Connection with $g-2$

\boldsymbol{u}^{b}

\author{

Martin Hoferichter

 Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern}

Jun 14, 2023

Precision Tests of Fundamental Physics with Light Mesons
 ECT* Trento

Anomalous magnetic moments of charged leptons

- SM prediction for $(g-2)_{\ell}$

$$
a_{\ell}^{\text {SM }}=a_{\ell}^{\mathrm{QED}}+a_{\ell}^{\mathrm{EW}}+a_{\ell}^{\text {had }} \quad a_{\ell}^{\text {had }}=a_{\ell}^{\text {HVP }}+a_{\ell}^{\text {HLbL }}
$$

- For the muon: by far main uncertainty from the hadronic contributions
- What does this have to do with meson decays?
- Pseudoscalar poles in HLbL
\hookrightarrow transition form factors talks by Antoine Gérardin, Bai-Long Hoid, Simon Holz, Andrzej Kupść
- Some connection to HVP

$$
\hookrightarrow e^{+} e^{-} \rightarrow 3 \pi, \pi^{0} \gamma \text { and } \pi^{0} \text { TFF, } e^{+} e^{-} \rightarrow \eta \pi \pi, \eta \gamma \text { for } \eta \text { TFF }
$$

- This talk: mainly overview of HLbL, some interplay with HVP

Status of $(g-2)_{\mu}$: hadronic vacuum polarization

- Experiment talk by Saskia Charity
- BNL confirmed by Fermilab Run 1
- Run 2+3 in late summer
- Theory
- 4.2σ if HVP from $e^{+} e^{-} \rightarrow$ hadrons data
- $e^{+} e^{-}$data in 2.1σ tension with BMWc
- CMD-3 result for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
\hookrightarrow Many puzzles in HVP, won't address in this talk

HLbL scattering: status

- Good agreement between lattice QCD and phenomenology at $\simeq 20 \times 10^{-11}$
- Need another factor of 2 for final Fermilab precision

HLbL scattering: white paper details

Contribution	PdRV(09)	$\mathrm{N} / \mathrm{JN}(09)$	$\mathrm{J}(17)$	Our estimate
$\pi^{0}, \eta, \eta^{\prime}$-poles	$114(13)$	$99(16)$	$95.45(12.40)$	$93.8(4.0)$
π, K-loops/boxes	$-19(19)$	$-19(13)$	$-20(5)$	$-16.4(2)$
S-wave $\pi \pi$ rescattering	$-7(7)$	$-7(2)$	$-5.98(1.20)$	$-8(1)$
subtotal	$88(24)$	$73(21)$	$69.5(13.4)$	$69.4(4.1)$
scalars	-	-	-	$-1(3)$
tensors	-	-	$1.1(1)$	$3(6)$
axial vectors	$15(10)$	$22(5)$	$7.55(2.71)$	$15(10)$
u, d, s-loops / short-distance	-	$21(3)$	$20(4)$	$3(1)$
c-loop	2.3	-	$2.3(2)$	$92(19)$
total	$105(26)$	$116(39)$	$100.4(28.2)$	

HLbL scattering: pion pole

- Pion pole from data mH et al. 2018, Masjuan, Sánchez-Puertas 2017 and lattice Gérardin et al. 2019

$$
\begin{array}{rlrl}
a_{\mu}^{\pi^{0}} \text {-pole } & \left.\right|_{\text {dispersive }} & =63.0_{-2.1}^{+2.7} \times\left. 10^{-11} \quad a_{\mu}^{\pi^{0}-\text { pole }}\right|_{\text {Canterbury }} & =63.6(2.7) \times 10^{-11} \\
\left.a_{\mu}^{\pi^{0}-\text { pole }}\right|_{\text {lattice }+ \text { PrimEx }} & =62.3(2.3) \times\left. 10^{-11} \quad a_{\mu}^{\pi^{0}-\text { pole }}\right|_{\text {lattice }} & =59.7(3.6) \times 10^{-11}
\end{array}
$$

