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Nuclear and particle physics on a quantum computer: where do we stand now?
ECT* Trento



Towards quantum advantage for QCD

We need a clear path towards quantum advantage for high-energy and nuclear physics

r

Long-term Goal: Quantum Simulation of Lattice QCD

* How can we make progress towards this path?

Short term Goal: Quantum Simulation of QCD-like theories in lower dimensions with
a clear path towards QCD

\

Two of the most important features of QCD are asymptotic freedom and a topological ¢ term
I would like to discuss quantum simulation of a theory which exhibits both these features
® This serves as a prototypical roadmap for quantum simulation of QCD.



Bottom line

Proposal:

e Design a spin/qubit model which exactly reproduces an asymptotically-free QFT in
the continuum limit

e Perform quantum simulation of the spin system




A toy model of QCD

¢ O(3) nonlinear sigma model in 1+1 dimensions
e Continuum action

. 1 o
S[i(x)] = ¥ /dzx Oit - 0"l + i9Qi] (1)
with 7 € R® and || = 1.
e ¢ is classically dimensionless coupling

e for condensed-matter physicists
= natural in the study of antiferromagnets, topological phases, ...

e for high-energy physicists
= toy model for QCD, asymptotic freedom, dynamical mass generation, dimensional
transmutation, 6-vacua



(3+1)d SU(N) Yang-Mills vs. (1+1)d O(3)

SU(N) YM 0(3) NLoM
e 3 4+ |-dimensional e | + 1-dimensional

e [ocal gauge symmetry Global O(3) symmetry
e Asymptotically free e Asymptotically free

e Dimensional transmutation e Dimensional transmutation

Nonperturbative mass gap Nonperturbative mass gap

e Nontrivial topology, 6-term e Nontrivial topology, 6-term



Traditional lattice regularization

O(3) nonlinear sigma model in 1+1 dimensions
e Lattice regulated action:

1 .
S = gy d*x 0,,ii - O"ii (2)

l Naive discretization

1 o
S = - an,ny (3)
§
()

2d O(3) NLSM is the continuum QFT which emerges in the ¢ — 0 limit of the lattice model

Can also write a Kogut-Susskind Hamiltonian for this model

Completely analogous to QCD



“Digitization” and “qubit regularization”



“Digitization” of QFTs for quantum computers

Traditional lattice regularization for bosons = co-dim local Hilbert space. Implied by the
bosonic commutation relations

[¢X7 ﬂ-y] = i(sxvy
But digital quantum computers need a finite dimensional local Hilbert space

Need to truncate the Hilbert space somehow...

e Several approaches towards finding a “digitization”
® Field-space digitization [Jordan, Lee, Preskill, 2011, ...]

® Loop-string hadrons [Raychoudhary et al, 2020, ...]

® Single-particle digization [Barata et al, 2020, ...]

® Discrete subgroups for gauge theories [Lamm et al, ...]
® D-theory, quantum-link models [Brower et al, 2004, ...]
® (see Jesse’s talk as well for more!)

L]



“Digitization”

e Most approaches to digitization: truncate the Hilbert space (to » qubits), then reproduce the
traditional lattice Hamiltonian by taking n — oo, and then take the continuum limit like in

traditional lattice models

Digitized model 2= Traditional lattice model =% continuum QFT (5)

® |s it necessary to do this 2-step procedure? No!



“Digitization”

¢ Wilson's insight: QFT = Second-order phase transitions
¢ Even with finite n (#qubits per lattice site) one can obtain continuum limits of field theories



Qubit reqularization of field theories

e Continuum limit: tune to a second-order critical point of a quantum lattice Hamiltonian
e This defines a procedure to obtain a continuum QFT

¢ Qubit regularization:
a quantum lattice Hamiltonian acting on a finite-dimensional local Hilbert space (kept fixed)
which reproduces a desired QFT in the vicinity of a quantum critical point.



Asymptotic Freedom
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e A lattice regularization must reproduce the physics of all scales
e Otherwise, it is just a “low-energy EFT”




The challenge of asymptotic freedom
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e To get the continuum limit, we need to recover both the IR physics and the UV physics
e | will show two methods to obtain the UV physics from qubit models



Two qubit models for asymptotic freedom
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UV: asymptotic freedom from dimensional reduction
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® Start with a 2+1d lattice. Make L, L, large = Symmetry breaking SO(3) — SO(2), massless goldstone modes

e What happens as make L, small? SO(3) symmetry cannot be broken. System orders at length scales &sg (symmetry
restoration scale). Goldstone modes pick up a mass ~ fs‘Rl

e Asymptotic freedom in 1+1d theory ensures that &sg ~ e#% > L,. Therefore, the system is effectively (1+1)d.



