

1-D Steps Toward Digital Quantum Simulations of Standard Model Physics - some of our recent results

Martin Savage InQubator for Quantum Simulation University of Washington

ECT* June 6, 2023

Beimaweres . 1996.

Simulating Physics with Computers

Department of Physics, California Institute of Technology, Pasadena, California 91107

Richard P. Feynman

Received May 7, 1981

Simulation Objectives for the Standard Model and Beyond **Gauge Theories and Descendent Effective Field Theories and Models**

Real-time dynamics particle production, fragmentation vacuum and in medium

Low-energy reactions

Electroweak processes (e.g., nu-A)

BQP

Neutrino dynamics

Matter-antimatter asymmetry

Equation of state of dense hot matter and dynamics viscosity, etc

Conquering some "sign problems"

The early universe

Supernova/Neutron stars

Precision structure and interactions of nuclei

Many-body systems

Rare processes, double-beta decay

- symmetries

Physical Systems in Multi-Hilbert Space, Hybrid Devices

Map scalar, fermion and vector systems

Optimize for target observables

Minimize time-to-solution within a specified error

Bauer, Davoudi, Klco, Savage

Digital To-Do List for Quantum Chromodynamics

- 1. Map quarks and gluons on a quantum register of qubits, qutrits, ...
- 2. Develop unitary operators to evolve initial wavefunctions forward in time
- **3. Develop observables**

Real-Time Dynamics and Improved modeling of Reaction Pathways

J. Phys. Chem. B 2013, 117, 49, 15894-15902

Femto-second chemistry reveals reaction mechanisms Quantum simulations will reveal the reactions pathways of QCD

Gold-Standard for QFT Can entanglement be used more strategically?

Jordan, Lee, Preskill Scalar field theory is BQP-complete

Parallelizes easily at the circuit level - dual layer application per Trotter step X

Double exponential convergence of field digitization

- Nyquist-Shannon JLP, FNAL, UW
- QFT and exact conjugate-momentum space operator

Could it be done better ? Can entanglement be used strategically?

Lattice Gauge Field Theories and the Standard Model

Hamiltonian: Kogut-Susskind 1970's

Yang-Mills: Byrnes-Yamamoto 2005

SU(N): Zohar et al (2013)

QLM: Banerjee et al Tagliacozzo et al (2013)

First Quantum Simulation: Innesbruck, 4 Trapped Ions (2016)

Yang-Mills Byrnes-Yamamoto – Kogut-Susskind

Many valid ways to distribute fields in the UV with same IR physics e.g., Kogut-Susskind basis = electric basis

Magnetic Field operator Off-diagonal on electric basis

> SU(N) Gauge invariant Hilbert space

Truncate in Casimir = dimensionality of irrep

Continuum limit

Lattice Hamiltonian for two-flavor QCD in 1+1D A₀=0 Weyl Gauge

Formal : Banuls, Cirac, Jansen,

Staggered Lattice of size 2L with (anti)quarks on (odd) even numbered sites

$$H_{\rm KS} = \sum_{f=u,d} \left[\frac{1}{2a} \sum_{n=0}^{2L-2} \left(\psi_n^{(f)\dagger} U_n \psi_{n+1}^{(f)} + \text{h.c.} \right) \right]$$

Quark Kinetic Term (Hopping)

Explicit degrees of freedom (qubits) for gauge fields - locally constrained by Gauss's law

Lattice spacing = a

Lattice Hamiltonian for two-flavor QCD in 1+1D A_x=0 Axial Gauge

 $V_{\text{QCD}} \sim g^2 \sum_{a=1}^{8} Q_0^{(a)} Q_2^{(a)}$

Staggered Lattice of size 2L with (anti)quarks on (odd) even numbered sites

$$H_{\rm KS} = \sum_{f=u,d} \left[\frac{1}{2} \sum_{n=0}^{2L-2} \left(\psi_n^{(f)\dagger} \psi_{n+1}^{(f)} + \text{h.c.} \right) + \eta \right]$$

