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Scaling1

Θ(log 1/𝛼 /𝜖)

Physics application: eigenvalues2

𝑒!"	$	% 𝐸 = 𝑒!"&% 𝐸

Scaling3

Θ(log 1/𝛼 /𝜖)

Physics application: expectation values4

𝑂 𝑡 = 𝑇𝑟(𝜌𝑈' 𝑡 𝑂𝑈 𝑡 )	

Phase Estimation Amplitude Estimation

Here
• 𝛼 is the failure rate
• 𝜖 is the precision

Two Measurement Examples

1. Giovannetti, Lloyd, Maccone (2006)
2. Abrams, Lloyd (1998)

3. Suzuki, Uno, et. al (2020)
4. Knill, Ortiz, Somma (2007)
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The quantum simulation “workflow”

State prep Dynamical 
Evolution Measurement

𝜌, 𝑒!"	 *$	% Tr(𝜌, 5𝑂(𝑡))
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What are our options?

exp 0
!

−𝑖	𝐻! 𝑡 =6
!

exp(−𝑖	𝐻!𝑡) + 𝑂(𝑡")

üCommutator scaling1

üZero overhead

üModular, many choices2, 3

X Relatively inaccurate: for order 𝑝 > 0

𝑁exp ∈ 𝑂
! 1/𝜖

Trotter Others

üBetter accuracy: Cost ∈ 𝑂 log 1/𝜖 4, 5

üAsymptotically optimal performance6 
in 𝑡, 𝜖

X More overhead cost

X Auxiliary qubits

X Lots of control gates

1. Childs, Su, Tran, Wiebe, Zhu (2019)
2. Campbell (2019)
3. Ikeda, Abrar, Chuang, Sugiura (2023)

4. Childs, Wiebe (2012)
5. Babbush, Berry, Kivlichan, Wei, Love, Aspuru-Guzik (2016)
6. Low, Chuang (2019)
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Effect on 
Parameter 
Estimation

Consider eigenvalue estimation with 1st order Trotter.

exp<
F

−𝑖	𝐻F 𝑡 = @
F

exp−𝑖	𝐻F	𝑡	/𝑟
G

+ 𝑂(𝑡H/𝑟)

= exp−𝑖 8𝐻G𝑡

with “effective Hamiltonian” !𝐻! that has eigenvalues

5𝐸G = 𝐸 + 𝑂( ⁄𝑡H 𝑟).

To achieve accuracy 𝜖, we require 𝑁 ∈ 𝑂(1/𝜖) experiments 
and 𝑟 ∈ 𝑂( ⁄𝑡" 𝜖) Trotter steps. Thus,

𝑁IJK ∝ 𝑁	𝑟 ∈ 𝑂( ⁄𝑡H 𝜖H),

which is quadratically worse than the Heisenberg limit.
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Won’t give HL

HL up to logs (not bad)
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Can we achieve near HL 
scaling using only Trotter 
and classical resources?
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How do other algorithms do it?

Consider multiproduct formulas with Trotter formula 𝑆#.

8𝑈LMN 𝑡 : =<
FOP

Q

𝑎F	𝑆K ⁄𝑡 𝑘F
R! = 𝑈 𝑡 + 𝑂(𝑡QSK!P)

Trotter formulas are added coherently using the linear combo of 
unitaries (LCU) technique,1 or offline with random sampling.2

This is a form of Richardson extrapolation to 𝑟 → ∞.

In the end, we get	𝑂(log 1/𝜖) simulation cost.

1. Low, Kliuchnikov, Wiebe (2019)
2. Faehrmann, Steudtner, 
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But we can do extrapola6on classically (offline)

8𝑈LMN 𝑡 =<
F

𝑎F𝑈F 	 → 	 5𝑂 𝑡 =<
F

𝑎F⟨𝑂R! 𝑡 ⟩

This has been considered in context of noisy Hamiltonian simulation1 and linear systems.2

This has been demonstrated on IBM hardware with observed improvements.3

However, these works lack a theoretical analysis of algorithmic performance. 

Other techniques for constructing estimates are less explored.

1. Endo, Zhao, Li, Benjamin, Yuan (2019)
2. Vazquez, Hiptmair, Woerner (2022)
3. Vazquez, Egger, Ochsner, Woerner (2022)
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What is our 
contribution?

