Overview of recent and upcoming experiments using meson decays to probe low-energy QCD, fundamental symmetries and BSM physics

Simon Taylor / Jefferson Lab for the GlueX collaboration

- Introduction to the low-lying pseudoscalar mesons
- Highlights of recent experimental results
- The GlueX experiment and JEF
- Summary

Light pseudoscalar mesons

- QCD Lagrangian: symmetry $U(3)_L \times U(3)_R$ for $m_q=0$ spontaneously broken $\Rightarrow SU(3)_L \times SU(3)_R \times U(1)_B \times U(1)_A$
 - Goldstone bosons: octet (π^0 , π^{\pm} , K^{\pm} , K^0 , \overline{K}^0 , η_8) + singlet (η_0)
 - $m_{d} \neq 0 \Rightarrow$ chiral symmetry explicitly broken \Rightarrow massive goldstone bosons

- Chiral anomaly: $U(1)_A$ explicitly broken for $m_q=0$
 - η_0 is massive
 - Responsible for two-photon decays of π^0 , η , η'
 - Broken SU(3) symmetry \Rightarrow mixing between π^0 , η , η'

 Light quark mass ratio, chiral anomaly, chiral perturbation theory, P/CP violation, physics beyond the Standard model, ...

Channel	Expt. branching ratio	Discussion	Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η – η' mixing	$\eta ightarrow \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays,
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$			P/CP violation
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson,	$\eta ightarrow \pi^0 \pi^0 \ell^+ \ell^-$		<i>C/CP</i> violation, ALPs
		light Higgs scalars	$\eta ightarrow \pi^+\pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)			<i>P/CP</i> violation, ALPs
$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹	$\eta ightarrow \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, <i>C/CP</i> violation, light Higgs scalars			<i>P/CP</i> violation, ALPs
			$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$
$\eta ightarrow \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation	$\eta \to e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
			$\eta ightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta ightarrow \pi^+\pi^-\gamma\gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs	$\eta ightarrow \pi^+\pi^-\pi^0\gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_{\mu}$,	$\eta \to \pi^\pm e^\mp \nu_e$	$< 1.7 \times 10^{-4}$	second-class current
		dark photon, protophobic X boson	$\eta ightarrow \pi^+\pi^-$	$< 4.4 \times 10^{-6}$	<i>P</i> / <i>CP</i> violation
$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	$\eta ightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	<i>P</i> / <i>CP</i> violation
$\eta \to e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P</i> / <i>CP</i> violation

Phys.Rept. 945 (2022) 1-105

Physics processes from $\eta^{\,\prime}$ decays

 Light quark mass ratio, chiral anomaly, chiral perturbation theory, P/CP violation, physics beyond the Standard model, ...

Channel	Expt. branching ratio	Discussion	Channel	Expt. branching ratio	Discussion
$\eta^\prime o \eta \pi^+ \pi^-$	42.6(7)%	large- $N_c \chi$ PT, light Higgs scalars	$\eta' \to 2(\pi^+\pi^-)$	$8.4(9) \times 10^{-5}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$
$\eta' ightarrow \pi^+ \pi^- \gamma$	28.9(5)%	chiral anomaly, theory input for singly-virtual TFF	$\eta' \to \pi^+\pi^-2\pi^0$	$1.8(4) \times 10^{-4}$	
		and $(g-2)_{\mu}$, <i>P</i> / <i>CP</i> violation	$\eta' \to 2(\pi^+\pi^-)\pi^0$	$< 1.8 \times 10^{-3}$	ALPs
$\eta' o \eta \pi^0 \pi^0$	22.8(8)%	large- $N_c \chi PT$	$\eta' \to K^{\pm} \pi^{\mp}$	$< 4 \times 10^{-5}$	weak interactions
$\eta' ightarrow \omega \gamma$	2.489(76)%	theory input for singly-virtual TFF and $(g - 2)_{\mu}$	$\eta' \to \pi^\pm e^\mp \nu_e$	$< 2.1 \times 10^{-4}$	second-class current
$\eta' \to \omega e^+ e^-$	$2.0(4) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$	$\eta' o \pi^0 \gamma \gamma$	$3.20(24) \times 10^{-3}$	vector and scalar dynamics, <i>B</i> boson,
$\eta' \to 2\gamma$	2.331(37)%	chiral anomaly, $\eta - \eta'$ mixing			light Higgs scalars
$\eta' \rightarrow 3\pi^0$	2.54(18)% (*)	$m_u - m_d$	$\eta' ightarrow \eta \gamma \gamma$	$8.3(3.5) \times 10^{-5}$	vector and scalar dynamics, B boson,
$\eta' ightarrow \mu^+ \mu^- \gamma$	$1.09(27) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon			light Higgs scalars
$\eta' ightarrow e^+ e^- \gamma$	$4.73(30) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	$\eta' \to 4\pi^0$	$< 4.94 \times 10^{-5}$	(S-wave) P/CP violation
$\eta' ightarrow \pi^+ \pi^- \mu^+ \mu^-$	$< 2.9 \times 10^{-5}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,	$\eta' \to e^+ e^-$	$< 5.6 \times 10^{-9}$	theory input for $(g - 2)_{\mu}$, BSM weak decays
		<i>P/CP</i> violation, dark photon, ALPs	$\eta' ightarrow \mu^+ \mu^-$		theory input for $(g - 2)_{\mu}$, BSM weak decays
$\eta' \to \pi^+ \pi^- e^+ e^-$	$2.4(^{+1.3}_{-1.0}) \times 10^{-3}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,	$\eta' \to \ell^+ \ell^- \ell^+ \ell^-$		theory input for $(g-2)_{\mu}$
		<i>P/CP</i> violation, dark photon, ALPs	$\eta^\prime o \pi^+ \pi^- \pi^0 \gamma$		B boson
$\eta' ightarrow \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	$\eta' ightarrow \pi^+ \pi^-$	$< 1.8 \times 10^{-5}$	<i>P</i> / <i>CP</i> violation
$\eta' \to \pi^+ \pi^- \pi^0$	$3.61(17) \times 10^{-3}$	$m_u - m_d$, <i>C/CP</i> violation, light Higgs scalars	$\eta' \to 2\pi^0$	$< 4 \times 10^{-4}$	<i>P</i> / <i>CP</i> violation