 $m_f \sum_{n=0}^{2L-1} (-1)^n \psi_n^{(f)\dagger} \psi_n^{(f)} \bigg] + \frac{g^2}{2} \sum_{n=0}^{2L-2} \sum_{a=1}^8 \left(\sum_{m \le n} Q_m^{(a)} \right) \bigg]$ Chromo-electric energy Quark Kinetic Term (Hopping) Quark Mass Term

 $\mathcal{U}_{\mathcal{I}}$

Q^(a) have diagonal and also off-diagonal action in color space Entangles in color space - distinct from QED

Simulations using IBM's Quantum Computers 1+1D QCD

Color Edge States

$$H_{1} = \frac{h^{2}}{2} \sum_{n=0}^{2L-1} \left(\sum_{f=0}^{1} Q_{n,f}^{(a)} Q_{n,f}^{(a)} + 2Q_{n,0}^{(a)} \right)$$

Low-Lying Spectra

Simulations using IBM's Quantum Computers 1-site, 3 colors, 1 flavor: m=g=L=1

Circuits to implement Trotterized Gauge term

Simulations using IBM's Quantum Computers 1-site, 3 colors, 1 flavor: m=g=L=1

Trivial Vacuum-to-Vacuum

IBM 7 qubit Perth and Jakarta

34 CNOTs per step 447 Pauli-Twirled circuits 1000 shots per circuits

Dynamic Decoupling Pauli-Twirling Post selection **De-coherence** renormalization

N	umber of CNOT gates for one Trotter step of $SU($		
L	$N_f = 1$	$N_f = 2$	$N_f = 3$
1	30	114	242
2	228	878	$1,\!940$
5	$1,\!926$	$7,\!586$	$16,\!970$
10	$8,\!436$	$33,\!486$	$75,\!140$
100	912,216	$3,\!646,\!086$	8,201,600

The Difference 5 Years Makes

2017-8

2022

Error Mitigation - NISQ-Life

Coherent errors from errors on control and target transformed to incoherent, averaged over all channels

Mitigating depolarizing noise on quantum computers with noise-estimation circuits

Miroslav Urbanek,^{1,*} Benjamin Nachman,² Vincent R. Pascuzzi,² Andre He,^{2, \dagger} Christian W. Bauer,² and Wibe A. de Jong^{1, \ddagger}

Post-Selection

Pauli-Twirling

Device Hilbert space >>> Physical Hilbert space Eliminates order-p errors.

Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum

Sarmed <u>A Rahman</u>, Randy <u>Lewis</u>, Emanuele <u>Mendicelli</u>, and Sarah <u>Powell</u> Department of Physics and Astronomy, York University, Toronto, Ontario, Canada, M3J 1P3 (Dated: May 18, 2022)

Select only members of measurement ensemble entirely in Physical space

com	puter

Decoherence Renormalization The Difference 1 Year Can Make!

Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer

Sarmed <u>A Rahman</u>, Randy <u>Lewis</u>, Emanuele <u>Mendicelli</u>, and Sarah <u>Powell</u> Department of Physics and Astronomy, York University, Toronto, Ontario, Canada, M3J 1P3

(Dated: May 2022. Updated: October 2022.)

FIG. 3. Time evolution by self-mitigation on a two-plaquette lattice from the initial state of Fig. 1 with gauge coupling x = 2.0 and time step dt = 0.08. In both panels, the red solid (blue dashed) curve is the exact probability of the left (right) plaquette being measured to have $j = \frac{1}{2}$. Upper panel: The red left-pointing (blue right-pointing) triangles are the physics data computed from the ibm_lagos quantum processor. The red (blue) error bars without symbols are the mitigation data computed on ibm_lagos from the same circuit but with half the steps forward in time and then half backward in time. Lower panel: The triangles are the physics results obtained by applying Eq. (8) to the data from the upper panel.