\hookrightarrow agree within uncertainties well below Fermilab goal

- Singly-virtual results agree well with BESIII measurement

HLbL scattering: data-driven, dispersive evaluations

- Organized in terms of hadronic intermediate states, in close analogy to HVP Colangelo et al. 2014, ...
- Leading channels implemented with data input for $\gamma^{*} \gamma^{*} \rightarrow$ hadrons, e.g., $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$
- Progress on dispersive evaluations of η, η^{\prime} poles talk by Simon Holz
- Uncertainty dominated by subleading channels \hookrightarrow axial-vector mesons $f_{1}(1285), f_{1}(1420), a_{1}(1260)$

Zanke, MH, Kubis 2021

- Transition form factors accessible in $e^{+} e^{-}$collisions \hookrightarrow BESIII, Belle II (?)

Di-lepton decay $f_{1} \rightarrow e^{+} e^{-}$

- Axial-vector TFFs

- $e^{+} e^{-} \rightarrow e^{+} e^{-} f_{1}$ (space-like)
- $f_{1} \rightarrow \rho \gamma, f_{1} \rightarrow \phi \gamma$
- $f_{1} \rightarrow e^{+} e^{-}$
- Result/limit from SND on $f_{1} \rightarrow e^{+} e^{-}$

$$
\operatorname{Br}\left[f_{1} \rightarrow e^{+} e^{-}\right]=5.1_{-2.7}^{+3.7} \times 10^{-9} \quad \operatorname{Br}\left[f_{1} \rightarrow e^{+} e^{-}\right]<9.4 \times 10^{-9} \text { at } 90 \% \mathrm{CL}
$$

A new source of information on axial-vector TFFs

- Three independent TFFs
\hookrightarrow combined analysis in VMD model so far
- Most information available for f_{1}
$\hookrightarrow f_{1}^{\prime}$ and a_{1} from $U(3)$ symmetry
- Also measured: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{f}_{1} \pi \pi$
- Constraints on excited ρ resonances
- Sensitive to all TFFs
\hookrightarrow should provide useful upper bound

Liu, Zhou, Wang 2022

- Global analysis of all of this in progress

MH, Kubis, Zanke in preparation

Recent progress on the phenomenological side

- Higher-order short-distance constraints
- Two-loop α_{s} corrections
- Higher-order OPE corrections
- Higher-order terms in Melnikov-Vainshtein limit
- Implementation of SDCs
- Large- N_{C} Regge models Colangelo
- Holographic QCD Leutgeb, Rebhan, Cappiello,
- Interpolants Lüdke, Procura
\hookrightarrow reasonable agreement on longitudinal component
- Transverse component/axial-vectors
- SDCs MH, Stoffer 2020
- Implementation of axial-vectors, new HLbL basis, new dispersive formalism
- Determination of TFFs

New insights on HLbL tensor

- Recall discussions with MV about the definition of the pion pole

$$
\frac{F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, 0\right)}{q_{3}^{2}-M_{\pi}^{2}} \quad \text { vs. } \quad \frac{F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(M_{\pi}^{2}, 0\right)}{q_{3}^{2}-M_{\pi}^{2}}
$$

- Comparison in Colangelo, Hagelstein, MH, Laub, Stoffer 2019:
- First variant: dispersion relation in four-point kinematics
- Second variant: dispersion relation in $g-2$ ("triangle") kinematics
- Triangle variant looks attractive because of SDCs, but very complicated in low-energy region due to missing $2 \pi, \ldots$ cuts
- Kinematic singularities
- Disappear in four-point kinematics only for the entire HLbL tensor due to sum rules
\hookrightarrow higher partial waves, axial-vectors, tensors
- For axial-vectors: can find a basis manifestly free of kinematic singularities
\hookrightarrow ideal for axial-vectors, but need to check other contributions; not possible for tensors
\hookrightarrow complementary information from triangle kinematics Lüdtke, Procura, Stoffer 2023

