Trento Institute for Fundamental Physics

TRAPPED-ION QUANTUM COMPUTING FOR COLLECTIVE NEUTRINO OSCILLATIONS

Valentina Amitrano
Francesco Pederiva
Alessandro Roggero

Nuclear and Particle Physics on a Quantum Computer:
Where do we stand now?

OUTLINE

Core-collapse supernovae

Neutrinos are messengers of information of physics under extreme conditions

Massive star mergers

Neutrinos can influence the supernovae explosion

Nucleosynthesis and in general weak interaction is flavordependent

$$
\nu_{e}+n \longleftrightarrow p+e^{-}
$$

$$
n \longleftrightarrow p+e^{-}+\bar{\nu}_{e}
$$

$$
\bar{\nu}_{e}+p \longleftrightarrow n+e^{+}
$$

Spectral splits can happen at some distance from the emission sphere

Duan et. al (2006)

- Massive stars $M \geq 8 M_{\odot}$ explode releasing a huge amount of energy and neutrinos $\sim 10^{58}$
- Flavor Hamiltonian of many-neutrino system

$$
H=H_{v a c}+H_{\nu e}+H_{\nu \nu}
$$

Vacuum:
Mass eigenstates \neq flavor eigenstates

MSW:
Scattering with matter
$\nu \nu$-interaction:
Forward scattering

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

Two-flavor Hamiltonian (SU(2) model): the flavor state of a neutrino is a flavor isospin $|\nu\rangle=\alpha\left|\nu_{e}\right\rangle+\beta\left|\nu_{x}\right\rangle$
$H=H_{v a c}+H_{\nu \nu}$

$$
H_{v a c}=\Delta \sum_{i=1}^{N} \vec{b} \cdot \vec{\sigma}_{i}
$$

$$
\begin{aligned}
& \Delta=\frac{\delta m^{2}}{4 E} \\
& \vec{b}=\left(\sin \left(2 \theta_{\nu}\right), 0,-\cos \left(2 \theta_{\nu}\right)\right) \\
& \vec{\sigma}=(X, Y, Z)
\end{aligned}
$$

1-body term
2-body term

$$
H_{\nu \nu}=\frac{\mu}{N} \sum_{i<j}^{N} J_{i j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}
$$

$$
\begin{aligned}
& \mu=\sqrt{2} G_{F} n_{\nu} \\
& J_{i j}=1-\cos \left(\theta_{i j}\right) \\
& \cos \left(\theta_{i j}\right)=\frac{\vec{p}_{i} \cdot \vec{p}_{j}}{\left\|\vec{p}_{i}\right\|\left\|\vec{p}_{j}\right\|}
\end{aligned}
$$

THE THEORETICAL EVOLUTION

We want to simulate the flavor evolution

- Initial state $\left|\Psi_{0}\right\rangle=\left|\nu_{e}\right\rangle^{\otimes N / 2} \otimes\left|\nu_{x}\right\rangle^{\otimes N / 2}$
- Evolved state $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$
- $\left\langle\nu_{e}\right| Z\left|\nu_{e}\right\rangle=1$ and $\left\langle\nu_{x}\right| Z\left|\nu_{x}\right\rangle=-1$
- Measure the probability to be in the inverted flavor as a function of time

$$
P_{i n v}^{(i)}(t)=\frac{\left|\left\langle Z_{i}(0)\right\rangle-\left\langle Z_{i}(t)\right\rangle\right|}{2}
$$

- Note the symmetry under particle exchange
- Symmetric Hamiltonian
- Anti-symmetric initial state
- $\nu_{k} \longleftrightarrow \nu_{N-1-k}$
V. Amitrano et. al. Phys. Rev. D 107, 023007 (2023)

INGREDIENTS FOR HAMILTONIAN SIMULATION

1° ingredient: Encoding map
$\left|\nu_{e}\right\rangle \mapsto|0\rangle$

$$
\left|\nu_{x}\right\rangle \mapsto|1\rangle
$$

- Two-flavor approximation $|\nu\rangle=\alpha\left|\nu_{e}\right\rangle+\beta\left|\nu_{x}\right\rangle$
- Qubit state $|\nu\rangle=\alpha|0\rangle+\beta|1\rangle$
- N neutrinos encoded into N qubits
- Implement the propagator $U(t)=e^{-i H t}$ generated by the Hamiltonian

$$
H=\sum_{i} \vec{b} \cdot \vec{\sigma}_{i}+\sum_{i<j} J_{i j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}
$$

- Quantum gate decomposition procedure to obtain a quantum circuit
- Exponential number of operations in general... we need to optimize it!
- All-to-all interactions are difficult with reduced connectivity
- Different qubit
- Superconductive circuit
- Trapped ions
- Different universal gate set
- Circuit optimization
- More control on what we are running
- Different qubit connectivity
- Linear
- All - to - all
- Etc...