§ We analyze polynomial interpolation for extrapolating 
Suzuki-Trotter formulas to zero step size.

§ We do a full theoretical analysis of cost in terms of 
algorithmic errors (no external noise).

§ We look specifically at

§ Eigenvalues (via phase estimation) 𝐻 𝐸 = 𝐸|𝐸⟩

§ Expectation values (via amplitude estimation)  ⟨𝑂 𝑡 ⟩

§ We achieve “near” HL scaling:  5𝑂( ⁄1 𝜖)

§ Thus, Trotter alone is sufficient for high accuracy 
estimation tasks relevant to physics. No additional 
quantum resources needed.
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Set up and notation
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Suzuki-Trotter 
formulas

Let

𝑆HR ⁄𝑡 𝑟 G = 𝑈 𝑡 + 𝑂( ⁄𝑡HRSP 𝑟HR)

be the order 2𝑘 symmetric Suzuki-Trotter formula in 𝑟 steps.

At lowest order (𝑘 = 1),

𝑆" 𝑡 = exp
−𝑖	𝐻#𝑡
2 …exp

−𝑖𝐻$𝑡
2 	exp

−𝑖𝐻$𝑡
2 …exp

−𝑖	𝐻#𝑡
2 ,

with higher 𝑘 defined recursively (with # of terms 
exponential in 𝑘).
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𝑠 parametrization and effective Hamiltonian

Instead of number of steps 𝑟, let’s consider “dimensionless step size” 𝑠 ≔ ⁄1 𝑟.

8𝑈\ 𝑡 ≔ 𝑆HR 𝑠𝑡 ⁄P ^

The above formula suggests extending the definition to real valued 𝑠 ∈ [−1,1]. 

Also, !𝑈$ = 𝑈 is the exact propagator.

Observe that simulations become more expensive as 𝑠 → 0.

We can define an effective Hamiltonian !𝐻% such that

8𝑈^ 𝑡 = exp(−𝑖	 8𝐻^𝑡)
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-1 1

0 𝑠

𝑓(0)

Range of 
accuracy

𝑠-dependent observables

To illustrate, let 𝑓 𝑠 ≔ ⟨ +𝑂% 𝑡 ⟩.

Fact: 𝑓 −𝑠 = 𝑓(𝑠), meaning 𝑓(𝑠) is even (for Suzuki-Trotter).
𝑎 ≈ ⁄1 ( 𝐻 𝑡)

𝑓(𝑠)

-𝑎 𝑎
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Zooming in on accuracy range [−𝑎, 𝑎]

Let’s estimate some values A𝑦& of 𝑓(𝑠&) (choice of 𝑠& matters!). 

Then let’s construct interpolant 𝑃'()𝑓(𝑠) 

Our estimate for 𝑓(0) is then 𝑃'()𝑓(0)

-𝑎 𝑎
0 𝑠

𝑓(0)

𝑓(𝑠)
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Finer Points
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Choice of 
nodes ma.ers
Equally spaced nodes lead to 

wild oscillations

Runge phenomenon (John D. Cook)
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The solution: Chebyshev interpolation

These are simply projections of equally spaced 
points on the radius 𝑎 circle.

𝑠R = 𝑎 cos
2𝑘 − 1
2𝑛

𝜋 ,	 𝑘 = 1,… , 𝑛

Equivalently, the zeros of the 𝑛th Chebyshev 
polynomial.

There are many good reasons for this choice

üGuaranteed convergence1 to 𝑓(𝑠) in large 𝑛 limit (no 
Runge)

ü  Robust to small errors2 in data c𝑦& ≈ 𝑓(𝑠&)

üPolynomial fit accomplished with well-conditioned 
linear system

üNodes anticluster from 𝑠 = 0 ⟹ cheaper quantum cost

By Steven G. Johnson (Wikipedia)

1. For Lipschitz continuous f, see Trefethen (2011)
2. The Chebyshev Polynomials, Rivlin (1974)
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Theory of 
Interpolation 
Error

Using the generalized Mean Value Theorem, we can show

𝐸 𝑠 ≔ 𝑓 𝑠 − 𝑃'(# 𝑠 =
𝑓 ' 𝜉
𝑛! 𝜔'(𝑠)

where 𝜉 ∈ [−𝑎, 𝑎] and the nodal polynomial 𝜔' is 

𝜔' 𝑠 ≔6
!)#

'

𝑠 − 𝑠! .

