ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS Prospects for studies of production, decays and structure of light mesons with HADES

Outline:

- Main motivations of the HADES experiment,
 HADES spectrometer,
- 3) Test of VMD for barions in the timelike region,
- 4) Neutral mesons production in pp@ 4.5 GeV,
- 5) Hadronic decays of $\eta/\omega/f_1(1285)$ mesons,
- 6) Di-leptonic Dalitz decays of η/ω mesons (eTFF), 7) Rare decays and CP-violation.

Izabela Ciepał

HADES - first detector of FAIR Phase0 (2018-2022)

SIS 18 18Tm (1.8 T magnets) U⁷³⁺: 1.0 GeV/u, 10⁹ ions/s **Ni**²⁶⁺: 2.0 GeV/u, 10¹⁰ **Protons**: 4.5 GeV, 2.8x10¹³/s **Secondary beams Pions**: 0.5-2 GeV/c

SIS 100 2T (4T/s) magnets Au: up to 8-10 GeV/u 10¹² ions/s Protons: up to 30 GeV 2.8x10¹³ ions/s Secondary beams Radioctive beams 1.5 GeV/u Anty-protons 30 GeV

HADES Spectrometer

- ✓ SIS18 beams: protons (1-4.5GeV), nuclei (1-2AGeV), pions (0.4-2 GeV) secondary beam
- $\checkmark~$ Spectrometer with $\Delta M/M \sim 2\%$ at ρ/ω
- ✓ PID (π /p/K): ToF (TOF/RPC, T0 detector), tracking (dE/dx)
- ✓ momenta, angles: MDC+ magnetic field
- electrons: RICH
- ✓ neutral particles: ECAL
- ✓ full azimuthal, polar angles $18^{\circ} 85^{\circ}$
- ✓ e+e- pair acceptance ~0.35

Baryon eTFF in π p @ 0.7 GeV/c – VMD test

Vector Meson Dominance Models (VMD)

 $\Gamma_{\rho}^{VDM1} = \left(\frac{M}{M_{e}}\right) \Gamma_{\rho}^{0}$

→ strict VDM

 $\gamma \rho$

Sakurai, Phys. Rev 22 (1969) 981 M. I. Krivoruchenko et al., Ann. Phys. 296, 299 (2002)

- No coupling
- used in HI transport models

→ 2-component VDM $\gamma = \gamma + \gamma + \gamma \gamma$

Kroll. Lee & Zuminio Phys. Rev. 157, 1376 (1967)

- Np and Ny couplings
- used in calculations of in-medium $\Gamma_{\rho}^{VDM2} = \left(\frac{M_0}{M}\right)^3 \Gamma_{\rho}^0$ ρ spectral functions

→ QED "point-like" R- γ^* vertex M. Zetenyi et al., PRC 67, 044002 (2003)

Baryon eTFF in π p @ 0.7 GeV/c – VMD test

- studies hadronic hyperon decays (Λ , Σ),
- Dalitz decays of $\Lambda(1520) \rightarrow L(1116)$ e+e- (study of **eTFF**),
- production of double strangeness ($\Xi(1321), \Lambda\Lambda$),
- hidden strangeness (ϕ),
- inclusive di-electron production as reference for p+A and HI data,
- studies of light mesons production, decays and structure,
- important for dileptons,

Motivations - mesons

- inclusive and exclusive cross sections for $\pi^0/\eta/\omega/f_1(1285)$ at 4.5 GeV,
- production mechanism of $\eta/\omega/f_1(1285)$ at low energies:
 - → test of effective Lagrangian approach (A. Szczurek, P.Lebiedowicz IFJ PAN),
 - \rightarrow f₁(1285) "exotic state", can be produced in vector-vector fusion,
- η important decay channel of N* e.g. S₁₁(1535) have large η N BR,
- study of the Dalitz plot parameters in $\eta/\omega \rightarrow \pi^+\pi^-\pi^0$ dacays,
- studies of η/ω form factors in $\eta \rightarrow \gamma e^+e^- / \omega \rightarrow \pi^0 e^+e^-$,
- studies of CP violation in $\eta \rightarrow e^+e^-\pi^+\pi^-$ decay,
- neutral decay modes:

$$\rightarrow \pi^{0} \rightarrow 2\gamma, \ \eta \rightarrow 2\gamma, \ \omega \rightarrow \pi^{0}\gamma$$
$$\rightarrow \eta/\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}(\gamma\gamma)$$

 $pp \rightarrow \eta + X (\eta \rightarrow \gamma e+e-) BR=6.9*10^{-3}$

- → Expected statistics: ~2.2*10⁴ of $\eta \rightarrow \gamma$ e+e- decays.
- → Previous measurements:
- Crystal Ball, Taps: 1350,
- WASA: 1.4*10⁴,

 $\eta \rightarrow \gamma e + e -$

• A2@ MAMI: 5.4*10⁴.