UV: asymptotic freedom from dimensional reduction
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e The continuous fields 7 arise from collective Goldstone mode excitations of the spin-1/2
variables S;

e Dimensional reduction back to (1+1)-d theory! [chandrasekharan, Wiese, 1997]

e Also has been generalized to QCD using quantum link models [Brower et al, 1999]




Probing the continuum limit for asymptotically free theories

To probe the universal behavior of the continuum limit, we can use the step scaling function
as a convenient tool [Luscher, Weisz, Wolff, 1991]

Put the asymptotically free theory in a box of size L (natural length scale)
Define a dimensionless renormalized coupling g*(L)
® For example, we can choose g*(L) = M(L)L, where M(L) is the finite-volume mass gap

All dimensionless observables depend only on the renormalized coupling g*(L).



Step scaling function

e We will look at the universal function F(z) defined by

=F(&(B,L)/L) (6)

where 3 is a bare coupling and z = £(3,L)/L is the renormalized coupling

e £(3,L) is a definition of finite-volume correlation length: the “second-moment” correlation
length

\G(0)/G(2r /L) — 1

L) = 2sin(r/L)

)

® Easy to measure



Step scaling function: qualitative behavior
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z=¢(L)/L,  F(z) = &£(2L)/¢(L) (8)
o
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e Comparison between step-scaling curves of D-theory with the standard lattice action
® [Beard, Pepe, Riederer, U.-J. Wiese (PRL 94, 010603 (2005)) ]



A two-qubit regularization of asymptotic freedom

e |n another work ", we showed that a two-qubit regularization of asymptotic freedom can
also be obtained

e “Heisenberg Comb”

qubit-2

bedada

H= Z Jp Hiiy,i2) 9 Hin, 41,1 (9)

e Hamiltonian

® SetJ, =0, J, = 1. Continuum limit: J — oo.
__e Note that there is no extra dimension here!

TPRL 126, 172001 (2021) [Bhattacharya, Buser, Chandrasekharan, Gupta, HS]




Results: Spin ladders

Step scaling function: Spin ladders

2.4
2.24
3
® Two weakly coupled chains 204 <
® Symmetric ladder: J, = J, > J, 35 }i
® Asymmetric ladder: J; >> J, > J, X ¥
~
® Again, the spin ladders describe the low-energy % 16 % /

-== Perturbative @(z™%)
Traditional lattice model

physics correctly [Shelton, Narseyan, Tsvelik, 1996]

® But not the UV physics 4 T [Caracciolo et al, 1995]
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Results: Heisenberg comb

Step scaling function: Heisenberg comb
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0(3) NLSM from qubits (Codesign)
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0(3) NLSM from qubits (Codesign)

e Universality = Different microscopic descriptions can give the same continuum QFT!
e The continuum QFT of the O(3) NLSM can be obtained from a spin-1/2 system

® Only O(3)-symmetric nearest-neighbor Heisenberg interactions needed

® There are at least two known ways to regulate the O(3) NLSM using spin-1/2 microscopic degrees
of freedom

* Natural for Rydberg systems!
e Similar ideas can be used to simulate other field theories



Topological 6 terms with qubits



O(3) NLSM at arbitrary 6

e Just like QCD, the O(3) NLSM allows for a topological 6 term

Sold) = gi / (0, 8) + i00[3) (+0)

where
) x (0¥ ¢ (11)

is the topological theta term.

In nature, # < 107! = Strong CP problem




Physics of 6

So[] = So + i0Q[J)

The physics of § is totally non-pertubative
6 does not show up in perturbation theory = UV physics unchanged.

® S, is an asymptotically free theory for all # with a non-pertubatively generated energy scale.
What about the IR physics?

® 9 non-perturbatively changes IR physics
® At @ = , the low-energy physics is completely different from 6 = 0!
® |tis, in fact, massless in the IR = flows to the SU(2); WZW CFT.

What happens at arbitrary 6?



RG flow

Asymptotically-free
UV fixed point

SU(2); WZW Trivial
IR fixed point IR fixed point



RG flow

Asymptotically-free
UV fixed point

SU(2); WZW Trivial
IR fixed point IR fixed point



Lattice formulation

¢ |n the conventional approach, 6 introduces a severe sign problem in the naive formulation
(imaginary coefficient in Euclidean spacetime)

-,

So[¢] = giz/ x(9,0)? + i00[¢] (12)

e Actually, the 6§ = 7 sign problem can in fact be solved using a meron cluster algorithm
[Bietenholz, A. Pochinsky, U.-). Wiese 1996]

* Bogli, Niedermayer, Pepe, Wiese (2011) studied the #-vacua using non-standard
(“topological”) actions:

® In their approach the sign problem is “mild” for smaller lattices.
® Concluded that Sy is unique for each 6.