HLbL dispersion relation in triangle vs. four-point kinematics

- Cross check between lattice QCD and $e^{+} e^{-} \rightarrow$ hadrons
\hookrightarrow isospin-breaking corrections
- Signal claimed by BaBar 2021 based on sum of Breit-Wigner functions
$\hookrightarrow a_{\mu}^{3 \pi}[\rho-\omega] \simeq-0.6 \times 10^{-10}$
- Check with dispersive parameterization
- 3π rescattering in $\gamma^{*} \rightarrow 3 \pi$ via Khuri-Treiman equations
- Information on ω, ϕ in normalization function $a\left(q^{2}\right)$
- Same formalism used for π^{0} TFF
- How to ensure consistency between $e^{+} e^{-} \rightarrow 2 \pi, 3 \pi$ and not spoil analytic properties?

$\rho-\omega$ mixing in $e^{+} e^{-} \rightarrow 3 \pi$

- A coupled-channel system for $\left\{2 \pi, \ell^{+} \ell^{-}, 3 \pi\right\}$

Holz, Hanhart, MH, Kubis 2022

- Developed for consistent description of $\eta^{\prime} \rightarrow \pi \pi \gamma, \ell^{+} \ell^{-} \gamma$
$\hookrightarrow \eta^{\prime}$ transition form factor and HLbL
- $\epsilon_{\rho \omega}$ now consistent

$$
\begin{aligned}
\left.\operatorname{Re} \epsilon_{\rho \omega}\right|_{e^{+} e^{-} \rightarrow 2 \pi} & =1.97(3) \times 10^{-3} \\
\left.\epsilon_{\rho \omega}\right|_{\eta^{\prime} \rightarrow \pi \pi \gamma} & =2.00(7) \times 10^{-3}
\end{aligned}
$$

- By-product: $\rho-\omega$ mixing in $e^{+} e^{-} \rightarrow 3 \pi$ should enter as

$$
1+\epsilon_{\rho \omega} g_{\omega \gamma}^{2} \frac{s}{48 \pi^{2}} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\left(1-\frac{4 M_{\pi}^{2}}{s^{\prime}}\right)^{3 / 2}\left|F_{\pi}^{V}\left(s^{\prime}\right)\right|^{2}}{s^{\prime}\left(s^{\prime}-s-i \epsilon\right)}
$$

- Preliminary results:
- BaBar fit improves significantly
- $\epsilon_{\rho \omega}$ (largely) consistent with $e^{+} e^{-} \rightarrow 2 \pi$
- $a_{\mu}^{3 \pi}[\rho-\omega]$ sizable (and negative)

Summary and outlook

- Muon $g-2$ and rare decays:
- For HLbL agreement between lattice and phenomenology
\hookrightarrow another factor 2 looks feasible
- Improvements for η, η^{\prime} TFFs to establish agreement at same level as for pion pole

- TFFs also probed in di-lepton decays
- Some lessons transfer to axial-vector decays
- WP update in preparation, with CMD-3 timeline unclear, but still aimed for 2023
\hookrightarrow will include update for HLbL

Sixth plenary TI workshop

Muon g-2 Theory Initiative Sixth Plenary Workshop

Bern, Switzerland, September 4-8, 2023

A new puzzle: $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$from CMD-3

CMD-3, 2302.08834
generally shows larger pion form factor in the whole energy range under discussion. The most significant difference to other energy scan measurements, including previous CMD-2 measurement, is observed at the left side of ρ-meson $(\sqrt{s}=0.6-0.75 \mathrm{GeV})$, where it reach up to 5%, well beyond the combined systematic and statistical errors of the new and previous results. The source of this difference is unknown at the moment.

