

Simulating nuclei in digital quantum computers

Antonio Márquez Romero - a.marquez.romero@fqa.ub.edu

— In collaboration with Axel Pérez Obiol, Javier Menéndez, Arnau Ríos, Artur García Sáez <u>and Bruno Juliá Díaz</u>

arXiv:2302.03641

Nuclear and particle physics on a quantum computer: where do we stand now? ECT* Trento, Italy 5th June 2023

• The shell model is a Nobel prize-winning theory for the description of nuclear structure but faces the "dimensionality problem".

- The shell model is a Nobel prize-winning theory for the description of nuclear structure but faces the "dimensionality problem".
- Calculations involve diagonalization of Hamiltonian matrices in a many-body basis that scales combinatorically with the valence-space dimension and number of nucleons.

Quantum algorithms may facilitate the solution to physical problems that scale exponentially in a classical computer:

$$\begin{split} |Q\rangle &= a_0 |0\rangle + a_1 |1\rangle \\ |Q_1 Q_2\rangle &= a_{00} |00\rangle + a_{01} |01\rangle + a_{10} |10\rangle + a_{11} |11\rangle \\ Q_1 Q_2 Q_3\rangle &= a_{000} |000\rangle + a_{001} |001\rangle + a_{010} |010\rangle + a_{100} |100\rangle \\ &+ a_{011} |011\rangle + a_{101} |101\rangle + a_{110} |110\rangle + a_{111} |111\rangle \end{split}$$

Quantum algorithms may facilitate the solution to physical problems that scale exponentially in a classical computer:

$$\begin{split} |Q\rangle &= a_0 |0\rangle + a_1 |1\rangle \\ |Q_1 Q_2\rangle &= a_{00} |00\rangle + a_{01} |01\rangle + a_{10} |10\rangle + a_{11} |11\rangle \\ Q_1 Q_2 Q_3\rangle &= a_{000} |000\rangle + a_{001} |001\rangle + a_{010} |010\rangle + a_{100} |100\rangle \\ &+ a_{011} |011\rangle + a_{101} |101\rangle + a_{110} |110\rangle + a_{111} |111\rangle \end{split}$$

Implementation in quantum devices comes with other challenges.

• Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.

 $^{^1\}mathsf{J}$ Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:

 $^{^1\}mathsf{J}$ Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:
 - State preparation

 $^{^1} J$ Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:
 - State preparation
 - Fermionic operator encoding

 $^{^1\}mathsf{J}$ Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:
 - State preparation
 - Fermionic operator encoding
 - Iterative optimization and convergence

 $^{^{1}}$ J Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:
 - State preparation
 - Fermionic operator encoding
 - Iterative optimization and convergence
 - Measurement

 $^{^{1}}$ J Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:
 - State preparation
 - Fermionic operator encoding
 - Iterative optimization and convergence
 - Measurement
 - Error mitigation

 $^{^{1}}$ J Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

- Variational quantum eigensolvers (VQE) are a promising tool for the description of nuclear structure with quantum circuits.
- In its implementation, different strategies are to be pursued for the following challenges¹:
 - State preparation
 - Fermionic operator encoding
 - Iterative optimization and convergence
 - Measurement
 - Error mitigation
- We expect resources in a quantum computer do not scale exponentially, as in a classical supercomputer

 $^{^1\}mathsf{J}$ Tilly, et al., The variational quantum eigensolver: a review of methods and best practices. Phys. Reports 986, 1–128 (2022)

Classical simulation

Starting ingredients: a reference state $|\Psi_{\rm ref}\rangle$ and a pool of operators $\hat{A}_m:a_i^+a_j,\,a_i^+a_j^+a_la_k\ldots$

