
- (3) identify appropriate integration paths, *i.e.* avoid critical regions

Treatment of scattering phase in complex plane

• express $\pi\pi$ *P*-wave phase shift δ_1^1 in terms of scattering amplitude Niehus, Hoferichter, Kubis 2019

$$\frac{\hat{G}(\tau,k^2)\!\sin\delta_1^1(\tau)}{\tau^2(\tau-t-i\epsilon)|\Omega(\tau)|} = \frac{\hat{G}(\tau,k^2)}{\tau^2(\tau-t-i\epsilon)}\Omega^{-1}(\tau)\sigma_{\pi}(\tau)t_1^1(\tau)$$

• utilize inverse amplitude method (unitarized ChPT to $\mathcal{O}(p^4)$) Dobado, Herrero, Peláez, Truong 1990–96

$$t_1^1(s) = \frac{(t_2(s))^2}{t_2(s) - t_4(s)}$$

supplement by hand by N²LO inspired terms to fix asymptotic behavior

$$t_4(s) \mapsto t_4(s) + \frac{t_2(s)}{48\pi^2 F_0^2} (\hat{l}_s s^2 + \hat{l}_\pi M_\pi^4)$$

Fixing the IAM representation

• fix LEC $\overline{l}_2 - \overline{l}_1$ and parameters \hat{l}_s , \hat{l}_{π} by fitting phase of amplitude to Roy-equation analysis Caprini, Colangelo, Leutwyler 2011

Fixing the IAM representation

- fix LEC $\overline{l}_2 \overline{l}_1$ and parameters \hat{l}_s , \hat{l}_{π} by fitting phase of amplitude to Roy-equation analysis Caprini, Colangelo, Leutwyler 2011
- extract ρ -pole position on second Riemann sheet of amplitude

$$0 \stackrel{!}{=} 1 - t_1^1(s_{\text{pole}}) \sqrt{rac{16M_\pi^2}{s_{ ext{pole}}} - 4}$$

	$M_{ ho} \ / \ {\rm MeV}$	$\Gamma_{ ho} \ / \ {\sf MeV}$
$\begin{split} s_{cut} &= 1 GeV^2 \\ s_{cut} &= 1.69 GeV^2 \end{split}$	759 759	140 139
Madrid (GKPY) Bern (Roy)	$763.7(16) \\762.4(18)$	$146.4(22) \\ 145.2(28)$

Analytic continuation of inhomogeneity

Dispersion integral over inhomogenity function $\hat{G}(t, k^2)$:

$$\int \mathrm{d}t \, \frac{\hat{G}(t,k^2)}{t^2(t-x-i\epsilon)} \Omega^{-1}(t) \sigma_{\pi}(t) t_1^1(t)$$

• κ : branch cuts $t \in [0, 4M_{\pi}^2]$ and $t \in [(M_{\eta^{(\prime)}} - \sqrt{k^2})^2, (M_{\eta^{(\prime)}} + \sqrt{k^2})^2]$

• simultaneous continuation in both t and k^2 challenging

• analytically continue one variable at a time into the complex plane • $\hat{G}(t,k^2) \supset \log \frac{y+1}{y-1}$, with $y(t,k^2) \propto 1/\kappa(t,k^2)$

• crucial to take $\log z(t, k^2) = \log |z| + i \arg z + 2\pi i \theta(t, k^2)$

Identification of critical regions

- need to identify regions that integration path should avoid Gasser, Rusetsky 2018
- integration over Mandelstam $t\to$ avoid cut in s-channel $s_c\in [(M_{\eta^{(\prime)}}+M_\pi)^2,\infty)$
 - solving $s(t,z) = s_c$ for t yields three indep. solutions
 - 1 solution real; remaining two: complex conjugates of each other

Intermediate step $\eta^{(\prime)}(q) o \pi^+(p_1)\pi^-(p_2)\gamma^*(k)$

- amplitude in terms of scalar fn.: $\mathcal{M} = e\epsilon_{\mu\nu\alpha\beta}\epsilon^{\mu*}(k)p_1^{\nu}p_2^{\alpha}q^{\beta}\mathcal{F}^{\eta^{(\prime)} \to \pi\pi\gamma}$
- (dominant) P-wave contribution from unitarity condition:

$$\mathcal{F}^{\eta^{(\prime)} \to \pi \pi \gamma}(t,k^2) = \frac{-1}{48\pi^2} \int_{4M_{\pi}^2}^{\infty} \mathrm{d}x \, \frac{x \sigma_{\pi}^3(x) (F_{\pi}^V(x))^* \left[f_1(t,x)\Omega(x) + f_1(x,t)\Omega(t)\right]}{x - k^2 - i\epsilon}$$

$$\begin{aligned} f_1(t,k^2) &= \\ \left[P(t) + \frac{t^2}{\pi} \int \mathrm{d}\tau \; \frac{\hat{G}(\tau,k^2)\sigma_{\pi}(\tau)t_1^1(\tau)}{\tau^2(\tau-x-i\epsilon)\Omega(\tau)} \right] \Omega(t) \; + \\ \hat{G}(t,k^2) \end{aligned}$$

• fix subtraction constants by fitting to data for real photon case $(k^2 = 0)$ η : KLOE 2013; η' : BESIII 2018

for η decay

$$\bar{P}(t) = \left[\frac{1}{\Gamma_0 |\Omega(t)|^2} \frac{\mathrm{d}\Gamma(\eta^{(\prime)} \to \pi^+ \pi^- \gamma)}{\mathrm{d}t}\right]^{1/2}$$

