Quantum simulation of asymptotically free theories and θ terms

Hersh Singh

InQubator for Quantum Simulation (IQuS) & Institute for Nuclear Theory Department of Physics, University of Washington

June 06, 2023 Nuclear and particle physics on a quantum computer: where do we stand now? ECT* Trento

Towards quantum advantage for QCD

• We need a clear path towards quantum advantage for high-energy and nuclear physics

Long-term Goal: Quantum Simulation of Lattice QCD

• How can we make progress towards this path?

Short term Goal: Quantum Simulation of QCD-like theories in lower dimensions with a clear path towards QCD

- Two of the most important features of QCD are asymptotic freedom and a topological θ term
- I would like to discuss quantum simulation of a theory which exhibits both these features
 - This serves as a prototypical roadmap for quantum simulation of QCD.

Proposal:

- Design a spin/qubit model which exactly reproduces an asymptotically-free QFT in the continuum limit
- Perform quantum simulation of the spin system

A toy model of QCD

- *O*(3) nonlinear sigma model in 1+1 dimensions
- Continuum action

$$S[\vec{n}(x)] = rac{1}{2g^2} \int d^2x \; \partial_\mu \vec{n} \cdot \partial^\mu \vec{n} + i\theta Q[\vec{n}]$$

(1)

with $\vec{n} \in \mathbb{R}^3$ and $|\vec{n}| = 1$.

- g is classically dimensionless coupling
- for condensed-matter physicists

 \implies natural in the study of antiferromagnets, topological phases, ...

• for high-energy physicists

 \implies toy model for QCD, asymptotic freedom, dynamical mass generation, dimensional transmutation, $\theta\text{-}vacua$

(3+1)d SU(N) Yang-Mills vs. (1+1)d O(3)

SU(N) YM

- 3 + 1-dimensional
- Local gauge symmetry
- Asymptotically free
- Dimensional transmutation
- Nonperturbative mass gap
- Nontrivial topology, *θ*-term

$O(3) \text{ NL}\sigma M$

- 1 + 1-dimensional
- Global *O*(3) symmetry
- Asymptotically free
- Dimensional transmutation
- Nonperturbative mass gap
- Nontrivial topology, θ -term

Traditional lattice regularization

- *O*(3) nonlinear sigma model in 1+1 dimensions
- Lattice regulated action:

$$S = \frac{1}{2g^2} \int d^2x \, \partial_\mu \vec{n} \cdot \partial^\mu \vec{n}$$
(2)

$$\downarrow \text{ Naïve discretization}$$
$$S = -\frac{1}{g^2} \sum_{\langle xy \rangle} \vec{n}_x \cdot \vec{n}_y$$
(3)

- 2d O(3) NLSM is the continuum QFT which emerges in the $g \rightarrow 0$ limit of the lattice model
- Can also write a Kogut-Susskind Hamiltonian for this model
- Completely analogous to QCD

"Digitization" and "qubit regularization"

"Digitization" of QFTs for quantum computers

• Traditional lattice regularization for bosons = ∞ -dim local Hilbert space. Implied by the bosonic commutation relations

$$[\phi_x, \pi_y] = i\delta_{x,y} \tag{4}$$

- But digital quantum computers need a finite dimensional local Hilbert space
- Need to truncate the Hilbert space somehow...
- Several approaches towards finding a "digitization"
 - Field-space digitization [Jordan, Lee, Preskill, 2011, ...]
 - Loop-string hadrons [Raychoudhary et al, 2020, ...]
 - Single-particle digization [Barata et al, 2020, ...]
 - Discrete subgroups for gauge theories [Lamm et al, ...]
 - D-theory, quantum-link models [Brower et al, 2004, ...]
 - (see Jesse's talk as well for more!)

• ...

• Most approaches to digitization: truncate the Hilbert space (to n qubits), then reproduce the traditional lattice Hamiltonian by taking $n \to \infty$, and then take the continuum limit like in traditional lattice models

Digitized model $\xrightarrow{n \to \infty}$ Traditional lattice model $\xrightarrow{a \to 0}$ continuum QFT (5)

• Is it necessary to do this 2-step procedure? No!

- Wilson's insight: QFT = Second-order phase transitions
- Even with finite *n* (#qubits per lattice site) one can obtain continuum limits of field theories

Qubit regularization of field theories

- Continuum limit: tune to a second-order critical point of a quantum lattice Hamiltonian
- This defines a procedure to obtain a continuum QFT

• Qubit regularization:

a quantum lattice Hamiltonian acting on a finite-dimensional local Hilbert space (kept fixed) which reproduces a desired QFT in the vicinity of a quantum critical point.