Starting ingredients: a reference state $|\Psi_{\rm ref}\rangle$ and a pool of operators $\hat{A}_m:a_i^+a_j,\,a_i^+a_j^+a_la_k\ldots$ Algorithm:

$$\begin{split} |\Psi_0\rangle &= |\Psi_{\rm ref}\rangle \\ |\Psi_1\rangle &= e^{i\theta_1\hat{A}_1}|\Psi_0\rangle \\ |\Psi_2\rangle &= e^{i\theta_2\hat{A}_2}|\Psi_1\rangle = \underbrace{e^{i\theta_2\hat{A}_2}}_{\text{layer 2}}\underbrace{e^{i\theta_1\hat{A}_1}}_{\text{layer 1}}|\Psi_0\rangle \end{split}$$

$$|\Psi_n\rangle = \underbrace{e^{i\theta_n \hat{A}_n} \cdots e^{i\theta_1 \hat{A}_1}}_{\text{layers}} |\Psi_0\rangle$$

Starting ingredients: a reference state $|\Psi_{ref}\rangle$ and a pool of operators $\hat{A}_m: a_i^+a_j, a_i^+a_j^+a_la_k\ldots$ Algorithm:

$$\begin{split} |\Psi_0\rangle &= |\Psi_{\rm ref}\rangle \\ |\Psi_1\rangle &= e^{i\theta_1 \hat{A}_1} |\Psi_0\rangle \\ |\Psi_2\rangle &= e^{i\theta_2 \hat{A}_2} |\Psi_1\rangle = \underbrace{e^{i\theta_2 \hat{A}_2}}_{\text{layer 2}} \underbrace{e^{i\theta_1 \hat{A}_1}}_{\text{layer 1}} |\Psi_0\rangle \end{split}$$

$$|\Psi_n\rangle = \underbrace{e^{i\theta_n \hat{A}_n} \cdots e^{i\theta_1 \hat{A}_1}}_{\text{layers}} |\Psi_0\rangle$$

Operators \hat{A}_m selected according to the largest gradient

$$\left. \frac{\partial E^{(k)}}{\partial \theta_m} \right|_{\theta_m = 0} = i \langle \Psi_k | [\hat{H}, \hat{A}_m] | \Psi_k \rangle$$

Starting ingredients: a reference state $|\Psi_{ref}\rangle$ and a pool of operators $\hat{A}_m : a_i^+ a_j, a_i^+ a_j^+ a_l a_k \dots$ Algorithm:

 $|\Psi_0\rangle = |\Psi_{\rm ref}\rangle$ $|\Psi_1\rangle = e^{i\theta_1 \hat{A}_1} |\Psi_0\rangle$ $|\Psi_2\rangle = e^{i\theta_2 \hat{A}_2} |\Psi_1\rangle = \underbrace{e^{i\theta_2 \hat{A}_2}}_{\bullet} \underbrace{e^{i\theta_1 \hat{A}_1}}_{\bullet} |\Psi_0\rangle$ laver 2 laver $|\Psi_n\rangle = \underbrace{e^{i\theta_n \hat{A}_n} \cdots e^{i\theta_1 \hat{A}_1}}_{\Psi_0} |\Psi_0\rangle$ lavers Operators \hat{A}_m selected according to the largest gradient

 $\left.\frac{\partial E^{(k)}}{\partial \theta_m}\right|_{\theta_m=0} = i \langle \Psi_k | [\hat{H}, \hat{A}_m] | \Psi_k \rangle$

⁴ Grimsley, H.R., Economou, S.E., Barnes, E. et al. Nat Commun 10, 3007 (2019)

Courtesy of Jon Engel

4

Parameters θ_m obtained minimizing the energy surface at every iteration.

