Outlook on Precision Tests of Fundamental Physics with Light Mesons

A. Gasparian NC A&T State University, Greensboro NC USA

"Prediction is very difficult, especially if it's about the future!" Niels Bohr

Outline

- general properties of the light mesons
- light meson spectroscopy (exotic states)
- decay width measurements (π^0 , η , η')
- tests with rare decays
- precision form factor measurements
- search for physics BSM

Quark Structure of Light Mesons

- Mesons are the simplest (q, anti-q) strongly interacting particles in nature
- They are the lightest strongly interacting particles: $\pi^0_{,}\pi^+_{,}\pi^-_{,}K^0_{,}K^0, K^+, K^-, \eta, \rho, \omega, ...$
- They are all unstable
- π mesons as the lightest (q, anti-q) bound state plays the same role as the hydrogen in atomic physics

QCD Symmetries and their Partial Violations in Light Meson Sector

Classical QCD Lagrangian in Chiral limit is invariant under:

 $SU_{L}(3) \times SU_{R}(3) \times U_{A}(1) \times U_{B}(1)$

- Chiral SU_L(3)xSU_R(3) spontaneously broken:
 8 Goldstone bosons: π⁰,π⁺,π⁻, K⁰, K⁰,K⁺,K,η,η'
- U_A(1) is explicitly broken:
 (axial or chiral anomaly)
 - $\succ \quad \Gamma(\pi^0 \rightarrow \gamma \gamma), \, \Gamma(\eta \rightarrow \gamma \gamma), \, \Gamma(\eta' \rightarrow \gamma \gamma)$
 - > mass of η_0
- quarks are massive and different, SU(3) is broken:
 - Goldstone bosons are massive
 - > mixing of $\pi^0 \eta \eta'$

This system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Meson Spectroscopy (light quark sector)

- Direct production method:
 - moderate energies
 - high luminosity
 - high resolutions
 - large acceptance

- The current status of the light meson spectroscopy (with M. Battaglieri and A. Szczpaniak):
 - It is an important tool to study the strong force (QCD).
 - Several new multi-q states have been discovered that do not fit into the Quark Model.
 - Quark bound-states are genuine manifestation of non-perturbative regime of QCD.
 - The effort to un-reveal the internal structure of new states will be payed off by progressing our understanding of the strong force.
 - It is still a long way to go but is an exciting journey!

Meson Spectroscopy (light quark sector)

- **Future Perspective** (with M. Battaglieri and A. Szczpaniak):
 - Discoveries of XYZP phenomena show there is a large "hadronic landscape" yet to be discovered (also in the light flavor sector).
 - New high precision (both statistics and systematics) experiments are needed to pin down new states.
 - Compliment decay studies with "production".
 - Needs to distinguish "resonances" from "virtual states", "bound states" or "threshold rescattering" effects.
 - No single model accommodates all new states.
 - Modern hadron spectroscopy requires collaborations between experimentalist and theorists.
 - Properly constrained S-matrix amplitude analysis can determine if these "exotic" states are real.
 - Lattice is complementary to experiment. In spectroscopy it works as a digital scattering experiment rather than a "field theory solver". It should be used in coordination with phenomenological models.
 - Our expectation is that a decade from now we will have a very different view of hadrons compared to that proposed by Gell-Mann and Zweig.

Tests With rare Decays ($\eta \rightarrow \pi^0 \gamma \gamma \text{ KAOE-2 Results}$)

ChPT "golden mode": p² null, p⁴ suppressed, p⁶ dominates

S. Giovannella

KLOE prel. 2006, 450 pb⁻¹: 70 signal events, 4 s's discrepancy w.r.t. Crystal Ball measurement

Rare Decays ($\eta \rightarrow \pi^0 \gamma \gamma$ MAMI A2 Results)

Excellent χ PT probe:

- $\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ tree level terms vanish
- π and K loops at O(p⁴) are heavily suppressed
- Major contribution to $d\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$ comes from $\mathcal{O}(p^6)$ counter terms

Searches for possible new physics:

Exclusion limit for Leptophobic
 U(1)_B-boson

$$\eta
ightarrow B\gamma
ightarrow \pi^0 \gamma \gamma$$

Edoardo Mornacchi - JGU Mainz - Meson decay studies - A2@MAMI

From E. Mornacchi

Theory Simulation ($\eta \rightarrow \pi^0 \gamma \gamma$ Dispersive Approach, B. Moussallam)

- Model for $\gamma\gamma \to \pi^0\eta$, $K_S K_S$, $K + K^-$ with analyticity/unitarity for the S-wave
- D-waves description more phenomenological
- Decay $\eta \rightarrow \pi^0 \gamma \gamma$ predicted
 - Sensitive to Adler zero position
 - ✓ Sensitive to D-waves near s = 0
- Reasonable agreement with Crystal Ball@AGS and A2@MAMI but tension with new results by KLOE

$\pi^0 \rightarrow \gamma \gamma$ Decay Width

- Chiral anomaly defines the $\pi^0 \rightarrow \gamma\gamma$ decay width: O(P⁴) order Lagrangian (Wess, Zumino (1971) and Witten (1981)) with anomalous term.
 - anomaly prediction is exact in massless quark limit (chiral limit):

$$\Gamma\left(\pi^{0} \to \gamma\gamma\right) = \frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576\pi^{3} F_{\pi}^{2}} = 7.725 \ eV$$

- ✓ parameter free, no low-energy constants!
- Recent theory calculations give ≈ 4.5% increase with ≈1% uncertainty

PrimEx final result:

 $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ = 7.802 ±0.052(stat) ± 0.105(syst.) eV

(± 1.5%)

Theory and Experiments

Primakoff Effect on Atomic electrons ($\pi^0 \rightarrow \gamma \gamma$ Decay Width High Precision Measurement)

- Use atomic electron as a target $\gamma + e^- \rightarrow e^- + \pi^0$
- $\pi^{0} \rightarrow \gamma \gamma$ Requires threshold energy for γ^{*} $E_{\gamma} = ((m_{\pi 0} + m_{e^{-}})^{2} m_{\gamma^{*}}^{2} m_{e^{-}}^{2})/(2 m_{e^{-}})$ $E_{\gamma} \approx 18 \text{ GeV}$
- Experimental method: detect all 3 final state particles:
 - ✓ recoil electrons
 - two photons from π^0 decay
- Will provide full kinematical control:
 - reaction identification;
 - total energy conservation;
 - total 3-momentum conservation.
- It will provide a unique opportunity to measure the $\pi^0 \rightarrow \gamma\gamma$ decay width with a sub-percent accuracy. Experiment with the JLab 22+ energy upgrade.

Charged Pion Form Factor Measurement to High Q²

By G. Huber

- The pion is seen as key to confirm the mechanisms that dynamically generate almost all hadron mass and is central to the effort to understand hadron structure
- At empirically accessible Q², the π⁺ form factor is sensitive to the emergent mass scale in QCD

- Experiment is completed
- Results are expected in ~2025

$F(\gamma\gamma * \rightarrow \pi^{0}) \begin{array}{l} Transition \ \ \ Form \ \ Factor \ \ \ Experiment \\ (Hall \ \ B \ at \ \ JLab) \end{array} \right. {}_{By \ R. \ Miskimen}$

- PRad-II experimental setup will be used
- E_e = 10.5 GeV, I_e = 10 nA, Target ²⁸Si
- Q² = 0.003 0.3 GeV²
- Expected run time 2025

Expected run time 2024-25

Outlook on $F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (Primakoff Effect on Atomic electrons)