Trapped ions are perfect for the collective neutrino problem

Honeywell Quantum

IBM Quantum

Rigetti Quantum

LLNL testbed

The total hamiltonian is
$U(d t)=e^{-i\left(H_{v a c}+H_{\nu \nu}\right) d t}$ and we can split 1-body and 2-body parts without error because
$\left[H_{v a c}, H_{\nu \nu}\right]=0$

The 1-body part is simple
$U_{1}(d t)=e^{-i H_{v a c} d t}=e^{-i \sum_{i} h_{i} d t}$
where $h_{i}=\vec{b} \cdot \vec{\sigma}_{i}$ and
$\left[h_{i}, h_{j}\right]=0$ so we have exactly
$U_{1}(d t)=\prod_{i} e^{-i h_{i} d t}=\prod_{i} u_{i}(d t)$

$$
U_{2}(d t)=\prod_{i<j} u_{i j}(t)
$$

The 2-body part is more tricky $U_{2}(t)=e^{-i H_{\nu u} t}=e^{-i \sum_{i<j} h_{i j} t}$ where $h_{i j}=J_{i j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}$ and $\left[h_{i j}, h_{i k}\right] \neq 0$. We approximate it in pairs
$U_{2}(t) \approx \prod_{i<j} e^{-i h_{i j} t}=\prod_{i<j} u_{i j}(t)$
with an error $\sim \mathcal{O}\left(t^{2}\right)$

QUBIT CONNECTIVITY: CIRCUIT COMPLEXITY

Each pair propagator is simple:

$$
u_{i j}(t)=e^{-i J_{i j}\left(X_{i} \otimes X_{j}+Y_{i} \otimes Y_{j}+Z_{i} \otimes Z_{j}\right) t}
$$

and has the following optimal CNOT-based circuit where $\alpha=-d t J_{i j}$

F. Vatan and C. Williams (2004)

Swap network for linear connectivity

Each pair propagator contains also a SWAP operation:

$$
w_{i j}(t)=\operatorname{sWAP}_{i j} u_{i j}(t)
$$

And it requires more single qubit rotations

F. Vatan and C. Williams (2004)

QUBIT CONNECTIVITY: TROTTER ERROR

Quantinuum System Model (QSM) H1-2

- Trapped-ion device
- Full-connected qubits
- High fidelity: $\varepsilon_{q} \sim 10^{-4}$ and $\varepsilon_{q q} \sim 10^{-3}$

Machine aware compilation:

- Qubit topology
- Quantum gate set

$$
\begin{aligned}
& R_{z}(\lambda)=\left(\begin{array}{cc}
e^{-i \lambda / 2} & 0 \\
0 & e^{i \lambda / 2}
\end{array}\right) \\
& U_{q}(\theta, \varphi)=\left(\begin{array}{cc}
\cos \theta / 2 & -i e^{-i \varphi} \sin \theta / 2 \\
-i e^{i \varphi} \sin \theta / 2 & \cos \theta / 2
\end{array}\right)
\end{aligned}
$$

ZZ-based CNOT gate

$$
Z Z=e^{-i \frac{\pi}{4} Z \otimes Z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

RESULTS: SINGLE TROTTER STEP

RESULTS: SINGLE TROTTER STEP

RESULTS: SINGLE TROTTER STEP

B. Hall et. al. Phys.

Rev. D 104, 063009 (2021)

RESULTS: MULTIPLE TROTTER STEPS

$\begin{array}{ccccc} \\ 75 & & & & \text { (b) } \\ \text { 100 } & 125 & 150 & 175 & 200 \\ \text { Time }\left[\mu^{-1}\right]\end{array}$

- Short time-step $d t=4 \mu^{-1}$
- Ideal \approx trotterized evolution
- Very long quantum circuits (noise)

Steps	1	2	3	4	5	6	7	8	9	10
\# ZZ	18	36	54	72	90	108	126	144	162	180
\# SU(2)	36	68	100	132	164	196	228	260	292	324