Previous work with ADAPT-VQE in the Lipkin and shell-model²:

Lipkin model of ${\cal N}$ particles with interaction strength y

sd- and pf-shell phenomenological interactions

²AM Romero, J. Engel, Ho Lun Tang, and Sophia E. Economou. PRC 105, 064317

A comparison between VQEs

What's the impact of Trotterization? That is

$$e^{\hat{A}+\hat{B}} = \lim_{n \to \infty} (e^{\hat{A}/n} e^{\hat{B}/n})^n.$$

³I. Stetcu et al. Phys. Rev. C 105, 064308, O. Kiss et al, Phys. Rev. C 106, 034325

A comparison between VQEs

What's the impact of Trotterization? That is

$$e^{\hat{A}+\hat{B}} = \lim_{n \to \infty} (e^{\hat{A}/n} e^{\hat{B}/n})^n.$$

Main difference between the Unitary Coupled Cluster $(\mathsf{UCC})^3$ approach and ADAPT

$$\begin{split} |\Psi\rangle_{\rm UCC} &= e^{i\sum_k \theta_k \hat{A}_k} |\Psi_0\rangle, \\ |\Psi\rangle_{\rm ADAPT} &= \prod_k e^{i\theta_k \hat{A}_k} |\Psi_0\rangle. \end{split}$$

	UCC		ADAPT		
	parameters	ε_{E}	parameters	ε_{E}	
⁸ Be	112	10^{-2}	48	10^{-7}	
²² 0	35	10^{-2}	20	10^{-2}	
⁶ Li	9	10^{-7}	9	10^{-7}	

³I. Stetcu et al. Phys. Rev. C 105, 064308, O. Kiss et al, Phys. Rev. C 106, 034325

Quantum implementation

Implementation in quantum devices: fermionic mapping

Jordan-Wigner mapping is used for convenience:

$$a_i^{\dagger} = \left(\prod_{k=0}^{i-1} Z_k\right) \sigma_i^-, \ a_i = \left(\prod_{k=0}^{i-1} Z_k\right) \sigma_i^+,$$

with $\sigma_k^{\pm} = \frac{1}{2}(X_k \pm iY_k).$

Implementation in quantum devices: fermionic mapping

Jordan-Wigner mapping is used for convenience:

$$a_i^{\dagger} = \left(\prod_{k=0}^{i-1} Z_k\right) \sigma_i^-, \quad a_i = \left(\prod_{k=0}^{i-1} Z_k\right) \sigma_i^+,$$

with $\sigma_k^{\pm} = \frac{1}{2}(X_k \pm iY_k).$

$$\begin{split} \left| \Psi_{\rm ref} \right\rangle^{^{6}{\rm Be}} &= \left| \Psi_{0,3} \right\rangle^{^{6}{\rm Be}} \\ &\equiv \left| 100100 \right\rangle \end{split}$$

Jordan-Wigner transformation of relevant operators

	Fermion Operators	Qubit Operators			
n_p	$a_p^{\dagger}a_p$	$\frac{1}{2}(1-Z_p)$			
h_{pqrs}	$\begin{aligned} a_p^{\dagger} a_q^{\dagger} a_r a_s \\ + a_r^{\dagger} a_s^{\dagger} a_p a_q \end{aligned}$	$\frac{1}{8}P_{rs}^{pq}\left(-X_{p}X_{q}X_{r}X_{s}+X_{p}X_{q}Y_{r}Y_{s}\right)$ $-X_{p}Y_{q}X_{r}Y_{s}-X_{p}Y_{q}Y_{r}X_{s}$ $-Y_{p}Y_{q}Y_{r}Y_{s}+Y_{p}Y_{q}X_{r}X_{s}$ $-Y_{p}X_{q}Y_{r}X_{s}-Y_{p}X_{q}X_{r}Y_{s}$			
T_{rs}^{pq}	$i(a_p^{\dagger}a_q^{\dagger}a_ra_s) - a_r^{\dagger}a_s^{\dagger}a_pa_q)$	$\frac{1}{8}P_{rs}^{pq} \left(-X_p Y_q Y_r Y_s - Y_p X_q Y_r Y_s + Y_p Y_q X_r Y_s + Y_p Y_q X_r Y_s + Y_p X_q X_r X_s + Y_p X_q X_r X_s - X_p X_q X_r X_s - X_p X_q Y_r X_s - X_p X_q X_r Y_s\right)$			
$P_{rs}^{pq} \equiv \left(\prod_{m=p+1, m \notin [r,s]}^{q-1} Z_m\right) \left(\prod_{n=r+1, n \notin [p,q]}^{s-1} Z_n\right)$					

