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Anomalous magnetic moments of charged leptons

Z

SM prediction for (g − 2)ℓ

aSM
ℓ = aQED

ℓ + aEW
ℓ + ahad

ℓ ahad
ℓ = aHVP

ℓ + aHLbL
ℓ

For the muon: by far main uncertainty from the hadronic contributions

What does this have to do with meson decays?

Pseudoscalar poles in HLbL

↪→ transition form factors talks by Antoine Gérardin, Bai-Long Hoid, Simon Holz, Andrzej Kupść

Some connection to HVP

↪→ e+e− → 3π, π0γ and π0 TFF, e+e− → ηππ, ηγ for η TFF

This talk: mainly overview of HLbL, some interplay with HVP
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Status of (g − 2)µ: hadronic vacuum polarization
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not used in WP20

BMW20

WP20(lattice)

FNAL

BNL4.2 σ

Experiment talk by Saskia Charity

BNL confirmed by Fermilab Run 1

Run 2+3 in late summer

Theory

4.2σ if HVP from e+e− → hadrons data

e+e− data in 2.1σ tension with BMWc

CMD-3 result for e+e− → π+π−

↪→ Many puzzles in HVP, won’t address in this talk
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HLbL scattering: status
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WP20 data-driven

RBC/UKQCD19

Glasgow consensus (09)

N/JN09

J17

 + charm-loop

dispersive

Mainz21 (uds) + 22 (c)
not used in WP20

RBC/UKQCD23
 + charm-loop Lattice QCD Mainz 2021, 2022:

aHLbL
µ [uds] = 107(15)× 10−11

aHLbL
µ [c] = 2.8(5)× 10−11

News from RBC/UKQCD 2023:

aHLbL
µ [uds] = 122(15)×10−11

Good agreement between lattice QCD and phenomenology at ≃ 20 × 10−11

Need another factor of 2 for final Fermilab precision
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HLbL scattering: white paper details

Contribution PdRV(09) N/JN(09) J(17) Our estimate

π0, η, η′-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)

π, K -loops/boxes −19(19) −19(13) −20(5) −16.4(2)

S-wave ππ rescattering −7(7) −7(2) −5.98(1.20) −8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars − − − }
− 1(3)

tensors − − 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)

u, d, s-loops / short-distance − 21(3) 20(4) 15(10)

c-loop 2.3 − 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)
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HLbL scattering: pion pole

Pion pole from data MH et al. 2018, Masjuan, Sánchez-Puertas 2017 and lattice Gérardin et al. 2019

aπ0-pole
µ

∣∣
dispersive = 63.0+2.7

−2.1 × 10−11 aπ0-pole
µ

∣∣
Canterbury = 63.6(2.7)× 10−11

aπ0-pole
µ

∣∣
lattice+PrimEx = 62.3(2.3)× 10−11 aπ0-pole

µ

∣∣
lattice = 59.7(3.6)× 10−11

↪→ agree within uncertainties well below Fermilab goal

Singly-virtual results agree well with BESIII measurement
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HLbL scattering: data-driven, dispersive evaluations

Organized in terms of hadronic intermediate states,

in close analogy to HVP Colangelo et al. 2014, . . .

Leading channels implemented with data input for

γ∗γ∗ → hadrons, e.g., π0 → γ∗γ∗

Progress on dispersive evaluations of η, η′ poles
talk by Simon Holz

Uncertainty dominated by subleading channels

↪→ axial-vector mesons f1(1285), f1(1420), a1(1260)

Transition form factors accessible in e+e− collisions

↪→ BESIII, Belle II (?)
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Di-lepton decay f1 → e+e−
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e
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Axial-vector TFFs

e+e− → e+e−f1 (space-like)

f1 → ργ, f1 → ϕγ

f1 → e+e−

Result/limit from SND on f1 → e+e−

Br[f1 → e+e−] = 5.1+3.7
−2.7 × 10−9 Br[f1 → e+e−] < 9.4 × 10−9 at 90% CL
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A new source of information on axial-vector TFFs