Phys.Rept. 945 (2022) 1-105

The experimental landscape

Future experiments: JEF, REDTOP

Facilities for $\eta(1)$ physics

 $\mathbb{A}2$

Light quark masses and cusp effects: $\eta \rightarrow 3\pi^0$

Rare decay: $\eta \rightarrow \pi^0 \gamma \gamma$

- Unique probe for high order Chiral Perturbation Theory (χ PT)
 - Tree level amplitudes O(p²) and O(p⁴) vanish
 - First sizeable contributions to η→π⁰γγ : two O(p⁶) counter-terms in chiral Lagrangian Ametller, Bijnens, Bramon, and Cornet, Phys. Lett., B276, 185 (1992)
 - Access two Low Energy Constants
- Shape of Dalitz distribution (M²_{yy})
 sensitive to role of scalar resonances
 Gasser, Leutwyler 1984; Ecler, Gasser, Pich, de Rafael 1989; Donoghue, Ramirez, Valencia 1989

Decays involving lepton pairs and rare radiative decays

- Quark masses are fundamental QCD parameters
 - $\eta \rightarrow \pi^+\pi^-\pi^0$ provides direct way to constrain light quark masses and source term for isospin violation
- QCD Lagrangian: isospin violation amplitude A proportional to $m_{u} m_{d}$
- $A = (m_u m_d)A_1 + \alpha_{em}A_2 \text{small}$ $X = \sqrt{3} \frac{T_{+} - T_{-}}{Q_{\eta}}$ $X = \frac{3T_{0}}{Q_{\eta}} - 1$ $Q_{\eta} = m_{\eta} - 2m_{\pi^{+}} - m_{\pi^{0}}$ • Quark mass ratio: $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_s^2 - m^2}, \quad \hat{m} = \frac{m_u + m_d}{2}$ -1 -0.8-0.6-0.4-0.2 0.2 0.4 0.6 0.8 • Decay width: $\Gamma(\eta \to 3\pi) \propto \int \mathrm{d}s \,\mathrm{d}u |\mathcal{A}_{\eta \to 3\pi}(s, t, u)|^2 \propto \frac{1}{O^4}$ $a = -1.095 \pm 0.003^{+0.003}_{-0.002}$ $b = +0.145 \pm 0.003 \pm 0.005$ JHEP 1605, • Measure Dalitz plot distribution for $\eta \rightarrow \pi^+ \pi^- \pi^0$ 019 (2016) $d = +0.081 \pm 0.003^{+0.006}_{-0.005}$ • Charge conjugation symmetry: c = e = h = l = 0 $f = +0.141 \pm 0.007^{+0.007}_{-0.008}$ $\Gamma_c(X,Y) = |\mathcal{A}_c(s,t,u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY$ $g = -0.044 \pm 0.009^{+0.012}_{-0.013}$ $+ fY^{3} + gX^{2}Y + hXY^{2} + lX^{3} + \dots$
- Dalitz plot parameters (a, b, d, ...): compute from theory (χ PT, dispersion analysis)