Implementation in quantum devices: CNOT staircase

with $R_x=e^{-i\frac{\pi}{2}X}$ and $R_z(\theta)=e^{-i\frac{\theta}{2}Z}.$ This circuit builds the wavefunction

$$|\Psi\rangle^{^{6}\text{Be}} = e^{-i\frac{\theta}{2}X_{2}X_{3}Y_{4}Z_{5}} |\Psi_{0,3}\rangle^{^{6}\text{Be}}$$

Implementation in quantum devices: CNOT staircase

with $R_x=e^{-i\frac{\pi}{2}X}$ and $R_z(\theta)=e^{-i\frac{\theta}{2}Z}.$ This circuit builds the wavefunction

$$|\Psi\rangle^{^{6}\text{Be}} = e^{-i\frac{\theta}{2}X_{2}X_{3}Y_{4}Z_{5}} |\Psi_{0,3}\rangle^{^{6}\text{Be}}$$

CNOTs drive the feasibility of the circuit.

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

We disentangle them in

- Single-particle terms: $n_i = a_i^{\dagger} a_i$
- Local terms: $h_{ijij} = -2n_i n_j$
- Single-hopping terms: $h_{ijki} = a_i^{\dagger} a_i (a_j^{\dagger} a_k + a_k^{\dagger} a_j)$
- Double-hopping terms: $h_{ijkl} = a_i^{\dagger} a_j^{\dagger} a_l a_k + a_l^{\dagger} a_k^{\dagger} a_i a_j$

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

We disentangle them in

- Single-particle terms: $n_i = a_i^{\dagger} a_i$
- Local terms: $h_{ijij} = -2n_i n_j$
- Single-hopping terms: $h_{ijki} = a_i^{\dagger} a_i (a_j^{\dagger} a_k + a_k^{\dagger} a_j)$
- Double-hopping terms: $h_{ijkl} = a_i^{\dagger} a_j^{\dagger} a_l a_k + a_l^{\dagger} a_k^{\dagger} a_i a_j$

After the JW mapping

•
$$\langle \Psi_k | n_i | \Psi_k \rangle = \frac{1}{2} \langle \Psi_k | 1 - Z_i | \Psi_k \rangle = p_1^{(i)}$$

•
$$\langle \Psi_k | h_{ijij} | \Psi_k \rangle = -2p_{11}^{(ij)}$$

•
$$\langle \Psi_k | h_{ijik} | \Psi_k \rangle = p_{101}^{(ijk)} - p_{110}^{(ijk)}$$

•
$$\langle \Psi_k | h_{ijkl} | \Psi_k \rangle = p_{1100}^{(ijkl)} - p_{0011}^{(ijkl)}$$

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

We disentangle them in

- Single-particle terms: $n_i = a_i^{\dagger} a_i$
- Local terms: $h_{ijij} = -2n_i n_j$
- Single-hopping terms: $h_{ijki} = a_i^{\dagger} a_i (a_j^{\dagger} a_k + a_k^{\dagger} a_j)$
- Double-hopping terms: $h_{ijkl} = a_i^{\dagger} a_j^{\dagger} a_l a_k + a_l^{\dagger} a_k^{\dagger} a_i a_j$

After the JW mapping

• $\langle \Psi_k | n_i | \Psi_k \rangle = \frac{1}{2} \langle \Psi_k | 1 - Z_i | \Psi_k \rangle = p_1^{(i)}$

•
$$\langle \Psi_k | h_{ijij} | \Psi_k \rangle = -2p_{11}^{(ij)}$$

•
$$\langle \Psi_k | h_{ijik} | \Psi_k \rangle = p_{101}^{(ijk)} - p_{110}^{(ijk)}$$

• $\langle \Psi_k | h_{ijkl} | \Psi_k \rangle = p_{1100}^{(ijkl)} - p_{0011}^{(ijkl)}$

How many circuits are needed to measure the energy?

