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Two Measurement Examples

Phase Estimation Amplitude Estimation

Scaling'! Scaling®
O(log(1/a) /e€) O(log(1/a) /e€)
Physics application: eigenvalues? Physics application: expectation values*
e HHE) = e7E|E) (0()) = Tr(pUT(H)OU(1))
Here

* « is the failure rate
* € isthe precision

1. Giovannetti, Lloyd, Maccone (2006) 3. Suzuki, Uno, et. al (2020)
2. Abrams, Lloyd (1998) 4. Knill, Ortiz, Somma (2007)



Two Measurement Examples

Phase Estimation

Scaling'!
0(log(1/a) /e)
Physics application: eigenvalues?
e—iH tlE) — e_iEt|E')
Here

* « is the failure rate
* € isthe precision

-
.

Giovannetti, Lloyd, Maccone (2006)
2. Abrams, Lloyd (1998)

Amplitude Estimation

Scaling®

O(log(1/a) /e)

Physics application: expectation values*

(0(0) = Tr(pUT()OU (1))

3.
4.

Suzuki, Uno, et. al (2020)
Knill, Ortiz, Somma (2007)



The quantum simulation “workflow”
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What are our options?

|

exp <2 —i H; t) = 1_[ exp(—i H;t) + 0(t?)

J J

v Commutator scaling?

v’ Zero overhead

v Modular, many choices? 3

X Relatively inaccurate: for order p > 0

1.
2.
3.

Nexp € 0(3/1/€)

Childs, Su, Tran, Wiebe, Zhu (2019)
Campbell (2019)
Ikeda, Abrar, Chuang, Sugiura (2023)

[

v Better accuracy: Cost € 0(log1/e)45

v Asymptotically optimal performance®
int, e

X More overhead cost

X Auxiliary qubits

X Lots of control gates

4. Childs,Wiebe (2012)
5. Babbush, Berry, Kivlichan, Wei, Love, Aspuru-Guzik (2016)
6. Low, Chuang (2019)



Effect on

Parameter
Estimation

Consider eigenvalue estimation with 15t order Trotter.

r

expz —LHjt = (1_[ exp—i Hjt /r) + 0(t%/7)
J

J
= exp —iH,t
with “effective Hamiltonian” H, that has eigenvalues
E.=E + 0(t?/7).

To achieve accuracy €, we require N € 0(1/¢) experiments
and r € 0(t?/¢) Trotter steps. Thus,

Nexp X N7 € O(t?/c?),

which is quadratically worse than the Heisenberg limit.



What are our options?

|

exp <Z —i H; t) = 1_[ exp(—i H;t) + 0(t?)

J J
v Commutator scaling?
v Zero overhead
v Modular, many choices? 3
X Relatively inaccurate: for order p > 0
Nexp€-0{~/4e)
Won't give HL

1. Childs, Su, Tran, Wiebe, Zhu (2019)
2. Campbell (2019)
3. Ikeda, Abrar, Chuang, Sugiura (2023)

[

|

HL up to logs (not bad)
A

| \
v Better accuracy: Cost € 0(log1/e)45

v Asymptotically optimal performance®

int, e

X More overhead cost
X Auxiliary qubits

X Lots of control gates

4. Childs,Wiebe (2012)
5. Babbush, Berry, Kivlichan, Wei, Love, Aspuru-Guzik (2016)
6. Low, Chuang (2019)



Can we achieve near HL
scaling using only Trotter
and classical resources?
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How do other algorithms do it?

Consider multiproduct formulas with Trotter formula S,,.

n

ﬁMPF(t): — z Clj Sp(t/k])k] — U(t) + 0(tn+p_1)

J=1
Trotter formulas are added coherently using the linear combo of
unitaries (LCU) technique,! or offline with random sampling.?

This is a form of Richardson extrapolation to r — co.

In the end, we get O(log 1/¢) simulation cost.

1. Low, Kliuchnikov, Wiebe (2019)
2. Faehrmann, Steudtner,




But we can do extrapolation classically (offline)

Oupe@®) = ) 0 = (0(D) = ) a(04 ®)
J J
This has been considered in context of noisy Hamiltonian simulation! and linear systems.?

This has been demonstrated on IBM hardware with observed improvements.3

However, these works lack a theoretical analysis of algorithmic performance.

Other techniques for constructing estimates are less explored.

1. Endo, Zhao, Li, Benjamin, Yuan (2019)
2. Vazquez, Hiptmair, Woerner (2022)
3.« Vazquez, Egger, Ochsner, Woerner (2022)
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= We analyze polynomial interpolation for extrapolating
Suzuki-Trotter formulas to zero step size.

= We do a full theoretical analysis of cost in terms of

\Nhat iS our algorithmic errors (no external noise).
contri b ution” = We look specifically at

= Eigenvalues (via phase estimation) H|E) = E|E)

= Expectation values (via amplitude estimation) (0(t))

= We achieve “near” HL scaling: 0(1/¢)

= Thus, Trotter alone is sufficient for high accuracy
estimation tasks relevant to physics. No additional
quantum resources needed.



Set up and notation
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Let
Sox(t/T)" = U(t) + O(t%F+1 /r2k)

be the order 2k symmetric Suzuki-Trotter formula in r steps.

Suzuki-Trotter
Atlowest order (k = 1),
fO rm u |a S S,(t) = exp <_i Hlt) .. €XP (_iHmt) exp (_iHmt) ... EXP (_i Hlt),

2 2 2 2

with higher k defined recursively (with # of terms
exponential in k).