- Allow access to doubly-virtual transition form factors
- Sensitivity to box anomaly contribution
- Test the possibility of double vector meson dominance
- First observation of $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

• $\eta' \rightarrow \pi^+\pi^-e^+e^-$: sensitivity to CP-violating mechanism due to possible new electric dipole-type transition

Phys.Rev.D 103 (2021) 9, 092005

Rare decays: $\eta' \rightarrow \pi^0 \gamma \gamma$ and $\eta' \rightarrow \eta \gamma \gamma$

- $\eta' \rightarrow \pi^0 \gamma \gamma$ previously seen via $\eta' \rightarrow \gamma \omega$, $\omega \rightarrow \gamma \pi^0$
- Non-resonant contribution measured for first time
 - BR(inclusive)=3.20±0.07(stat)±0.23(sys))×10⁻³
 - BR(non-resonant)=(6.16±0.64(stat)±0.67(sys))×10⁻⁴

- $\eta' \rightarrow \eta \gamma \gamma$ never observed before
 - At 2.6σ level, BR=(8.25±3.41±0.72)×10⁻⁵
 - Upper limit: BR<1.33×10⁻⁴ at 90% CL

Jefferson Lab

Hall D and the GlueX detector at Jefferson Lab

Measuring $\Gamma(\eta \rightarrow \gamma \gamma)$ in Hall D at Jefferson Lab

- Photoproduction off a Helium target: $\gamma^4 He \rightarrow \eta^4 He$
- Primakoff cross section proportional to $\Gamma(\eta \rightarrow \gamma \gamma)$

$$\frac{\mathrm{d}\sigma_P}{\mathrm{d}\Omega} = \Gamma(P \to \gamma\gamma) \frac{8\alpha_{\mathrm{em}}Z^2}{M_P^3} \frac{\beta^3 E^4}{Q^4} \left| F_{\mathrm{em}}(Q^2) \right|^2 \sin^2\theta$$

• Goals:

- Resolve long-standing discrepancy between previous collider and Primakoff measurements
- Extract η-η' mixing angle
- Improve calculation of the η-pole contribution to Hadronic Light-by-Light scattering in (g-2)_μ
- Improve all partial decay widths in the ηsector

Simulations:

at Jefferson Lab", QNP22

Dalitz plot analyses using the GlueX detector

• Measure Dalitz plot distribution for $\eta \rightarrow \pi^+ \pi^- \pi^0$ • Charge conjugation symmetry: c = e = h = l = 0 $\Gamma_c(X, Y) = |\mathcal{A}_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY$ $+ fY^3 + gX^2Y + hXY^2 + lX^3 + \dots$

- Measure Dalitz plot distribution for $\eta' \rightarrow \eta \pi \pi$
- Test extension of chiral perturbation theory theory
- Sensitivity to implicit exchange of scalar resonances f₀(500), f₀(980), a₀(980)
- Constrain $\eta\pi$ scattering

• For more information: Olga Cortes Becerra, "Dalitz Plot Analysis of $\eta' \rightarrow \eta \pi \pi$ with GlueX Data"

Looking for $\eta \rightarrow \pi^0 \gamma \gamma$ with GlueX

Resolution of Forward Calorimeter (FCAL) not sufficient to resolve rare decay channel...

The Jefferson Lab Eta Factory (JEF) experiment

- Modules ready for installation in 2023
- Planned installation duration: 6-12 months

 Data taking with upgraded Forward Calorimeter expected in 2024

The rare $\eta \rightarrow \pi^0 \gamma \gamma$ decay with JEF

Jefferson Lab

Portal to dark sector: B-boson

Portal to dark sector: B-boson

- Limit from $\eta \rightarrow \pi^0 \gamma \gamma$ neglects SM contributions
 - KLOE preliminary results not included
- Recent update from Escribano, Gonzales-Solis, and Royo, Phys.Rev.D 106 (2022) 11, 114007
 - Using KLOE preliminary results
 - B-boson + SM exchanges

Summary

- Light pseudoscalar decays provide a laboratory for probing many physics processes
 - Sensitivity to higher-order chiral perturbation theory
 - Cusp effects from re-scattering
 - Searches for signatures of dark matter
 - Tests of discrete symmetries
- Active field of experimental activity at both fixed-target and collider facilities
 - e⁺e⁻ collisions (BES-III, KLOE), hadron beams (WASA@COSY, HADES), photon beams (MAMI A2, GlueX/JEF)
 - New experiments under construction or being planned

http://www.gluex.org/thanks.html

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