Basis-change circuits

Z = HXH

Figure 2: Quantum circuit to implement the change of basis to diagonalize $\langle \Psi_k | h_{ijkl} | \Psi_k \rangle$.

Figure 3: Quantum circuit to implement the change of basis to diagonalize $\langle \Psi_k | h_{ijkl} T_{rs}^{pq} | \Psi_k \rangle$

Number of circuits for measurement

shell	N_{qb}	N_{h}	N_{hh}	Total
р	6	2	10 (9)	13 (12)
	12	4	109 (44)	114 (49)
sd	12	8	203 (86)	212 (95)
	24	16	1389 (518)	1406 (535)
pf	20	20	1507 (570)	1528 (591)
	40	40	10572 (3459)	10613 (3500)

Table 1: Number of different circuits needed to measure the expectation value of the Hamiltonian. $N_{\rm h}$ and $N_{\rm hh}$ are the number of single- and double-hopping terms in the Hamiltonian. The values in parenthesis correspond to the minimum number of groups containing h_{ijkl} terms found such that all operators in the group commute with each other and can be measured with the same circuit. In the last column, the total number of circuits corresponding to $N_{\rm h} + N_{\rm hh} + 1$, accounting also for the single circuit needed to measure $\langle n_i \rangle$ and $\langle h_{ijij} \rangle$.

Dimension of two-body excitation operators increases quartically with space dimensionality and can not be measured simultaneously. We need to find the minimum partition group of commuting operators

Measurement: minimum clique problem

Dimension of two-body excitation operators increases quartically with space dimensionality and can not be measured simultaneously. We need to find the minimum partition group of commuting operators

Dimension of two-body excitation operators increases quartically with space dimensionality and can not be measured simultaneously. We need to find the minimum partition group of commuting operators

NP-hard problem! We used a greedy algorithm for approximate solutions

Results

Polynomial scaling of the quantum resources

shell	N_{qb}	NSD	nucleus	N_1	ε_E	$N_{\rm C}$
р	6	5	⁶ Be	2	10-8	42
	12	10	6 _{Li}	9	10-7	92
		53	⁸ Be	48	10-7	68
		51	¹⁰ Be	48	10^{-7}	62
		21	¹³ C	19	10^{-7}	77
sd	12	14	¹⁸ 0	5	10^{-6}	99
		37	¹⁹ 0	32	10^{-6}	85
		81	20 ₀	70	10^{-6}	98
		142	²² 0	117	10^{-6}	93
	24	640	20 Ne	167	2×10^{-2}	137
		4206	²² Ne	236	2×10^{-2}	137
		7562	24 Ne	345	2×10^{-2}	138
pf	20	30	^{42}Ca	9	10-8	116
		565	44 Ca	132	10^{-2}	153
		3952	46 Ca	124	10^{-2}	139
		12022	48 Ca	101	10^{-2}	137
		17276	⁵⁰ Ca	221	10^{-2}	130

Table 2: N_{qb} : number of qubits, N_{SD} : number of many-body basis states, N_l : number of layers (parameters), ε_E : relative error in energy and N_C : number of CNOTs per layer

Quantum information tools for nuclear structure

- We can study nuclear structure properties with quantum information tools.
- Infidelity: $I=1-|\langle \Psi_{\rm gs}|\Psi_k
 angle|^2$
- Single-particle entanglement entropies⁵:

$$S_i^{(1)} = -n_i \log_2(n_i) - (1 - n_i) \log_2(1 - n_i)$$

⁵Robin, Savage & Pillet. PRC 103(3), 034325 (2021)

Quantum information tools for nuclear structure

15

Summary of all simulated nuclei in this work

Model circuit

Figure 4: Quantum circuit to prepare the exact ground-state of ¹⁸O. FSWAPS are used to change basis so that exponentials of pool operators operate on adjacent qubits. Multiqubit gates in the boxes are defined as $U_{ij}^{kl}(\theta) \equiv e^{i\theta T_{ij}^{kl}}$ and $\theta_0 = -0.157263$, $\theta_1 = -0.437238$, $\theta_2 = 0.604663$, $\theta_3 = 0.214431$, $\theta_4 = -0.785469$.