Radiative corrections: forward-backward asymmetry

Discrepancy with Calculation of

Radiative Corrections

Measured forward-backward asymmetry in
disagrees with standard sQED code
https://indico.cern.ch/event/1204084 CMD-3 Collaboration, arXiv:2302.08834
John Ellis, "The future of particle physics", ALPS 2023

The charge asymmetry in the $\pi^{+} \pi^{-}$final state was extracted using forward-backward parts of measured cross sections, and the strong deviation was observed from the prediction based on the conventional sQED approach for radiative correction calculations. The improved GVMD model was proposed in the paper [49], which gives the remarkable agreement with the experimental data. The significant corrections beyond sQED was also confirmed by the calculation in a dispersive formalism in the paper [50]. It will be still interesting to understand the difference in C-odd radiative correction between obtained in the dispersive formalism and the GVMD model prediction, which is sensed by the experimental statistical precision. The obtained result shows the importance of the appropriate choice of the model for the calculation of the radiative corrections for the $\pi^{+} \pi^{-}$channel. It is important to revise the possible effect of SQED limitations for other calculations including two photon exchange processes. The observed difference in charge asymmetries for $\pi^{+} \pi^{-}$and $e^{+} e^{-}$ events between the measured value and predicted are $\delta A^{\pi^{+} \pi^{-}}=-0.00029 \pm 0.00023$ and $\delta A^{e^{+} e^{-}}=-0.00060 \pm 0.00026$, averaged over $\sqrt{s}=0.7 \div 0.82 \mathrm{GeV}$ energy range. This consistency better than 0.1% should additionally ensure our θ angle related systematic uncertainty estimation for the $\left|F_{\pi}\right|^{2}$ measurement.

- Forward-backward asymmetry:

$$
A_{\mathrm{FB}}(z)=\left.\frac{\frac{d \sigma}{d z}(z)-\frac{d \sigma}{d z}(-z)}{\frac{d \sigma}{d z}(z)+\frac{d \sigma}{d z}(-z)} \quad \frac{d \sigma}{d z}\right|_{C \text {-odd }}=\frac{d \sigma_{0}}{d z}\left[\delta_{\text {soft }}\left(\lambda^{2}, \Delta\right)+\delta_{\text {virt }}\left(\lambda^{2}\right)\right]+\left.\frac{d \sigma}{d z}\right|_{\text {hard }}
$$

Radiative corrections: forward-backward asymmetry

(a)

(b)

(c)

- $\delta_{\text {soft }}$ in point-like approximation for final-state photon in (b), but pion VFF always included otherwise
\hookrightarrow FsQED
- Previously, (c) evaluated in sQED, not FsQED
\hookrightarrow CMD-3 use generalized vector meson dominance instead Ignatov, Lee 2022
- Problem: unphysical imaginary parts below 2π threshold in loop integral
- Our approach: use dispersive representation of pion VFF

$$
\frac{F_{\pi}^{V}(s)}{s}=\frac{1}{s}+\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} F_{\pi}^{V}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \rightarrow \frac{1}{s-\lambda^{2}}-\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} F_{\pi}^{V}\left(s^{\prime}\right)}{s^{\prime}} \frac{1}{s-s^{\prime}}
$$

\hookrightarrow captures all the structure-dependent, infrared-enhanced effects

Radiative corrections: forward-backward asymmetry

- Actually good agreement between dispersive formulation and GVMD!
\hookrightarrow why do the unphysical imaginary parts not matter more?
- FsQED describes the data well, actually confirms common lore
- Are there relevant effects being missed in the C-even contributions?

CMD-3 with dispersive constraints

The pion form factor from dispersion relations

$$
F_{\pi}^{V}(s)=\underbrace{\Omega_{1}^{1}(s)}_{\text {elastic } \pi \pi \text { scattering }} \times \underbrace{G_{\omega}(s)}_{\text {isospin-breaking } 3 \pi \text { cut }} \times \underbrace{G_{i n}(s)}_{\text {inelastic effects: } 4 \pi, \ldots}
$$

- $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$cross section subject to strong constraints from analyticity, unitarity, crossing symmetry, leading to dispersive representation with few parameters Colangelo, MH, Stoffer, 2018, 2021, 2022, work in progress
- Elastic $\pi \pi$ scattering: two values of phase shifts
- $\rho-\omega$ mixing: ω pole parameters and residue
- Inelastic states: conformal polynomial
\hookrightarrow cross check on data, functional form for all $s \leq 1 \mathrm{GeV}^{2}$