We care about 𝑠 = 0, Chebyshev nodes, and an upper bound.

From which we show that

𝐸 0 ≤ max
%∈ (+,+

𝑓 ' 𝑠
𝑎
2𝑛

'

A lot of the work is just upper bounding 𝑓 ' (𝑠).
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How hard is 
this?

§ For e.g., phase estimation, 𝑓 𝑠 = 5𝐸% = ⟨ 5𝐸% !𝐻% 5𝐸%⟩ 

⇒Eigenvalue derivatives 𝑓 ' (𝑠) found by repeated use 
of perturbation theory.

§ Expectation values:  just need derivatives of 𝑒(&	 +,'	- 

§ To evaluate and bound these derivatives involves

§ Combinatoric tools, such as Faà di Bruno’s formula

§ Plentiful, but tasteful, use of triangle inequality.

§ After a long slog, we get an error bound (hard part)

§ Then we turn it into an algorithm cost (easier part)
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Sources of error Interpolation 
error

Imperfect 
data points

Imperfect 
Chebyshev 

nodes 

Turns out to be subdominant, thanks 
to well-conditioning of Chebyshev!
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Main Results
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First: a crucial lemma on the size of '𝐻! derivatives

Lemma:
Let 𝑠 be chosen (small enough) such that

2𝑘 ⁄5 3 R!P𝑚	max
F
‖𝐻F‖ 𝑠𝑡 ≤ ⁄𝜋 20 .

Then the following bound holds.

𝜕^Q 8𝐻^ ≤ 2𝑡!P𝑛Q 2𝑒H𝑘 ⁄5 3 R!P𝑚	max
F

𝐻F 𝑡
QSP

 

𝐻 =0
!)#

$

𝐻! *𝐻% ≔
𝑖
𝑠𝑡 log 𝑆"-(𝑠𝑡)

Proof technique: expand logarithm as power series. Turn the crank.
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Main Result 1: Eigenvalue estimation

Theorem:
Let 𝑠 be chosen as small as in the previous lemma. Then it is possible to estimate 

5𝐸, = 𝐸 
Within precision 𝜖 and failure probability at most 1/3, using a number of 𝑒(&	,(- 
bounded as 

𝑁IJK ∈ 5𝑂
q# ⁄Hr s $tuv

!
$! PSw

x  

8𝐻^| 5𝐸^⟩ = 5𝐸^| 5𝐸^⟩

Proof technique, use previous lemma and perturbation theory.
One annoyance: Γ depends on inverse minimal spectral gap.
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Main Result 2: Expectation value estimation

Theorem:
Again, with 𝑠 sufficiently small, it is possible to estimate

5𝑂$ 𝑡 = ⟨𝑂 𝑡 ⟩
within precision 𝜖 and failure probability at most 1/3 using a number of 𝑒(&	/"0 bounded as 

𝑁IJK ∈ 5𝑂
q%R# ⁄Hr z $&' tuv

!
$! %

#

x . 

5𝑂^ 𝑡 = Tr(8𝑈^
' 𝑡 𝑂	8𝑈^ 𝑡 𝜌)

Drawback: 𝑂( 𝐻 𝑡 ") scaling! Compare to optimal (and achieved) 𝑂(𝑡).
This is our bound for any order Suzuki Trotter. 
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Discussion of Findings
§ Our results demonstrate that near-Heisenberg Limited scaling is 

achievable with polynomial interpolation of Trotter data

§ Sadly, Expectation Value algorithm suffers a suboptimal 𝑡" bound

§ Can this be improved? I would guess so.

§ Our work is limited in several respects

§ Hardware noise

§ State prep

§ Only Suzuki Trotter, not generic Trotter (but should apply generally)

§ Our approach is relatively NISQ friendly, in that it only requires Trotter

§ Connections to zero noise extrapolation? 

§ Connections to lattice QFT?
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Outlook

§ Using only Trotter + classical, we achieve some 
accuracy gains in important estimation tasks:

§ Eigenvalue estimation

§ Expectation value estimation

§ As Trotter simulations become more feasible, 
we can begin to test polynomial interpolation 
on real hardware.

§ Broader question: How do we best take 
advantage of simulation data once we have it?
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