- Alternate steps with inverted order
- Is effectively a second order Trotter decomposition
- For r steps it decreases the number of twoqubit operation of $6 r$

$$
3 \frac{N}{2} r \text { in general }
$$

CROSS TALK BETWEEN DISCONNECTED REGISTERS

- All results were obtain running two parallel quantum circuit

- We run 3 parallel circuits to check the crass talk effect
- The results are compatible with the previous one:
- Cross talk is negligible

COMPLEXITY SCALING OF THE ALGORITHM

We are interested in systems in which we fix $n_{\nu}=N / V$ and we look at the scaling with N

Complexity as the number of 2-qubit gates to evolve the system up to T keeping the error $<\epsilon$

- First order Trotter $\mathscr{C}_{1} \leq \mathcal{O}\left(\frac{T^{2} \mu^{2} N^{3}}{\epsilon}\right)$
- Second order Trotter $\mathscr{C}_{2} \leq \mathcal{O}\left(\frac{(T \mu)^{3 / 2}}{\sqrt{\epsilon}} N^{5 / 2}\right)$
- Higher order Trotter $\sim N^{2+\delta}$
- Qubitization $\mathscr{C}_{Q} \leq \mathcal{O}\left(T \mu N^{3}+N^{2} \log \left(\frac{1}{\varepsilon}\right)\right)$

Real cost estimated by calculating the number of steps such that we evolve up to $T=40 \mu^{-1}$ with an error ≤ 0.15

$$
\begin{gathered}
\varepsilon(d t)=\left\|U_{\text {approx }}(d t)-U_{\text {exact }}(d t)\right\|_{\infty} \\
\varepsilon(t) \leq r \varepsilon(d t)
\end{gathered}
$$

COMPLEXITY SCALING OF THE ALGORITHM

Decomposition type	Single-step error	Number of steps	Circuit complexity
First order Trotter	$\mathcal{O}\left(d t^{2} \mu^{2} N\right)$	$\mathcal{O}\left(\frac{T^{2} \mu^{2}}{\epsilon} N\right)$	$\mathcal{O}\left(\frac{T^{2} \mu^{2}}{\epsilon} N^{3}\right)$
Second order Trotter	$\mathcal{O}\left(d t^{3} \mu^{3} N\right)$	$\mathcal{O}\left(\frac{T^{3 / 2} \mu^{3 / 2}}{\sqrt{\epsilon}} \sqrt{N}\right)$	$\mathcal{O}\left(\frac{T^{3 / 2} \mu^{3 / 2}}{\sqrt{\epsilon}} N^{5 / 2}\right)$
Qubitization	-	$\mathcal{O}(T \mu N+\log (1 / \epsilon)) \mathcal{O}\left(T \mu N^{3}+\log (1 / \epsilon) N^{2}\right)$	

- Qubitization work well for large time T and small error ε
- Trotter method wins for fixed time and error

CONCLUSIONS

- Flavor dynamics is crucial to describe many effects in corecollapse supernovae
- Collective neutrino oscillations make the problem non linear and interesting to test quantum computing
- QC necessary for full dynamics simulation
- The gate decomposition must be machine aware and circuit optimization is crucial
- Full qubit connectivity allows for more freedom in gate decomposition

- Results are very promising
- We can increase the number of simulated neutrinos
- The complexity of the algorithm scales polynomially with the number of neutrinos

THANK YOU FOR YOUR ATTENTION

Valentina Amitrano

Nuclear and Particle Physics on a Quantum Computer:
Where do we stand now?
Francesco Pederiva
Alessandro Roggero

SUPPLEMENTARY MATERIAL

Two-FLAVOR HAMILTONIAN MODEL

- Vacuum mixing (1-body term)

$$
H_{v a c}=\Delta \sum_{i=1}^{N} \vec{b} \cdot \vec{\sigma}_{i}=\frac{\delta m^{2}}{4 E} \sum_{i=1}^{N}\left(\sin \left(2 \theta_{\nu}\right) X_{i}-\cos \left(2 \theta_{\nu}\right) Z_{i}\right)
$$

- $\nu \nu$ - interaction (2-body term)

$$
H_{\nu \nu}=\frac{\mu}{N} \sum_{i<j}^{N} J_{i j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}=\frac{\mu}{N} \sum_{i<j}^{N} J_{i j}\left(X_{i} \otimes X_{j}+Y_{i} \otimes Y_{j}+Z_{i} \otimes Z_{j}\right)
$$