¢ |t would be good to have a completely sign-problem free way of studying 6 vacua.
e Qubits?



UV and IR

e We have a recipe to get the UV physics of asymptotically free theories from a qubit model
e But what about IR? Can we generate a § term in the IR?



Haldane Conjecture

® |n 1981, Haldane surprised both condensed matter and high-energy communities
e Consider the antiferromagnetic spin-S Heisenberg chain

—0—0—0—0—10Q
H = ngi : §i+1 (13)

e Haldane Conjecture: at low energies

Spin-S chain < 0(3) sigma model at § = 27S (14)J

S=1/2 chain

S=1 chain # =0 NLSM | massive

0 = 7 NLSM | massless



IR: 6 term in spin chains

0 # 0, breaks charge conjugation symmetry C : i — —7 since C : i0Q — —ifQ.

In terms of the spin variables, it can be shown using bosonization [Affleck, 1988]

a”'S, = Jp +Jg +i(—1)"c(Tr g)G. (15)

Note that “charge conjugation” g — —g maps to translation by one unit S, — S, 1.

Manifestation of the antiferromagnetic nature of the spin chain

TVLALA UL

Therefore, to generate a 6 term in the spin system, we must break this translation-by-one
symmetry.



IR: 6 term in spin chains

Therefore, to generate a 6 term in the spin system, we must break this translation-by-one
symmetry.

e For example, we can stagger the couplings on even and odd bonds

Jr =J(1+7). (16)

For this case, [Haldane, Affleck]

0 =2mS(1 + 7). (17)

® Can be generalized to spin ladders [Sierra, 1996; Sierra et al, 1997]



Taking the continuum limit with 6 term

e We can finally put the two pieces of the puzzle together
® UV = Asymptotic freedom = Dimensional reduction
® IR =topological 8 term = C breaking using staggered couplings
e Therefore, we can now take the continuum limit of these models at non-trivial 8! [Casper, HS
(Phys.Rev.Lett. 129 (2022) 2, 022003)]



6-term with D-theory

J_ Jy

750

Ly

Lx
® Proposal: Continuum limit of the O(3) NLSM with 6 term obtained in the Ly > Ly >> 1 limit
e Analysis of spin ladders 2 suggests, for J. = J(1 +v),
0 ~ 27SLy(1 4+ ¢y) = |0 — 7| = cmyLy (0dd L,) (18)
__e Agift: no sign problem! So we can actually numerically check this.

2Sierra 1995; Martin-Delgado, Shankar, Sierra 1996



Step-scaling function and the RG flow
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Step-scaling function and the RG flow
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The step-scaling curves mimic the expected RG flow diagram beautifully!
[Casper, HS (Phys.Rev.Lett. 129 (2022) 2, 022003)]



Summary (so far)

e The 2d O(3) NLSM allows for a 6 term, just like QCD.

e However, physics of 6 is non-perturbative and therefore hard to study - both analytically
and on the lattice (sign problem)
* We constructed a lattice regularization using “qubits” for the O(3) NLSM with a 6 term

® Completely solves the sign problem present in conventional approaches for the 8 term, for the
first time.

® Allowed us to take the continuum limit and demonstrate asymptotic freedom for various 6

® Step-scaling curves give a quantitative instantiation of the RG flow

® Very natural for quantum simulators with qubit degrees of freedom



Anomalies and Qubit Models of Topological ¢ terms



We saw that there is a lattice regularization of the 6 term where 6 appears as the staggering
of couplings

Staggering v +—— 6 term (19)

But: why does such a regularization exist? Did we simply get lucky?
Is there a way to systematically explore this space of lattice regularizations?
An interesting perspective comes from symmetries and anomalies

Lattice regularizations of ¢ vacua: Anomalies and qubit models
Mendel Nguyen ©*
Department of Physics, North Carolina State University, Raleigh, North Carolina 27607, USA

Hersh Singh®f
InQubator for Quantum Simulation (IQuS), Department of Physics,
University of Washington, Seattle, Washington 98195-1550, USA and
Institute for Nuclear Theory, University of Washingt Seattle, Washington 98195-1550, USA

[Phys.Rev.D 107 (2023) 1, 014507]




Anomalies and Lattice Regularizations of § theta vacua

Anomaly

Lattice

symmetric, local, same d

Offsite symmetry

“qubit regularization”
Staggered couplings
No sign problem!