Three independent TFFs

↪→ combined analysis in VMD model so far

Most information available for f1

↪→ f ′1 and a1 from U(3) symmetry

Also measured: e+e− → f1ππ

Constraints on excited ρ resonances

Sensitive to all TFFs

↪→ should provide useful upper bound

Global analysis of all of this in progress
MH, Kubis, Zanke in preparation

0 . 0
0 . 5
1 . 0

1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0
0 . 0
0 . 5
1 . 0

ρ(5 S )ρ(2150)

B a B a r  ( 2 0 2 2 )( b )

��

B a B a r  ( 2 0 0 7 )

σ(
e+ e- �

f 1(1
285

)π+ π− ) (n
b)

( a )
ρ(1900)

��

�

E c m  ( G e V )
Liu, Zhou, Wang 2022

M. Hoferichter (Institute for Theoretical Physics) Connection with g − 2 Jun 14, 2023 9



Recent progress on the phenomenological side

Higher-order short-distance constraints

Two-loop αs corrections

Higher-order OPE corrections

Higher-order terms in Melnikov–Vainshtein limit

Implementation of SDCs

Large-Nc Regge models Colangelo . . .

Holographic QCD Leutgeb, Rebhan, Cappiello, . . .

Interpolants Lüdtke, Procura

↪→ reasonable agreement on longitudinal

component

Transverse component/axial-vectors

SDCs MH, Stoffer 2020

Implementation of axial-vectors, new HLbL

basis, new dispersive formalism

Determination of TFFs
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New insights on HLbL tensor

Recall discussions with MV about the definition of the pion pole

Fπ0γ∗γ∗ (q2
1 , q

2
2)Fπ0γ∗γ∗ (q2

3 , 0)

q2
3 − M2

π

vs.
Fπ0γ∗γ∗ (q2

1 , q
2
2)Fπ0γ∗γ∗ (M2

π , 0)

q2
3 − M2

π

Comparison in Colangelo, Hagelstein, MH, Laub, Stoffer 2019:

First variant: dispersion relation in four-point kinematics

Second variant: dispersion relation in g − 2 (“triangle”) kinematics

Triangle variant looks attractive because of SDCs, but very complicated in

low-energy region due to missing 2π, . . . cuts

Kinematic singularities

Disappear in four-point kinematics only for the entire HLbL tensor due to sum rules

↪→ higher partial waves, axial-vectors, tensors

For axial-vectors: can find a basis manifestly free of kinematic singularities

↪→ ideal for axial-vectors, but need to check other contributions; not possible for tensors

↪→ complementary information from triangle kinematics Lüdtke, Procura, Stoffer 2023
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HLbL dispersion relation in triangle vs. four-point kinematics

Lüdtke, Procura, Stoffer 2023
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ρ–ω mixing in e+e− → 3π

Cross check between lattice QCD and e+e− → hadrons

↪→ isospin-breaking corrections

Signal claimed by BaBar 2021 based on sum of Breit–Wigner functions

↪→ a3π
µ [ρ–ω] ≃ −0.6 × 10−10

Check with dispersive parameterization

3π rescattering in γ∗ → 3π via Khuri–Treiman equations

Information on ω, ϕ in normalization function a(q2)

Same formalism used for π0 TFF

How to ensure consistency between e+e− → 2π, 3π and not spoil analytic properties?
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ρ–ω mixing in e+e− → 3π

A coupled-channel system for {2π, ℓ+ℓ−, 3π}
Holz, Hanhart, MH, Kubis 2022

Developed for consistent description of η′ → ππγ, ℓ+ℓ−γ

↪→ η′ transition form factor and HLbL

ϵρω now consistent

Re ϵρω
∣∣
e+e−→2π = 1.97(3)× 10−3

ϵρω |η′→ππγ = 2.00(7)× 10−3

By-product: ρ–ω mixing in e+e− → 3π should enter as

1 + ϵρωg2
ωγ

s

48π2

∫ ∞

4M2
π

ds′

(
1 − 4M2

π
s′

)3/2∣∣FV
π (s′)