$H_{\nu \nu}$ is an all-to-all interaction that makes the problem non-linear

The model:

- $\theta_{\nu}=0.195$ mixing angle
- Monochromatic flux $E_{i}=E \forall i$
- $\vec{b}=\frac{\delta m^{2}}{4 E}\left(\sin \left(2 \theta_{\nu}\right), 0,-\cos \left(2 \theta_{\nu}\right)\right)$
$\Delta=\frac{\delta m^{2}}{4 E}$
- $J_{i j}=1-\cos \left(\theta_{i j}\right)$
- $\theta_{i j}=\arccos (0.9) \frac{|i-j|}{N-1}$
- Energy scale $\mu=\sqrt{2} G_{F} n_{\nu}$
- $X_{2}=I \otimes I \otimes X \otimes I$
- $X_{0} \otimes X_{2}=X \otimes I \otimes X \otimes I$

Two-FLAVOR HAMILTONIAN

- Mass basis $\left\{\nu_{1}, \nu_{2}\right\}$ and flavor basis $\left\{\nu_{e}, \nu_{x}\right\}$
- Creation and annihilation operators

$$
\binom{a_{1}^{(\dagger)}}{a_{2}^{(\dagger)}}=\left(\begin{array}{cc}
\cos \left(\theta_{\nu}\right) & -\sin \left(\theta_{\nu}\right) \\
\sin \left(\theta_{\nu}\right) & \cos \left(\theta_{\nu}\right)
\end{array}\right)\binom{a_{e}^{(\dagger)}}{a_{x}^{(\dagger)}}
$$

- On the mass basis:

$$
H_{v a c}=E_{1} a_{1}^{\dagger} a_{1}+E_{2} a_{2}^{\dagger} a_{2}
$$

- On the flavor one:

$$
H_{v a c}=\frac{\delta m^{2}}{4 E} \sin \left(2 \theta_{\nu}\right)\left(a_{e}^{\dagger} a_{x}+a_{x}^{\dagger} a_{e}\right)+\frac{\delta m^{2}}{4 E} \cos \left(2 \theta_{\nu}\right)\left(a_{x}^{\dagger} a_{x}-a_{e}^{\dagger} a_{e}\right)
$$

- Mapping:

$$
\sigma_{z}=a_{e}^{\dagger} a_{e}-a_{x}^{\dagger} a_{x} \text { and } \sigma_{x}=a_{e}^{\dagger} a_{x}+a_{x}^{\dagger} a_{e}
$$

- We have

$$
H_{v a c}=\frac{\delta m^{2}}{4 E}\left(\sin \left(2 \theta_{\nu}\right) X-\cos \left(2 \theta_{\nu}\right) Z\right)
$$

QUBIT CONNECTIVITY: TROTTER ERROR

SINGLE VS MULTIPLE EVOLUTION STEPS

Single Trotter step

Evolution using multiple Trotter steps
$U(d t)=e^{-i H d t}$
$H=H_{v a c}+H_{\nu \nu}$
$-\square=$

$$
U(T)=\prod_{k=1}^{r} U_{2}\left(\frac{T}{r}\right) U_{1}\left(\frac{T}{r}\right)
$$

$U(d t)=U_{2}(d t) U_{1}(d t)$

$$
U(T)=\prod_{k=1}^{r} U_{2}\left(\frac{T}{r}\right) \prod_{k=1}^{r} U_{1}\left(\frac{T}{r}\right)
$$

MACHINE AWARE COMPILATION

Quantinuum native gate set

- $R_{z}(\lambda)=\left(\begin{array}{cc}e^{-i \lambda / 2} & 0 \\ 0 & e^{i \lambda / 2}\end{array}\right)$
- $U_{q}(\theta, \varphi)=\left(\begin{array}{cc}\cos \theta / 2 & -i e^{-i \varphi} \sin \theta / 2 \\ -i e^{i \varphi} \sin \theta / 2 & \cos \theta / 2\end{array}\right)$

ZZ-based CNOT gate

$$
Z Z=e^{-i \frac{\pi}{4} Z \otimes Z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