 \succ extraction of η form factor

• expected statistics: $\sim 3.5*10^6$ of pp $\omega(\rightarrow \pi^0\pi^+\pi^-)$ and $\sim 9.2*10^5$ of pp $\eta(\rightarrow \pi^0\pi^+\pi^-)$,

previous measurements:

- \succ production mechanism and cross sections,
- > Dalitz plot parameters (X,Y), (Z, Φ)

η production in pp@ 4.5 GeV

effective Lagrangian approach (A. Szczurek, P. Lebiedowicz IFJ PAN)

- intermediate nucleon and nucleon resonances
- M=π⁰, σ, a₀, η, η', ρ⁰, ω

$$F_{MNN}(q^2) = \frac{\Lambda_{MNN}^2 - m_M^2}{\Lambda_{MNN}^2 - q^2} \qquad F_M(q^2) = \frac{\Lambda_{MNN^*}^2 - m_M^2}{\Lambda_{MNN^*}^2 - q^2}$$

- bremsstrachlung (η emission from N, N*)
- VV($\rho\rho$, $\omega\omega$) fusion

reggeization

 (reggeon – coherent sum of mesons 1⁻⁺ 3⁻ + 5⁻ ...
 in Regge trajectory)

HADES/PANDA small s – standard meson propagator larger s – reggeon exchange

η production in pp @4.5 GeV

Preliminary calculations (P. Lebiedowicz)

- very large contributions from nucleon resonances
- reggeization is important far from the threshold
- pp data at 4.5 GeV important for the model tunning
 - \rightarrow VV fusion
 - → role of reggeization (Regge theory, large s, small |t|, s>> |t|)

f₁(1285) production in pp@ 4.5 GeV

A. Szczurek, PRD 102, 113015 (2020) P. Lebiedowicz et al., PRD 104, 034031 (2021)

- production mechanism of $f_1(1285)$ axial-vector meson ($J^{PC}=1^{++}$), $q\overline{q}$ or $\overline{K}K^*$?
- coupling to photons important for calculations of magnetic moment of muon
- uncertain LbL contribution: $\gamma^* \gamma^* \rightarrow f_1(1285)$

$$\Gamma^{\gamma^*\gamma^* \to f_1}_{\mu\nu\alpha} = \left(\frac{e}{\gamma_{\rho}}\right)^2 F_{\rho\rho \to f_1}(t_1, t_2) i \Gamma^{\rho^0\rho^0 \to f_1}_{\mu\nu\alpha} \frac{m_{\rho}^2}{m_{\rho}^2 + Q_1^2} \frac{m_{\rho}^2}{m_{\rho}^2 + Q_2^2} + \left(\frac{e}{\gamma_{\omega}}\right)^2 F_{\omega\omega \to f_1}(t_1, t_2) i \Gamma^{\omega\omega \to f_1}_{\mu\nu\alpha} \frac{m_{\omega}^2}{m_{\omega}^2 + Q_1^2} \frac{m_{\omega}^2}{m_{\omega}^2 + Q_2^2}$$

- production only via VV fusion (close to the threshold)
- constraint on $VV \rightarrow f_1$ vertex based on the HADES pp data
- $g_{\rho\rho f1} = g_{\omega\omega f1}$ constraint from $f_1 \rightarrow \gamma \rho^0 \rightarrow \gamma \pi^+ \pi^-$ (VMD)
- $f_1 \text{ cross sec. 150 nb (theory)}$ in exclusive channel: $pp \rightarrow ppf_1 (\rightarrow \pi^+ \pi^- \eta (\rightarrow \pi^+ \pi^- \pi^0))$

f₁(1285) production in pp@ 4.5 GeV pp \rightarrow ppf₁ ($\rightarrow \pi^+ \pi^- \eta$ ($\rightarrow \pi^+ \pi^- \pi^0$))

Contribution	Cross section (μb)
(1) $pp \rightarrow pp\pi^+\pi^-\pi^+\pi^-\pi^0$	88
(2) $pp \rightarrow pp\pi^+\pi^-\eta(\rightarrow\pi^+\pi^-\pi^0)$	0.18
(3) $pp \rightarrow pp\pi^+\pi^-\omega(\rightarrow\pi^+\pi^-\pi^0)$	0.07
$(4) pp \rightarrow ppf_1[\rightarrow \pi^+\pi^-\eta(\rightarrow \pi^+\pi^-\pi^0)]$	0.012