∣∣2
s′(s′ − s − iϵ)

Preliminary results:

BaBar fit improves significantly

ϵρω (largely) consistent with e+e− → 2π

a3π
µ [ρ–ω] sizable (and negative)
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Summary and outlook

Muon g − 2 and rare decays:

For HLbL agreement between lattice and phenomenology

↪→ another factor 2 looks feasible

Improvements for η, η′ TFFs to establish agreement at same

level as for pion pole

TFFs also probed in di-lepton decays

Some lessons transfer to axial-vector decays

WP update in preparation, with CMD-3 timeline unclear, but still

aimed for 2023

↪→ will include update for HLbL
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Sixth plenary TI workshop
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A new puzzle: e+e− → π+π− from CMD-3
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Radiative corrections: forward–backward asymmetry

Discrepancy	with	Calcula-on	of	
Radia-ve	Correc-ons

Measured	forward-backward	asymmetry	in	
	disagrees	with	standard	sQED	code	e+e�� �� ��+����

CMD-3	Collabora-on,	arXiv:2302.08834https://indico.cern.ch/event/1204084

John Ellis, “The future of particle physics”, ALPS 2023

Forward–backward asymmetry:

AFB(z) =
dσ
dz (z)− dσ

dz (−z)
dσ
dz (z) + dσ

dz (−z)

dσ
dz

∣∣∣∣
C-odd

=
dσ0

dz

[
δsoft(λ

2,∆) + δvirt
(
λ2)]+ dσ

dz

∣∣∣∣
hard

(∆)
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Radiative corrections: forward–backward asymmetry

(b) (c)(a)

δsoft in point-like approximation for final-state photon in (b), but pion VFF always

included otherwise

↪→ FsQED

Previously, (c) evaluated in sQED, not FsQED

↪→ CMD-3 use generalized vector meson dominance instead Ignatov, Lee 2022

Problem: unphysical imaginary parts below 2π threshold in loop integral

Our approach: use dispersive representation of pion VFF

F V
π (s)
s

=
1
s
+

1
π

∫ ∞

4M2
π

ds′
Im F V

π (s′)
s′(s′ − s)

→ 1
s − λ2

− 1
π

∫ ∞

4M2
π

ds′
Im F V

π (s′)
s′

1
s − s′

↪→ captures all the structure-dependent, infrared-enhanced effects
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Radiative corrections: forward–backward asymmetry
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Colangelo et al. 2022

Actually good agreement between dispersive formulation and GVMD!

↪→ why do the unphysical imaginary parts not matter more?

FsQED describes the data well, actually confirms common lore

Are there relevant effects being missed in the C-even contributions?
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CMD-3 with dispersive constraints

The pion form factor from dispersion relations

F V
π (s) = Ω1

1(s)︸ ︷︷ ︸
elastic ππ scattering

× Gω(s)︸ ︷︷ ︸
isospin-breaking 3π cut

× Gin(s)︸ ︷︷ ︸
inelastic effects: 4π, . . .

e+e− → π+π− cross section subject to strong constraints from analyticity,
unitarity, crossing symmetry, leading to dispersive representation with few
parameters Colangelo, MH, Stoffer, 2018, 2021, 2022, work in progress

Elastic ππ scattering: two values of phase shifts

ρ–ω mixing: ω pole parameters and residue

Inelastic states: conformal polynomial

↪→ cross check on data, functional form for all s ≤ 1 GeV2
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CMD-3 with dispersive constraints
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SND06 aππ
µ

∣∣
≤1 GeV aππ

µ

∣∣
[0.60,0.88] GeV aππ

µ

∣∣
win

SND06 1.7σ 1.8σ 1.7σ

CMD-2 2.0σ 2.3σ 2.1σ

BaBar 2.9σ 3.3σ 3.1σ

KLOE′′ 4.8σ 5.6σ 5.4σ

BESIII 2.8σ 3.0σ 3.1σ

SND20 2.1σ 2.2σ 2.2σ

comb 3.7σ [5.0σ] 4.2σ [6.1σ] 3.8σ [5.7σ]

