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Quantum Computing in a Nutshell
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The Schwinger Model

We consider the Schwinger model, a U(1) gauge theory in 1 + 1 dimension,
with the inclusion of a θ-term1.
The Lagrangian can be written as

L = −1

4
FµνF

µν +
gθ

4π
ϵµνF

µν + iψ̄γµ(∂µ + igAµ)ψ −mψ̄ψ (1)

We use Gauss’s Law and the boundary conditions to remove the gauge
degrees of freedom.

1Following Chakraborty et al. “Classically emulated digital quantum simulation of the Schwinger model with a topological term via adiabatic state
preparation”. DOI: PhysRevD.105.094503).
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Schwinger Hamiltonian

We need to apply the Legendre Transform to get the Hamiltonian for QC.

H =

∫
dx

[
−iψ̄γ1(∂1 + igA1)ψ +mψ̄eiθγ5ψ +

1

2
E2

]
, (2)

Then we employ staggered fermions for discretizing H

H = −i
N−1∑
n=1

(
1

2a
− (−1)

nm

2
θ

)[
χ†
ne

iϕnχn+1 − h.c.
]

+m cos θ

N∑
n=1

(−1)
n
χ†
nχn +

g2a

2

N−1∑
n=1

L2
n (3)

with A1(x) → −ϕn/(ag) and E(x) → gLn, while the fermions χn = ψu(x) for
n even and χn = ψd(x) for n odd.
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Discretization of the Hamiltonian
The final Hamiltonian in terms of spin variables can be written, after a
Jordan-Wigner transformation, as H = HZZ +H± +HZ where:

HZZ =
J

2

N−1∑
n=2

∑
1≤k<l≤n

ZkZl

H± =
1

2

N−1∑
n=1

(
w − (−1)

nm

2
sin θ

)
[XnXn+1 + YnYn+1]

HZ = m cos θ

N∑
n=1

(−1)
n
Zn − J

2

N−1∑
n=1

(n mod 2)

n∑
l=1

Zl,

where we defined the constants w = 1
2a and J = ga

2 and (Xn, Yn, Zn) are the
Pauli matrices at site n. The gauge field is removed using Gauss’s law and
open boundary conditions.
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Adiabatic State Preparation

Adiabatic State Preparation (ASP) is a well established method for state
preparation.

1 Identify a simpler problem that can be easily solve
2 Find a transition between the simple Hamiltonian and the target one
3 Initialize the system in the GS of the simple Hamiltonian
4 Slowly change the Hamiltonian to the target one

|Ω⟩ = lim
T→∞

exp

(
−i
∫ T

0

dtHA(t)

)
|Ω0⟩ (4)

For example, we considered the initial Hamiltonian
H0 = HZZ +HZ |m→m0,θ→0, which is very simple to analyze.
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Adiabatic State Preparation

In the simplest case on defines this operator as U(t) = e−iHA(t)δt where
HA(t) is the adiabatic Hamiltonian, which interpolates between H and H0 by
making the constants w, θ and m time dependent. A linear interpolation
would be, for a final time T :

w → t

T
w θ → t

T
θ m→

(
1− t

T

)
m0 +

t

T
m

but other interpolations are possible and also more efficient, such as a sin2 or
cos2.
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Circuit Realization of an ASP Step

Trotter Order N = 4 N = 8
1 9 18
2 16 26

Average number of CNOT gates per time evolution step
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ASP Results
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Convergence of Adiabatic State Preparation

T = 5 Order = 1
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Errors given by δt for the Trotter-Suzuki truncation and by T for the adiabatic
approximations → both need to be optimized
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ASP Results
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Quantum Approximate Optimization
Algorithm
The Quantum Approximate Optimization Algorithm (QAOA) is a quantum
optimization algorithm that can be used also for state preparation. It relies,
just as ASP, on the existence of a simple trivially solvable Hamiltonian to use
as a starting point.
The ansatz for the state is given by:

|ψM (γ⃗, β⃗)⟩ =

(
M−1∏
k=0

e−iβM−kH0e−iγM−kH

)
|ψ0⟩

The problem is reduced to finding the optimal values for −→γ ∗ and
−→
β ∗ such that

|ψN (−→γ ∗,
−→
β ∗)⟩ is a good approximation of the desired state. For this work we

used simulated annealing, minimizing the energy of the system, as in a
variational problem.