(2), (4) – contribute to the η peak
 expected statistics: ~4*10³

f₁(1285) production in pp@ 4.5 GeV pp \rightarrow ppf₁ ($\rightarrow \pi^+ \pi^- \eta (\rightarrow \pi^+ \pi^- \pi^0)$)

so far f_1 signal not visible expected stat. ~500 f_1

 extraction of η' production cross section also possible
 16

$\eta \rightarrow \pi^+\pi^- e^+ e^-$

• rates estimations and bkg simulations,

N ($\eta \rightarrow \pi^+ \pi^- e^+ e^-$) = $\sigma \times BR \times E \times L$ = 1600 events

 $\sigma = 1.5 \text{ [mb]}$ - inclusive (DISTO) BR = 2.7 × 10⁻⁴ - WASA-at-COSY 2016 E = 0.08 % - based on the simulation L = 5 [1/pb] - beam time estimation

→ acceptance is quite large

$\eta \rightarrow \pi^+\pi^- X 17 (\rightarrow e^+e^-)$

A. J. Krasznahorkay *et al.* **PRL 116, 042501 (2016)** anomalies in the internal pair creation of isovector (17.6 MeV) and isoscalar (18.15 MeV) M1 transitions in ⁸Be (⁴He, ¹²C).

D. S. M. Alves, Signals of the QCD axion with mass of 17 MeV/c^2 : Nuclear transitions and light meson decays, **Phys. Rev. D 103, 055018 (2021).** BR($\eta \rightarrow \pi\pi a$)~ 10^{-4} - 10^{-2}

Pluto and full reconstruction chain, reconstruction efficiency:

0.5% => 202 events

SUMMARY

- Very interesting physics program with mesons:
 - studies of production mechanisms of $f_1(1285)$, η , ω and the role of VV fusion,
 - inclusive and exclusive cross sections for π^0 , η and ω ,
 - η/ω form factors,
 - CP violation with $\eta \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$,
 - X17 upper limit (?),
 - study of the Dalitz plot parameters in $\eta/\omega \rightarrow \pi^+\pi^-\pi^0$ dacays.

THANK U FOR YOUR ATTENTION

HADES Physics Program with Pion Beams explore the 3rd resonance region \sqrt{s} = 1.7 GeV

2014 2025

High statistics beam energy scan: continuation and extension to

- **3**rd **resonance region**
- 1) Baryon-meson couplings:
 - $\rightarrow \pi\pi N$, wn, ηn , $K^0\Lambda$, $K^0\Sigma$, ...

including neutral mesons (ECAL), $\rightarrow \rho R$ couplings S31(1620), D33(1700), P13(1720),..

- 2) Time-like em. baryon transitions
 - $\rightarrow \pi^{-}p \rightarrow ne+e-,$
 - \rightarrow test of VMD for ρ and $\omega,$
 - \rightarrow spin-density matrix elements,
- 3) Cold nuclear matter studies:
 - $\rightarrow \omega$ absorption
 - $\rightarrow \rho$ spectral function
 - \rightarrow strangeness production

HADES Spectrometer UPGRADE HODO, fRPC, STS2, STS1

ECAL (lead glass)

STS2 STS1

new RICH

 $\mathsf{MWPC} \rightarrow \mathsf{MAPMT}$

innerTOF (fast trigger)

START T0 detector

- timing < 100 ps</p>
- PCB in the beam vacuum
- rate capability 10⁸ p/s
- 2 cm x 2 cm, 96 channels
- pitch 387 µm

$CP \ violation \ in \ \eta \ \rightarrow \ \pi^+\pi^- \ e^+e^-$

- CP violation have been observed in:
 - \rightarrow K_L leptonic decays (KTeV and NA48)
 - \rightarrow B mesons decays (Belle and BaBar)
 - → flavour-conserving reactions: KLOE (1555 events), WASA-at-COSY (251)

A

CP violation source: interference between electric and magnetic amplitudes responsible for significant linear polarization of the photon in the $\eta \rightarrow \pi^+\pi^-\gamma^*$

polarization can be studied via asymmetry:

$$h_{\phi} = \frac{N(\sin\phi\cos\phi > 0) - N(\sin\phi\cos\phi < 0)}{N(\sin\phi\cos\phi > 0) + N(\sin\phi\cos\phi < 0)}$$

HADES coll. arXiv:2205.15914 [nucl-ex]

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

cut on invMe⁺e⁻ >140 MeV (above π⁰ mass)
missing mass cut on M_{miss} (η removed)

- π⁻C simulations using Pluto (qfs participantspectator model)
- production cross sec. on C for: π^0 , η , ρ , γ deduced from the scaling: $R_{C/H} = \sigma_C / \sigma_H$

• **CH**₂ target: $\left(\frac{d\sigma}{dM_{ee}}\right)_{CH_2} = \left(\frac{d\sigma}{dM_{ee}}\right)_C + 2\left(\frac{d\sigma}{dM_{ee}}\right)_H$

Inclusive production

Event mixing normalized to the tail above 200 MeV

ALL γγ combinations MIX CB signal=ALL - CB