• divide by phase space and Omnès function

for η decay

for η decay

for η' decay

Doubly-virtual representations

• application of yet another dispersion relation:

doubly-virtual representation of isovector part of TFF:

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=1)}(q_1^2, q_2^2) = \frac{1}{96\pi^2} \int_{4M_{\pi}^2}^{\infty} \mathrm{d}y \, \frac{y\sigma_{\pi}^3(y)(F_{\pi}^V(y))^* \mathcal{F}^{\eta^{(\prime)} \to \pi\pi\gamma}(x, q_2^2)}{y - q_1^2 - i\epsilon}$$

- f_1 from solution of inhomogeneous Omnès problem
 - encodes non-factorization in TFF
 - \blacktriangleright subtraction constants fixed by fit to $\eta^{(\prime)} \rightarrow \pi^+\pi^-\gamma$ data

KLOE 2013, BESIII 2018

 $n^{(\prime)} - - - 4$

• unsubtracted dispersion relation (in q_i^2) necessary for desired (singly-virtual) space-like asymptotics

$$\lim_{Q^2 \to \infty} Q^2 F_{\eta^{(\prime)} \gamma^* \gamma}(-Q^2, 0) = \text{const.}$$

• Bose symmetry respected $F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=1)}(q_1^2,q_2^2) = F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=1)}(q_2^2,q_1^2)$

Putting the pieces together

Construct TFF from four ingredients:

$$F_{\eta^{(\prime)}\gamma^*\gamma^*} = F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=1)} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=0)} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{eff}} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{asym}}$$

Isospin 1

- Dispersive piece: offers low-energy description
- reproduces low-energy cuts and singularities
 - additionally, left-hand cut contribution

Isospin 0

Description of narrow low-energy resonances

Effective Pole Term

- Parameterize higher intermediate states
- Full saturation of normalization sum rule
- Describe high-energy singly-virtual data

pQCD piece

• Induces leading-twist behavior of TFF ($\mathcal{O}(1/Q^2)$ asymptotics)

Effective Pole Term

Isoscalar piece

• channel dominated by narrow resonances $V \in \{\omega, \, \phi\}$

$$F_{\eta^{(\prime)}}^{(I=0)}(q_1^2, q_2^2) = F_{\eta^{(\prime)}}^{\exp}(0, 0) \sum_V \frac{w_{\eta^{(\prime)}V\gamma} M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

Effective Pole Term

- Normalization of isovector + isoscalar part should be compared to exp. det. decay width $\Gamma(\eta^{(\prime)} \to \gamma \gamma) \iff F_{\eta^{(\prime)}}^{\exp}(0,0)$
- \Rightarrow Introduce an effective pole term

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{eff}}(q_1^2, q_2^2) = g_{\text{eff}} F_{\eta^{(\prime)}}^{\text{exp}}(0, 0) \frac{M_{\text{eff}}^4}{(M_{\text{eff}}^2 - q_1^2)(M_{\text{eff}}^2 - q_2^2)}$$

- $g_{\rm eff}$ fixed by fulfilling norm
- $M_{
 m eff}$ fixed by fit to singly-virtual space-like data above $5\,{
 m GeV}^2$

BaBar; CELLO; CLEO; L3

Doubly-virtual asymptotics

Make use of analogy to pion transition form factor

Hoferichter, Hoid, Kubis, Leupold, Schneider 2018

From pQCD considerations:

$$F_{\eta^{(\prime)}\gamma^{\star}\gamma^{\star}}^{\text{asym}}(q_1^2, q_2^2) = F_{\text{asym}}^{(\prime)} \int_{s_m}^{\infty} \mathrm{d}x \, \frac{q_1^2 q_2^2}{(x - q_1^2)^2 (x - q_2^2)^2}$$

- Does not contribute to singly-virtual kinematics
- Complications due to η/η' -mixing Escribano et al. 2014-2016
- However $F_{asym}^{(\prime)}$ fixed by Brodsky-Lepage-like limit:

Brodsky, Lepage 1979-1981

$$\lim_{Q^2 \to \infty} Q^2 F_{\eta^{(\prime)}\gamma^*\gamma^*}(-Q^2,0) = F_{asym}^{(\prime)} \qquad (= 2F_{\pi} \text{ for } \pi^0)$$

By adding pQCD piece TFF fulfills operator product expansion constraint: Nesterenko, Radyushkin 1983; Novikov et al. 1984; Manohar 1990

$$\lim_{Q^2 \to \infty} Q^2 F_{\eta^{(\prime)} \gamma^* \gamma^*} (-Q^2, -Q^2) = \frac{1}{3} F_{\text{asym}}^{(\prime)} \qquad (= \frac{2F_{\pi}}{3} \text{ for } \pi^0)$$

Trento, June 14.

Summary and outlook

- Construction of doubly-virtual representation of η and η' TFFs with dispersive methods
- starting point: decay into $2(\pi^+\pi^-)$
 - successive application of dispersion-relations
 - non-factorizing effects included via a₂-exchange model
- solved the inhomogeneous Omnès problem at hand
 - several hurdles to overcome: deformation of integration path into complex plane
- fixed subtraction constants via fits to $\eta^{(\prime)}
 ightarrow \pi^+\pi^-\gamma$ data
- construction of final representation analogous with additional components to dispersive π^0 TFF construction
- aim: extraction of $\eta^{(\prime)}$ pole contribution to HLbL in $(g-2)_{\mu}$ with fully controlled uncertainties
 - ▶ possible application to determination of rare decay rates $\eta^{(\prime)} \rightarrow \ell^+ \ell^-$ within SM