Asymptotic Freedom

- A lattice regularization must reproduce the physics of all scales
- Otherwise, it is just a "low-energy EFT"

The challenge of asymptotic freedom

- To get the continuum limit, we need to recover both the IR physics and the UV physics
- I will show two methods to obtain the UV physics from qubit models

Two qubit models for asymptotic freedom

UV: asymptotic freedom from dimensional reduction

- Start with a 2+1d lattice. Make L, L_y large \implies Symmetry breaking $SO(3) \rightarrow SO(2)$, massless goldstone modes
- What happens as make L_y small? SO(3) symmetry cannot be broken. System orders at length scales ξ_{SR} (symmetry restoration scale). Goldstone modes pick up a mass $\sim \xi_{SR}^{-1}$
- Asymptotic freedom in 1+1d theory ensures that $\xi_{SR} \sim e^{\#L_y} \gg L_y$. Therefore, the system is effectively (1+1)d.

UV: asymptotic freedom from dimensional reduction

- The continuous fields \vec{n} arise from collective Goldstone mode excitations of the spin-1/2 variables \vec{S}_i
- Dimensional reduction back to (1+1)-d theory! [Chandrasekharan, Wiese, 1997]
- Also has been generalized to QCD using quantum link models [Brower et al, 1999]

Probing the continuum limit for asymptotically free theories

- To probe the universal behavior of the continuum limit, we can use the **step scaling function** as a convenient tool [Luscher, Weisz, Wolff, 1991]
- Put the asymptotically free theory in a box of size L (natural length scale)
- Define a dimensionless renormalized coupling $\bar{g}^2(L)$
 - For example, we can choose $\bar{g}^2(L) = M(L)L$, where M(L) is the finite-volume mass gap
- All dimensionless observables depend only on the renormalized coupling $\bar{g}^2(L)$.

Step scaling function

• We will look at the universal function F(z) defined by

$$\frac{\xi(\beta, 2L)}{\xi(\beta, L)} \equiv F\left(\xi(\beta, L)/L\right) \tag{6}$$

where β is a bare coupling and $z = \xi(\beta, L)/L$ is the renormalized coupling

• $\xi(\beta, L)$ is a definition of finite-volume correlation length: the "second-moment" correlation length

$$\xi(L) = \frac{\sqrt{\tilde{G}(0)/\tilde{G}(2\pi/L) - 1}}{2\sin(\pi/L)}$$
(7)

Easy to measure

Step scaling function: qualitative behavior

 $z = \xi(L)/L, \quad F(z) = \xi(2L)/\xi(L)$

(8)

- Comparison between step-scaling curves of D-theory with the standard lattice action
- [Beard, Pepe, Riederer, U.-J. Wiese (PRL 94, 010603 (2005))]

A two-qubit regularization of asymptotic freedom

- In another work ¹, we showed that a two-qubit regularization of asymptotic freedom can also be obtained
- "Heisenberg Comb"

Hamiltonian

$$H = \sum_{i} J_{p} H_{(i,1),(i,2)} + J H_{(i,1),(i+1,1)}$$
(9)

• Set $J_2 = 0$, $J_p = 1$. Continuum limit: $J \to \infty$.

• Note that there is no extra dimension here!

¹PRL 126, 172001 (2021) [Bhattacharya, Buser, Chandrasekharan, Gupta, HS]

Results: Spin ladders

- Two weakly coupled chains
 - Symmetric ladder: $J_1 = J_2 \gg J_p$
 - Asymmetric ladder: $J_1 \gg J_2 \gg J_p$
- Again, the spin ladders describe the low-energy physics correctly [Shelton, Narseyan, Tsvelik, 1996]
- But not the UV physics

Results: Heisenberg comb

Step scaling function: Heisenberg comb

O(3) NLSM from qubits (Codesign)

O(3) NLSM from qubits (Codesign)

- Universality \implies Different microscopic descriptions can give the same continuum QFT!
- The continuum QFT of the O(3) NLSM can be obtained from a spin-1/2 system
 - Only O(3)-symmetric nearest-neighbor Heisenberg interactions needed
 - There are at least two known ways to regulate the O(3) NLSM using spin-1/2 microscopic degrees of freedom
 - Natural for Rydberg systems!
- Similar ideas can be used to simulate other field theories