Tensions in aππ
µ

∣∣
≤1 GeV compared to CMD-3:

Inner/outer error: experiment/total (also shown: combination + BaBar/KLOE error)

Theory error dominated by order in conformal polynomial N

No red flags for CMD-3 so far, but:

Large systematic error from N, correlated/anticorrelated for BaBar/other experiments

ππ phase shifts remain reasonable, main change in conformal polynomial

↪→ further constraints from inelastic channels, e+e− → 4π, πω, . . .?
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Phase of the ρ–ω mixing parameter
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Can also study consistency of hadronic parameters
↪→ phase of the ρ–ω mixing parameter δϵ

δϵ observable, since defined as a phase of a residue

δϵ vanishes in isospin limit, but can be non-vanishing due to ρ → π0γ, ηγ, ππγ, . . . → ω

Combined-fit δϵ = 3.8(2.0)[1.2]◦ agrees well with narrow-width expectation

δϵ = 3.5(1.0)◦, but considerable spread among experiments

Mass of the ω systematically too low compared to e+e− → 3π
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On to the next puzzle: e+e− vs. lattice QCD in the intermediate window

230 235 240 245

BMW 2020

RBC/UKQCD 2018

Mainz 2022

R-ratio data

RBC/UKQCD 2022

ETMC 2022

ETMC 2021

FNAL/HPQCD/MILC 2022

aHVP, win
µ × 1010

RBC/UKQCD 2022 supersedes RBC/UKQCD 2018

ETMC 2022 supersedes ETMC 2021

FNAL/HPQCD/MILC 2022 agrees for ud connected contribution, same for Aubin et al. 2022, χQCD 2022

R-ratio result from Colangelo et al. 2022
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Role of isospin breaking: phenomenological estimates

SD window int window LD window full HVP

O(e2) O(δ) O(e2) O(δ) O(e2) O(δ) O(e2) O(δ)

π0γ 0.16(0) – 1.52(2) – 2.70(4) – 4.38(6) –

ηγ 0.05(0) – 0.34(1) – 0.31(1) – 0.70(2) –

ρ–ω mixing – 0.05(0) – 0.83(6) – 2.79(11) – 3.68(17)

FSR (2π) 0.11(0) – 1.17(1) – 3.14(3) – 4.42(4) –

M
π0 vs. M

π± (2π) 0.04(1) – −0.09(7) – −7.62(14) – −7.67(22) –

FSR (K+K− ) 0.07(0) – 0.39(2) – 0.29(2) – 0.75(4) –

kaon mass (K+K− ) −0.29(1) 0.44(2) −1.71(9) 2.63(14) −1.24(6) 1.91(10) −3.24(17) 4.98(26)

kaon mass (K̄ 0K 0) 0.00(0) −0.41(2) −0.01(0) −2.44(12) −0.01(0) −1.78(9) −0.02(0) −4.62(23)

total 0.14(1) 0.08(3) 1.61(12) 1.02(20) −2.44(16) 2.92(17) −0.68(29) 4.04(39)

BMWc 2020 – – −0.09(6) 0.52(4) – – −1.5(6) 1.9(1.2)

RBC/UKQCD 2018 – – 0.0(2) 0.1(3) – – −1.0(6.6) 10.6(8.0)

JLM 2021 – – – – – – – 3.32(89)

Reasonable agreement with BMWc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021

↪→ if anything, the result would become even larger with pheno estimates

Adding 3π (FSR and ρ–ω mixing) will remove tension in O(δ)

Cancellation of individually sizable corrections!
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Role of isospin breaking: energy dependence
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Alternative to windows: Gaussian smearing ETMC 2022

Rσ(s) =
∫ ∞

0
ds′Gσ(

√
s′ −

√
s)R(s′) Gσ(ω) =

e−ω2/(2σ2)

√
2πσ2

Cancellation for aµ seems to involve a delicate balance with kernel K (s)

Question: Is Gaussian smearing (expected to be) advantageous compared to

linear combinations of windows? The inverse Laplace problem should persist . . .
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