CMD-3 with dispersive constraints

- Tensions in $\left.a_{\mu}^{\pi \pi}\right|_{\leq 1 \mathrm{GeV}}$ compared to CMD-3:
- Inner/outer error: experiment/total (also shown: combination + BaBar/KLOE error)
- Theory error dominated by order in conformal polynomial N
- No red flags for CMD-3 so far, but:
- Large systematic error from N, correlated/anticorrelated for BaBar/other experiments
- $\pi \pi$ phase shifts remain reasonable, main change in conformal polynomial
\hookrightarrow further constraints from inelastic channels, $e^{+} e^{-} \rightarrow 4 \pi, \pi \omega, \ldots$?

Phase of the $\rho-\omega$ mixing parameter

- Can also study consistency of hadronic parameters \hookrightarrow phase of the $\rho-\omega$ mixing parameter δ_{ϵ}
- δ_{ϵ} observable, since defined as a phase of a residue
- δ_{ϵ} vanishes in isospin limit, but can be non-vanishing due to $\rho \rightarrow \pi^{0} \gamma, \eta \gamma, \pi \pi \gamma, \ldots \rightarrow \omega$
- Combined-fit $\delta_{\epsilon}=3.8(2.0)[1.2]^{\circ}$ agrees well with narrow-width expectation
$\delta_{\epsilon}=3.5(1.0)^{\circ}$, but considerable spread among experiments
- Mass of the ω systematically too low compared to $e^{+} e^{-} \rightarrow 3 \pi$

On to the next puzzle: $e^{+} e^{-}$vs. lattice QCD in the intermediate window

RBC/UKQCD 2022 supersedes RBC/UKQCD 2018
ETMC 2022 supersedes ETMC 2021
FNAL/HPQCD/MILC 2022 agrees for ud connected contribution, same for Aubin et al. 2022, χ QCD 2022
R-ratio result from Colangelo et al. 2022

Role of isospin breaking: phenomenological estimates

	SD window		int window		LD window		full HVP	
	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$
$\pi^{0} \gamma$	0.16 (0)	-	1.52(2)	-	2.70 (4)	-	4.38(6)	-
$\eta \gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$\rho-\omega$ mixing	-	0.05(0)	-	0.83(6)	-	2.79(11)	-	3.68(17)
FSR (2π)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi} 0$ vs. $M_{\pi} \pm(2 \pi)$	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	$-7.67(22)$	-
$\operatorname{FSR}\left(K^{+} K^{-}\right)$	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass ($K^{+} K^{-}$)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass ($\bar{K}^{0} K^{0}$)	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.14 (1)	0.08(3)	1.61(12)	$1.02(20)$	-2.44(16)	$2.92(17)$	-0.68(29)	4.04(39)
BMWc 2020	-	-	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)
RBC/UKQCD 2018	-	-	0.0(2)	0.1(3)	-	-	-1.0(6.6)	10.6(8.0)
JLM 2021	-	-	-	-	-	-	-	$3.32(89)$

- Reasonable agreement with BMWc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021
\hookrightarrow if anything, the result would become even larger with pheno estimates
- Adding 3π (FSR and $\rho-\omega$ mixing) will remove tension in $\mathcal{O}(\delta)$
- Cancellation of individually sizable corrections!

Role of isospin breaking: energy dependence

- Alternative to windows: Gaussian smearing ETMC 2022

$$
R_{\sigma}(s)=\int_{0}^{\infty} d s^{\prime} G_{\sigma}\left(\sqrt{s^{\prime}}-\sqrt{s}\right) R\left(s^{\prime}\right) \quad G_{\sigma}(\omega)=\frac{e^{-\omega^{2} /\left(2 \sigma^{2}\right)}}{\sqrt{2 \pi \sigma^{2}}}
$$

- Cancellation for a_{μ} seems to involve a delicate balance with kernel $K(s)$
- Question: Is Gaussian smearing (expected to be) advantageous compared to linear combinations of windows? The inverse Laplace problem should persist ...