Topological θ terms with qubits

O(3) NLSM at arbitrary θ

• Just like QCD, the O(3) NLSM allows for a topological θ term

$$S_{\theta}[\vec{\phi}] = \frac{1}{g^2} \int d^2 x (\partial_{\mu} \vec{\phi})^2 + i\theta Q[\vec{\phi}]$$
(10)

where

$$Q[\vec{\phi}] = \frac{1}{8\pi} \int d^2 x \,\varepsilon_{\mu\nu} \,\vec{\phi} \cdot (\partial^{\mu}\vec{\phi}) \times (\partial^{\nu}\vec{\phi}) \tag{11}$$

is the topological theta term.

In nature, $\theta < 10^{-10} \implies$ Strong CP problem

Physics of θ

$$S_{ heta}[ec{\phi}] = S_0 + i heta Q[ec{\phi}]$$

- The physics of θ is totally non-pertubative
- θ does not show up in perturbation theory \implies UV physics unchanged.
 - S_{θ} is an asymptotically free theory for all θ with a non-pertubatively generated energy scale.
- What about the IR physics?
 - θ non-perturbatively changes IR physics
 - At $\theta = \pi$, the low-energy physics is completely different from $\theta = 0!$
 - It is, in fact, massless in the IR \implies flows to the SU(2)₁ WZW CFT.
- What happens at arbitrary θ ?

RG flow

RG flow

Lattice formulation

• In the conventional approach, *θ* introduces a severe sign problem in the naive formulation (imaginary coefficient in Euclidean spacetime)

$$S_{\theta}[\vec{\phi}] = \frac{1}{g^2} \int d^2 x (\partial_{\mu} \vec{\phi})^2 + i\theta Q[\vec{\phi}]$$
(12)

- Actually, the $\theta = \pi$ sign problem can in fact be solved using a meron cluster algorithm [Bietenholz, A. Pochinsky, U.-J. Wiese 1996]
- Bögli, Niedermayer, Pepe, Wiese (2011) studied the θ -vacua using non-standard ("topological") actions:
 - In their approach the sign problem is "mild" for smaller lattices.
 - Concluded that S_{θ} is unique for each θ .
- It would be good to have a completely sign-problem free way of studying θ vacua.
- Qubits?

- We have a recipe to get the UV physics of asymptotically free theories from a qubit model
- But what about IR? Can we generate a θ term in the IR?

Haldane Conjecture

- In 1981, Haldane surprised both condensed matter and high-energy communities
- Consider the antiferromagnetic spin-S Heisenberg chain

$$H = J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1}$$

(13)

• Haldane Conjecture: at low energies

Spin-S chain \leftrightarrow O(3) sigma model at $\theta = 2\pi S$ (14)S=1/2 chain $\theta = \pi$ NLSMmasslessS=1 chain $\theta = 0$ NLSMmassive

IR: θ term in spin chains

- $\theta \neq 0, \pi$ breaks charge conjugation symmetry $C : \vec{n} \rightarrow -\vec{n}$ since $C : i\theta Q \rightarrow -i\theta Q$.
- In terms of the spin variables, it can be shown using bosonization [Affleck, 1988]

$$a^{-1}\vec{S}_n = \vec{J}_L + \vec{J}_R + i(-1)^n c(\operatorname{Tr} g)\vec{\sigma}.$$
 (15)

- Note that "charge conjugation" $g \mapsto -g$ maps to translation by one unit $S_n \mapsto S_{n+1}$.
- Manifestation of the antiferromagnetic nature of the spin chain

$$\uparrow \checkmark \land \checkmark \land \checkmark \land \checkmark \uparrow$$

 Therefore, to generate a θ term in the spin system, we must break this translation-by-one symmetry.