Natural for quantum
computers
(finite-dimensional local
Hilbert spaces)

Exact anomaly
® Berg-Liischer 6 term
® Manifestly topological
® Sign problems

® oo-dimensional local
Hilbert space




Guidance from anomalies: CP(N-1) models and more

e These arguments seem general. Do all models with mixed 't Hooft anomalies have such a
dichotomy of lattice regularizations?

e Can generalize the O(3) constructions to a wider class of 2d asymptotically free theories,
called the Grassmannian nonlinear sigma model.

e Here, instead of $2, the fields P live on

B U(N)
P, € Gri(N) = UV — %) < U (20)
with the action
1 2 2 0 2 v
S = ?/d xTr(0,P)" + E/d xe!” Tr PO, PO, P (21)

® These Gr;(N) models also have an anomaly at # = = between PSU(N) and C for (N, k)=(even,
odd)3.

3for other cases, we have a more subtle scenario called “global inconsistency”




Lattice regularization for Grassmannian models

e Qubit regularization
® Now, we have SU(N) spins at each site in certain conjugate representations*

Sublattice A Sublattice B Alternating
p P , J.Jy
Q—H—H—H—o
k] J'>0 - L
Q= Q) Qe Q)—— Q=) | L
N —k "

Lx

® Again, we can argue that a continuum limit at a fixed 6 arises in the L, — oo limit if you keep ~L,
fixed.

4[Read, Sachdev, 1989]



Analog Quantum Simulation on Rydberg Systems



On quantum simulators
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e On Rydberg systems with native Ising-type interactions, we can use Floquet engineering
techniques to implement Heisenberg interactions

e Based on recent works with Anthony Ciavarella, Stephan Caspar, Martin Savage, Pavel
Lougovski [2207.09438] [Phys.ReV.A 107 (2023) 4, 042404] [Quantum 7 (2023) 970]



On Rydberg Atoms

e We have a 2d array of atoms with native Ising-like interactions
e We need Heisenberg S - § interactions

H= Z —Qt X+ZA nl+ZC6n’n’ (22)

i<j

— —

l
1)¥tyitxe+y2
( ) le B sz,yz (23)

H=
Za2 (x1 — x2)? + aZ(ni

-3)

e This can be done via “Floquet engeering” with constant drive fields! [“Floquet Engineering
Heisenberg from Ising Using Constant Drive Fields for Quantum Simulation” Ciavarella, Caspar, HS, Savage,
Lougovski, arXiv:2207.09438]



Heisenberg from Ising

e Starting with an Ising-like interaction, fix § = Q(cos 6, 0, sin #) and take

Q/I> 1
. 1 _—
HS = N" 177, + 5 Mg (2)
ij i
1 Average over time period T = 27 /2
27 /Q Isi
Ur = T exp —i/ dr’ Hlsmg(t/) (25)
0
2
_yt _ier —1
=Uj exp{ o (Hl +0(Q ))} Up (26)
with
1
Hi=>; [cos(a)zzizj +3 sin(8) (X:X; + YL-Y,-)} (27)

)

® Settanf = /2 to get the XXX Heisenberg model




Preparing ground states with “adiabatic spiral”

(a) Laboratory (b) Interaction Picture

[“State Preparation in the Heisenberg Model through Adiabatic Spiraling” Quantum 7, 970]




Simulations
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® SSF in the UV reproduced on simulations for L, = 6,12,18,24 and L, = 6!

° [“Preparation for quantum simulation of the (1+1)-dimensional O(3) nonlinear o model using cold atoms” Ciavarella, Caspar, HS, Savage | Phys.Rev.A 107 (2023)

4, 042404]



Simulations
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FIG. 5. Results for Fy/3(z) computed in a TDVP simulation of a
rectangular array of *"Rb atoms assuming 5000 shots are used.



Outlook

e Simple qubit models of the O(3) NLSM with arbitrary 6 can be constructed
® solved a sign problem along the way!

e Codesign question: Universality allows for many microscopic descriptions. Hardware decides
the best one.

® Some guidance can come from anomalies
e On cold-atom simulators, such a model is very natural.

® Heisenberg interactions can be Floquet engineered with constant drive fields!
® Strong evidence that we can observe asymptotic freedom on near-term cold-atom devices

e Roadmap for quantum simulation of QCD-like theories

® Goal 1: Match UV physics (step-scaling function). Demonstrate Asymptotic Freedom.
® Goal 2: Realtime dynamics <— towards quantum advantage!

e The space of such non-traditional formulations of lattice QFTs is quite rich and important for
near-term quantum computers!
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Thank you! J
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