⟨ψM (γ⃗, β⃗)|H |ψM (γ⃗, β⃗)⟩ = EV
0 ≥ E0 (5)
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QAOA Results

The QAOA method has the advantage to permit to set the number of steps in the evolution to a
very small number, provided one can find the optimal parameters for such evolution. For instance,
for the same systems shown before we obtained comparable results with just two steps

Method N (θ,m) M CNOT/qubit Rel. Err. E0 GS Overlap
QAOA 4 (0, 0) 2 24 0.0029 0.9975
QAOA 4 (0, 0) 3 36 0.0041 0.9968
QAOA 4 (π/4, 1) 2 24 0.00045 0.9996
QAOA 4 (π/4, 1) 3 36 0.0031 0.9971
QAOA 8 (0, 0) 2 56 0.0089 0.9701
QAOA 8 (0, 0) 3 84 0.0068 0.9846
QAOA 8 (π/4, 1) 2 56 0.00047 0.9988
QAOA 8 (π/4, 1) 3 84 0.00040 0.9989
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Blocked QAOA

One option to decrease the number of CNOT gates per qubit even further would be to use
custom optimized 2-qubit gates. To deal with the non-local term we define a modified Hamiltonian
HB , which we will call “blocked,” where only the diagonal and nearest-neighbor terms of the full
Hamiltonian are kept:

HB = H± +HZ +H′
ZZ

|ψM (γ⃗, β⃗)⟩ = e−iβMH0e−iγMH

(
M−1∏
k=1

e−iβM−kH0e−iγM−kHB

)
|ψ0⟩

where the first M − 1 unitary application contain the HB while only one application of the full
Hamiltonian is applied on the last step.
This can hopefully be used to scale the system to larger values of N .
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Blocked QAOA Results

N # CNOT/qubit Rel. Err. E0 GS Overlap
4∗ 16 0.0043 0.9960
6 22 0.0083 0.9273
8 27 0.0168 0.7516
10 32 0.0231 0.5138

QAOA Blocked with M = 3 steps. The results for the N = 4 are obtained after
parameter optimization; the results for N = 6, 8, 10 have been computed
using the same optimal parameters for N = 4.
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The Rodeo Algorithm

A recently proposed algorithm that couples the system with a set of M ancilla
qubits. For each a controlled time evolution is made with a random time tn,
followed by a phase gate.

Member of the Helmholtz Association 09/06/2023 Slide 14



The Rodeo Algorithm

The probability of measuring the ancilla qubit in the |1⟩ state for a given
eigenvalue ϵj is cos2

[
(ϵj − Ei)

t
2

]
For M qubits, each with a random time tm then we have a cosine filter:

PM =

M∏
m=1

cos2
[
(ϵj − Ei)

tm
2

]
(6)

By “scanning” over different values of the energy, we can get the
spectrum and the overlap factors for Hobj of an initial state |ψI⟩.
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Rodeo Algorithm Results
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Rodeo Algorithm for State Preparation
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The efficiency of the algorithm depends on the overlap with the initial state |ψI⟩.

Member of the Helmholtz Association 09/06/2023 Slide 17



Combining QAOA and RA

To alleviate the issues with the Rodeo Algorithm we can use a
“preconditioner”, i.e. a better initial state that has higher overlap with the GS.
We use the blocked QAOA since it is very cheap:
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Summary and Outlook

ASP is a reliable and well understood method for state preparation, but it
is not the most efficient.

QAOA leads to shorter algorithm and better precision by relying on a
classical-quantum hybrid algorithm
The RA can be used for preparing any state, not just the ground state,
but it results in very long algorithms.
Can chain together different algorithms to obtain better results
Scaling with larger systems? Efficient excited states? More complicated
initial states?
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