IR: θ term in spin chains

- Therefore, to generate a *θ* term in the spin system, we must break this translation-by-one symmetry.
- For example, we can stagger the couplings on even and odd bonds

$$J_{\pm} = J(1 \pm \gamma). \tag{16}$$

• For this case, [Haldane, Affleck]

$$\theta = 2\pi S(1+\gamma). \tag{17}$$

• Can be generalized to spin ladders [Sierra, 1996; Sierra et al, 1997]

Taking the continuum limit with θ term

- We can finally put the two pieces of the puzzle together
 - UV = Asymptotic freedom \implies Dimensional reduction
 - IR = topological θ term \implies C breaking using staggered couplings
- Therefore, we can now take the *continuum limit* of these models at non-trivial θ! [Casper, HS (Phys.Rev.Lett. 129 (2022) 2, 022003)]

θ -term with D-theory

- Proposal: Continuum limit of the O(3) NLSM with θ term obtained in the $L_X \gg L_Y \gg 1$ limit
- Analysis of spin ladders ² suggests, for $J_{\pm}=J(1\pm\gamma)$,

$$\theta \approx 2\pi SL_Y(1+c\gamma) \implies |\theta-\pi| = c\pi\gamma L_Y \text{ (odd } L_y)$$
 (18)

• A gift: no sign problem! So we can actually numerically check this. ²Sierra 1995; Martin-Delgado, Shankar, Sierra 1996

Step-scaling function and the RG flow

Step-scaling function and the RG flow

The step-scaling curves mimic the expected RG flow diagram beautifully! [Casper, HS (Phys.Rev.Lett. 129 (2022) 2, 022003)]

- The 2d O(3) NLSM allows for a θ term, just like QCD.
- However, physics of θ is non-perturbative and therefore hard to study both analytically and on the lattice (sign problem)
- We constructed a lattice regularization using "qubits" for the O(3) NLSM with a θ term
 - Completely solves the sign problem present in conventional approaches for the θ term, for the first time.
 - Allowed us to take the continuum limit and demonstrate asymptotic freedom for various θ
 - Step-scaling curves give a quantitative instantiation of the RG flow
 - Very natural for quantum simulators with qubit degrees of freedom

Anomalies and Qubit Models of Topological θ terms

• We saw that there is a lattice regularization of the θ term where θ appears as the staggering of couplings

Staggering
$$\gamma \longleftrightarrow \theta$$
 term

(19)

- But: why does such a regularization exist? Did we simply get lucky?
- Is there a way to systematically explore this space of lattice regularizations?
- An interesting perspective comes from symmetries and anomalies

Lattice regularizations of θ vacua: Anomalies and qubit models

Mendel Nguyen ^{©*} Department of Physics, North Carolina State University, Raleigh, North Carolina 27607, USA

Hersh Singh $^{\circ\dagger}$

InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, Washington 98195-1550, USA and Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

[Phys.Rev.D 107 (2023) 1, 014507]

Anomalies and Lattice Regularizations of θ theta vacua

- Berg–Lüscher θ term
- Manifestly topological
- ∞ -dimensional local

Guidance from anomalies: CP(N-1) models and more

- These arguments seem general. Do all models with mixed 't Hooft anomalies have such a dichotomy of lattice regularizations?
- Can generalize the O(3) constructions to a wider class of 2d asymptotically free theories, called the Grassmannian nonlinear sigma model.
- Here, instead of S^2 , the fields P live on

$$P_x \in \operatorname{Gr}_k(N) = \frac{U(N)}{U(N-k) \times U(k)}$$
(20)

with the action

$$S = \frac{1}{g^2} \int d^2 x \operatorname{Tr}(\partial_\mu P)^2 + \frac{\theta}{4\pi} \int d^2 x \,\epsilon^{\mu\nu} \operatorname{Tr} P \,\partial_\mu P \,\partial_\nu P \tag{21}$$

These Gr_k(N) models also have an anomaly at θ = π between PSU(N) and C for (N, k)=(even, odd)³.

³for other cases, we have a more subtle scenario called "global inconsistency"

Lattice regularization for Grassmannian models

- Qubit regularization
 - Now, we have SU(N) spins at each site in certain conjugate representations⁴

• Again, we can argue that a continuum limit at a fixed θ arises in the $L_y \to \infty$ limit if you keep γL_y fixed.