ZZ-based $u_{i j}$

TROTTER ERROR SCALING

First order

$$
U_{2}(d t) \approx \mathscr{L}_{1}(d t)=\prod_{K=1}^{\Gamma} e^{-i h_{i j} d t}
$$

$$
\varepsilon(d t) \leq \frac{d t^{2}}{2} \sum_{K=1}^{\Gamma}\left\|\sum_{L=K+1}^{\Gamma}\left[h_{K}, h_{L}\right]\right\|
$$

$$
\varepsilon(d t) \leq 12 d t^{2} \mu^{2} \frac{\Theta^{2}}{N^{2}}\binom{N}{3}=\mathcal{O}\left(d t^{2} \mu^{2} N\right)
$$

$$
\varepsilon(T) \leq r \varepsilon(d t) \quad T=r d t
$$

$$
r \leq 12 \frac{T^{2} \mu^{2} \Theta^{2}}{\epsilon N^{2}}\binom{N}{3}=\mathcal{O}\left(\frac{T^{2} \mu^{2} N}{\epsilon}\right)
$$

$$
\mathscr{C} \leq\binom{ N}{2} r
$$

$$
\mathscr{C}_{1}=\mathscr{O}\left(\frac{T^{2} \mu^{2} N^{3}}{\epsilon}\right)
$$

TROTTER ERROR SCALING

Second order

$$
U(d t) \approx \mathscr{L}_{2}(d t)=\mathscr{L}_{1}\left(\frac{d t}{2}\right) \mathscr{L}_{1}^{\dagger}\left(-\frac{d t}{2}\right)
$$

$$
\begin{aligned}
\varepsilon(d t) & \left.\leq \frac{d t^{3}}{12} \sum_{K}^{\Gamma} \| \sum_{L>K}^{\Gamma} \sum_{M>K}^{\Gamma}\left[h_{L},\left[h_{M}, h_{K}\right]\right] \right\rvert\,+ \\
& +\frac{d t^{3}}{24} \sum_{K}^{\Gamma}\left\|\sum_{L>K}^{\Gamma}\left[h_{K},\left[h_{K}, h_{L}\right]\right]\right\|
\end{aligned}
$$

$$
\varepsilon(d t) \leq d t^{3} \frac{\mu^{3} \Theta^{3}}{N^{3}}\left[20\binom{N}{3}+56\binom{N}{4}\right]=\mathscr{O}\left(d t^{3} \mu^{3} N\right)
$$

$$
\varepsilon(T) \leq r \varepsilon(d t) \quad T=r d t
$$

$$
r \leq \frac{(T \mu \Theta)^{3 / 2}}{\sqrt{\epsilon} N^{3 / 2}} \sqrt{20\binom{N}{3}+56\binom{N}{4}}=\mathcal{O}\left(\frac{T^{3 / 2} \mu^{3 / 2} \sqrt{N}}{\sqrt{\epsilon}}\right)
$$

$$
\mathscr{C} \leq\left(2\binom{N}{2}-\frac{N}{2}\right) r
$$

$$
\mathscr{C}_{2} \leq\left(2\binom{N}{2}-\frac{N}{2}\right) r=\mathcal{O}\left(\frac{(T \mu)^{3 / 2}}{\sqrt{\epsilon}} N^{5 / 2}\right)
$$

STATISTICAL ERROR ANALYSIS

- Number of repetitions $M=200$
- Bayesian approach
- Probability distribution of obtaining m times the output $|q\rangle$:

$$
\mathscr{P}_{b}(m \mid p)=\binom{M}{m} p^{m}(1-p)^{M-m}
$$

Likelihood distribution:
Binomial distribution

- Bayes theorem:

$$
\mathscr{P}(p \mid m)=\frac{\mathscr{P}(m \mid p) \mathscr{P}(p)}{\mathscr{P}(m)} \quad \mathscr{B}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

- Prior conjugate

$$
\mathscr{B}\left(\alpha^{\prime}, \beta^{\prime}\right)==\frac{\mathscr{P}_{b}(m \mid p) \mathscr{B}(\alpha, \beta)}{\int d q \mathscr{P}_{b}(m \mid p) \mathscr{B}(\alpha, \beta)} \text { where } \alpha^{\prime}=\alpha+m \text { and } \beta^{\prime}=\beta+M-m
$$

- $\alpha=1$ and $\beta=1$. We used $\mathscr{B}\left(\alpha^{\prime}, \beta^{\prime}\right)$ as posterior distribution and look for:

$$
\text { - } \mathscr{P}\left(p_{\min }<p<p_{\max }\right)=0.68
$$