Twirling and Decoherence Mitigation

Entanglement structure in the mesons for L=2

Peak in entanglement coincides with transition from quark-antiquark to baryon-anti-baryon structure

Semileptonic Weak Decays : L=1, Nf=2

nQ=16 qubit JW mapping, with leptons at the end of the site. - 6 quarks, 6 antiquarks and 4 leptons and anti-leptons

Semileptonic Decays : Expectations — Recovering Real-Time Exponential-Decay

One available final state

Y_F available final states

Semileptonic Decays : Real-time Baryon Decay Quantum Simulation using Quantinuum, 16-qubits

FIG. 9. A quantum circuit that provides the time evolution Hamiltonian, with $\alpha = \sqrt{2}Gt/8$.

FIG. 9. A quantum circuit that provides the time evolution associated with the $\sigma_{\overline{\nu}}^- \sigma_e^+ \sigma_{d,r}^- Z_{u,b} Z_{u,g} \sigma_{u,r}^+$ operator in the β -decay

Semileptonic Decays : Real-time Baryon Decay Quantum Simulation using Quantinuum, 16-qubits

1-step: 59 ZZ

2-steps: 212 ZZ gates

For 1 Trotter step

L	# of qubits	CNOTs
5	80	9,874 2.5 K
10	160	38,074 10 K
50	800	926,074 25K
100	1600	3,692,074 900

- $H_{\rm glue} \sim L^2$

Resource Requirements

• BUT this is too naive — in reality it will be ~ L R, i.e. much fewer gates • R = confinement scale (an emergent scale in the simulation) Now consistent with Feynman's criterion for simulation

State Preparation with Localizable or Physics-Aware Quantum Circuits

Correlation length allows for fixed-point angles to be determined exponentially well with small-scale simulations

Systematically Localizable Operators for Quantum Simulations of Quantum Field Theories

Natalie Klco^{*} and Martin J. Savage^{\dagger}

Doublers are less of a problem

From discussions with Anthony Ciavarella

One d-dim Kogut-Susskind fermion has 2^d-1 doublers

4+0 D: 1 fermion -> 16 massless fermions, 4 tastes of 4 component Dirac spinors

3+1D: 1 fermion -> 8 massless fermions, 2 tastes of 4 component Dirac spinors

- Quantum Volume in Simulations and Errors
- Designing quantum circuits that scale efficiently
- (Sufficient) Access to devices TI Vs SC
- 2+1D cold-atom systems
- Integration of HPC and Quantum algorithms
- Can quantum simulations crack chiral gauge theories ?

Some of the Challenges

A High-Level Comment and a Conjecture

We are likely missing an important ingredient so far:

- all of the "power" of computation the gates are being applied at the scale of the lattice spacing
- this becomes increasingly disparate from the scale of physics in the continuum limit
- Seek physics and circuit scalings to move away from the UV

I conjecture that efficient digital quantum circuits exist for Standard Model lattice field theory simulations where the gate-structure, or power, is dominantly focused at the scale of the physics/ observable(s). i.e. EFTs can manifest at the quantum circuit level.

from the Standard Model 1+1D heading toward 2+1D

Advances in computers and simulators

Quantum simulations of Standard-Model physics face challenges

Summary

• Near-term : Great progress toward dynamic properties of matter

Recent IQuS Workshops – 2022

Next-Generation Computing for Nuclear Physics August 2022

At the Interface of Quantum Sensors and Quantum Simulations (22-3b)

IQUS InQubator for Quantum Simulation

Organizers: Doug Beck (UIUC), Natalie Klco (Caltech), Crystal Noel (UMD) and Joel Ullom (NIST)

Thank you !!

Institute for People and 158

IQuS University of W Building, Scattle

https://iqus.uw.edu/events/iqus-workshop-22-3b/

022 Udear Theory

shington PHTSASIIk : WA 98195

w.edu