- Use atomic electron as a target
 - > requires threshold energy for γ (or γ^*) $E_{\gamma^*} = ((m_{\pi 0} + m_{e_-})^2 - m_{\gamma^*}^2 - m_{e_-}^2)/(2 m_{e_-})$ for π^0 : $E_{\gamma^*} \approx 18.1 \text{ GeV}$
- 1) New high precision experiment for $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ $\gamma + e^- \rightarrow e^- + \pi^0$, with $\pi^0 \rightarrow \gamma \gamma$ detection of: recoil e^- and $\gamma \gamma$
- 2) $F(\gamma * \gamma * \rightarrow \pi^0)$ transition form factor experiment at low Q² range
 - > Experimental method: detect all 4 final state particles:
 - ✓ scattered electron
 - ✓ recoil electron
 - \checkmark two photons from π^0 decay
 - > Will provide full kinematical control:
 - reaction identification
 - total energy conservation
 - total 3-momentum conservation

Requires JLab energy upgrade to 22+ GeV

Radiative Corrections and Form Factors in Dalitz Decays of Lightest Mesons

- Tomas Husek "Radiative Corrections and Form Factors in Daltz Decays of Lightest Mesons"
- Question was: ".. is that really up to a 20% effect? "

Last minute submission

Emilie Passemar

Prospects for studies of production, decays and structure of light mesons with HADES

Izabela Ciepal

Studies of neutral mesons production, structure and decays with HADES > exclusive analysis

- electromagnetic structure of $\eta(\rightarrow \gamma e+e-)$, $\omega(\rightarrow \pi^0 e+e-)$
- decay dynamics of $\eta/\omega \,{\rightarrow}\, \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^0$
- · production cross sections
- CP violation in $\eta \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}e{+}e{-}$
- production mechanism of $f_1(1285)$

➢ inclusive analysis

Lattice Simulation ...

η,η' mixing from the lattice

LQCD calculation on ETMC ensembles with $N_f = 2 + 1 + 1$ flavors of Wilson Clover twisted-mass sea quarks:

- Three ensembles with physical quark mass, four lattice spacings.
- Improved control over systematic effects compared to our previous study; three times smaller stat error on e.g. M'_n.
- Controlled physical extrapolations for masses and mixing parameters in FKS scheme with stat. and sys. errors from model averages

$$M_{\eta} = 549(11)_{\text{stat}}(11)_{\text{sys}} \,\text{MeV}, \quad M_{\eta'} = 971(19)_{\text{stat}}(06)_{\text{sys}} \,\text{MeV}$$

 $\phi = 39.6(1.4)_{\rm stat}(1.5)_{\rm sys}^{\circ}, \ f_l = 138.3(4.0)_{\rm stat}(1.8)_{\rm sys}\,{\rm MeV}, \ f_s = 170.7(3.2)_{\rm stat}(1.2)_{\rm sys}\,{\rm MeV}$

Future prospects: Axialvector MEs + study of scale dependence of mixing parameters through $Z_A^0(\mu)$.

XYZ Spectroscopy at the EIC

Peak Luminosity [cm⁻²s⁻¹]

Invariant mass n+n-e+e-

- It's new: no XYZ state has been uncontroversially seen so far
- Rescattering mechanisms that could mimic resonances in multibody decays can be controlled better (one can change the energy beam but not the B mass...)
- The framework is (relatively) clean from a theory point of view
- Radiative decays offer another way of discerning the nature of the states

Desiderata

- Low beam energies
- Low solenoidal field strength
- Require far forward and backward acceptance and resolution

Expected signal yields at the EIC competitive with BESIII if high-lumi scenario is realized

Future Facilities for Light Meson Physics

- Current JLab 12 GeV (GlueX, CLAS12):
 - Decay widths
 - Spectroscopy
 - Search for new physics
- JLab 22+ GeV beam upgrade (GlueX, CLAS22, SOLID ...)
 - Precision decay widths
 - Spectrosopy
 - Search experiments
- EIC
 - Spectroscopy
 - ✓ Exotics ...
- KLOE
 - Spectroscopy
 - Exotics
 - Decay widths
- MAMI
 - Spectroscopy
 - Exotics
 - Decay widths

- HADES:
 - spectroscopy
 - ✓ search for new physics
- ?
 - ✓ ?
- ?
- ?

Thanks to the Organizers for this scientifically Rich and very Intense Workshop