Analog Quantum Simulation on Rydberg Systems

On quantum simulators

- On Rydberg systems with native Ising-type interactions, we can use Floquet engineering techniques to implement Heisenberg interactions
- Based on recent works with Anthony Ciavarella, Stephan Caspar, Martin Savage, Pavel Lougovski [2207.09438] [Phys.Rev.A 107 (2023) 4, 042404] [Quantum 7 (2023) 970]

On Rydberg Atoms

- We have a 2d array of atoms with native Ising-like interactions
- We need Heisenberg $\vec{S} \cdot \vec{S}$ interactions

$$H = \sum_{i} \frac{1}{2} \Omega(t) \hat{X}_{i} + \sum_{i} \Delta_{i}(t) \hat{n}_{i} + \sum_{i < j} C_{6} \frac{\hat{n}_{i} \hat{n}_{j}}{r_{ij}^{2}}$$

$$\downarrow$$

$$H = \sum \frac{(-1)^{x_{1}+y_{1}+x_{2}+y_{2}}}{a_{x}^{2}(x_{1}-x_{2})^{2} + a_{y}^{2}(y_{1}-y_{2}^{2})} \vec{S}_{x_{1},y_{1}} \cdot \vec{S}_{x_{2},y_{2}}$$
(23)

• This can be done via "Floquet engeering" with *constant* drive fields! ["Floquet Engineering Heisenberg from Ising Using Constant Drive Fields for Quantum Simulation" Ciavarella, Caspar, HS, Savage, Lougovski, arXiv:2207.09438]

Heisenberg from Ising

• Starting with an Ising-like interaction, fix $\vec{\Omega}=\Omega(\cos\theta,0,\sin\theta)$ and take $\Omega/J\gg 1$

$$H^{\text{lsing}} = \sum_{ij} J_{ij} Z_i Z_j + \frac{1}{2} \sum_i \vec{\Omega} \cdot \vec{\sigma}_i$$
(24)

 \downarrow Average over time period $\tau=2\pi/\Omega$

$$U_F = T \exp\left\{-i \int_0^{2\pi/\Omega} dt' H_I^{\text{lsing}}(t')\right\}$$

$$=U_{B}^{\dagger}\exp\left\{-irac{2\pi}{\Omega}\left(H_{1}+O(\Omega^{-1})
ight)
ight\}U_{B}$$

y x

(25)

(26)

with

$$H_{1} = \sum_{ij} J_{ij} \left[\cos(\theta)^{2} Z_{i} Z_{j} + \frac{1}{2} \sin^{2}(\theta) \left(X_{i} X_{j} + Y_{i} Y_{j} \right) \right]$$
(27)

• Set $\tan \theta = \sqrt{2}$ to get the XXX Heisenberg model

Preparing ground states with "adiabatic spiral"

["State Preparation in the Heisenberg Model through Adiabatic Spiraling" Quantum 7, 970]

Simulations

• SSF in the UV reproduced on simulations for $L_x = 6, 12, 18, 24$ and $L_y = 6!$

📍 ("Preparation for quantum simulation of the (1+1)-dimensional Ο(3) nonlinear σ model using cold atoms" Ciavarella, Caspar, HS, Savage | Phys.Rev.A 107 (2023)

4, 042404]

Simulations

FIG. 5. Results for $F_{4/3}(z)$ computed in a TDVP simulation of a rectangular array of ⁸⁷Rb atoms assuming 5000 shots are used.

Outlook

- Simple qubit models of the O(3) NLSM with arbitrary θ can be constructed
 - solved a sign problem along the way!
- *Codesign question:* Universality allows for many microscopic descriptions. Hardware decides the best one.
 - Some guidance can come from anomalies
- On cold-atom simulators, such a model is very natural.
 - Heisenberg interactions can be Floquet engineered with constant drive fields!
 - Strong evidence that we can observe asymptotic freedom on near-term cold-atom devices
- Roadmap for quantum simulation of QCD-like theories
 - Goal 1: Match UV physics (step-scaling function). Demonstrate Asymptotic Freedom.
 - Goal 2: Realtime dynamics ⇐ towards quantum advantage!
- The space of such non-traditional formulations of lattice QFTs is quite rich and important for near-term quantum computers!

Acknowledgements

• This work is supported by

- by the DOE QuantISED program through the theory consortium "Intersections of QIS and Theoretical Particle Physics" at Fermilab with Fermilab Subcontract No. 666484
- by the Institute for Nuclear Theory with US Department of Energy Grant DE-FG02-00ER41132
- U.S. Department of Energy, Office of Science, Office of Nuclear Physics, *Inqubator for Quantum Simulation (IQuS)* under Award Number DOE (NP) Award DE-SC0020970.
- Thanks to my collaborators for many stimulating discussions!

[Tanmoy Bhattacharya, Stephan Caspar, Anthony Ciaveralla Shailesh Chandrasekharan, Pavel Lougovski, Mendel Nguyen, Rajan Gupta, Martin Savage]

Thank you!