S parametrization and effective Hamiltonian

Instead of number of steps r, let’s consider “dimensionless step size” s := 1/r.

Us(t) = Sop(st)/s

The above formula suggests extending the definition to real valued s € [—1,1].

Also, U, = U is the exact propagator.
Observe that simulations become more expensive as s — 0.

We can define an effective Hamiltonian H, such that

Us(t) = exp(—i Hst)



s-dependent observables

To illustrate, let f(s) = (O,(t)).

Fact: f(—s) = f(s), meaning f(s) is even (for Suzuki-Trotter).
a=1/(||HI[t)

17



/ooming in on accuracy range |—a, a|

Let’s estimate some values V; of f(s;) (choice of s; matters!).

Then let’s construct interpolant 7,/ (s)

Our estimate for f(0) isthen P,,_,/(0)

18






Choice of
nodes matters

Equally spaced nodes lead to
wild oscillations
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® Nodes
m —— Interpolant
------ f(x) = (1 +25x%)7!
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The solution: Chebyshev interpolation

These are simply projections of equally spaced
points on the radius a circle.
(Zk —1
S, = aACoOS\————
f 2n
Equivalently, the zeros of the nth Chebyshev
polynomial.

T[), k=1,..,n

There are many good reasons for this choice

v Guaranteed convergence! to f(s) in large n limit (no
Runge)

v" Robust to small errors? in data 7; ~ f(s;)

v Polynomial fit accomplished with well-conditioned
linear system

v Nodes anticluster from s = 0 = cheaper quantum cost

1.0 1

0.8 A

0.6

0.4 4

0.2 1

0.0

Chebyshev nodes

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 0.6 08 1.0

By Steven G. Johnson (Wikipedia)

1. For Lipschitz continuous £, see Trefethen (2011)
2. The Chebyshev Polynomials, Rivlin (1974)
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Using the generalized Mean Value Theorem, we can show

(n)
ES) = £©) — Pacs(6) = = P (5

Th eo ry Of where ¢ € [—a, a] and the nodal polynomial w,, is
Interpolation =] [(s-3).

E r rO r We care about s = 0, Chebyshev nodes, and an upper bound.

From which we show that

a n
< ) (| —
E(0)] = Ser[n—eg,(a (Zn)

A lot of the work is just upper bounding f ™ (s).




How hard is
this?
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= For e.g., phase estimation, f(s) = E; = (E;|H;|E;)

—Eigenvalue derivatives f ™ (s) found by repeated use
of perturbation theory.

= Expectation values: just need derivatives of et /st

= To evaluate and bound these derivatives involves
= Combinatoric tools, such as Faa di Bruno’s formula

= Plentiful, but tasteful, use of triangle inequality.
= After a long slog, we get an error bound (hard part)

= Then we turn it into an algorithm cost (easier part)



24

Imperfect
Chebyshev
nodes

Interpolation
error

Imperfect
data points

Sources of error

|

Turns out to be subdominant, thanks
to well-conditioning of Chebyshev!
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First: a crucial lemma on the size of Hg derivatives

~ [
H =ZH] Hs = ;logSZk(St)

j=1

Lemma:
Let s be chosen (small enough) such that

2k(5/3)*m max |H;|| st < m/20.
J
Then the following bound holds.

n+1
|0RH,|| < 2¢71n™ (Zezk(5/3)k_1m m]ax”Hj” t)

Proof technique: expand logarithm as power series. Turn the crank.
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Main Result 1: Eigenvalue estimation

Hslgs) — ES|ES>

Theorem:
Let s be chosen as small as in the previous lemma. Then it is possible to estimate
EO —_ E

Within precision € and failure probability at most 1/3, using a number of e~ #t
bounded as

_ (m?%(25/3)% max||Hj||(1+F)
e

€

Proof technique, use previous lemma and perturbation theory.
One annoyance: I' depends on inverse minimal spectral gap.
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Main Result 2: Expectation value estimation
(0s(0)) = Tr(TS (£)0 Ts(t)p)

Theorem:
Again, with s sufficiently small, it is possible to estimate

(0,(D)) = (0(1))

within precision € and failure probability at most 1/3 using a number of e tHjt

bounded as

31,2 k-1 -
mk2(25/9)%~* (max| ;) )

€

Nexp € (7(

Drawback: O( (J|H||t)?) scaling! Compare to optimal (and achieved) O(t).
This is our bound for any order Suzuki Trotter.



Discussion of Findings

= QOur results demonstrate that near-Heisenberg Limited scaling is
achievable with polynomial interpolation of Trotter data

Sadly, Expectation Value algorithm suffers a suboptimal t* bound

= Can this be improved? I would guess so.

= Our work is limited in several respects

= Hardware noise
= State prep
= Only Suzuki Trotter, not generic Trotter (but should apply generally)

= Our approach is relatively NISQ friendly, in that it only requires Trotter
= Connections to zero noise extrapolation?

= Connections to lattice QFT?

29
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= Using only Trotter + classical, we achieve some
accuracy gains in important estimation tasks:

= Eigenvalue estimation

= Expectation value estimation

Outlook

= As Trotter simulations become more feasible,
we can begin to test polynomial interpolation
on real hardware.

= Broader question: How do we best take

advantage of simulation data once we have it?