$$|\Psi_{^{18}\text{O}}\rangle = e^{i\theta_4 T_{23}^{05}} e^{i\theta_3 T_{9\,10}^{05}} e^{i\theta_2 T_{14}^{05}} e^{i\theta_1 T_{67}^{05}} e^{i\theta_0 T_{8\,11}^{05}} X_0 X_5 |0\rangle^{\otimes 12}.$$

Conclusions

Conclusions

- Promising results were obtained using ADAPT-VQE applied with phenomenological shell-model interactions in the classical and quantum simulation of the algorithm.
- The quantum implementation of VQE carries challenges of its own that hopefully are easier to solve than the exponential scaling. It is of particular interest the application of quantum information tools to strongly-correlated systems such as atomic nuclei.
- We developed a baseline code with the quantum implementation of the nuclear shell-model to explore and study these upcoming challenges⁴.

⁴UB+BSC collaboration, arXiv:2302.03641

Corresponding author: a.marquez.romero@fqa.ub.edu

Conclusions

- Promising results were obtained using ADAPT-VQE applied with phenomenological shell-model interactions in the classical and quantum simulation of the algorithm.
- The quantum implementation of VQE carries challenges of its own that hopefully are easier to solve than the exponential scaling. It is of particular interest the application of quantum information tools to strongly-correlated systems such as atomic nuclei.
- We developed a baseline code with the quantum implementation of the nuclear shell-model to explore and study these upcoming challenges⁴.

Grazie mille!

⁴UB+BSC collaboration, arXiv:2302.03641

Corresponding author: a.marquez.romero@fqa.ub.edu

Extra slides

Fermionic mapping: example and potential alternative

The general Hamiltonian:

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k} , \qquad (1)$$

under a JW mapping, the corresponding matrix representation will have $2^{\dim}\times 2^{\dim}$ elements.

⁵RMN Pesce, PD Stevenson: H2ZIXY, arXiv:2111.00627

Fermionic mapping: example and potential alternative

The general Hamiltonian:

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k} , \qquad (1)$$

under a JW mapping, the corresponding matrix representation will have $2^{\dim}\times 2^{\dim}$ elements.

Example:

Take the case of $^6{\rm Li}$ in the $M{\rm -scheme:}$ ground-state is formed with 10 M=0 states, but with JW the Hamiltonian matrix is $2^{12}\times2^{12}!$

⁵RMN Pesce, PD Stevenson: H2ZIXY, arXiv:2111.00627

Fermionic mapping: example and potential alternative

The general Hamiltonian:

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k} , \qquad (1)$$

under a JW mapping, the corresponding matrix representation will have $2^{\dim}\times 2^{\dim}$ elements.

Example:

Take the case of $^6{\rm Li}$ in the $M{\rm -scheme:}$ ground-state is formed with 10 M=0 states, but with JW the Hamiltonian matrix is $2^{12}\times2^{12}!$

Compact encoding of the Hamiltonian⁵:

 $H = 0.598IIII - 0.088IIIX + \dots - 0.037ZZZX - 0.059ZZZZ.$ (2)

Only 4 qubits are needed! But what do projections 0 and 1 represent?

⁵RMN Pesce, PD Stevenson: H2ZIXY, arXiv:2111.00627

Why ADAPT and not Unitary Coupled Clusters approach?

$$|\Psi(\boldsymbol{\theta})\rangle = e^{\hat{T}(\boldsymbol{\theta})}|0\rangle \longrightarrow E_{\text{UCC}} = \min_{\boldsymbol{\theta}} \frac{\langle \Psi(\boldsymbol{\theta})|H|\Psi(\boldsymbol{\theta})\rangle}{\langle \Psi(\boldsymbol{\theta})|\Psi(\boldsymbol{\theta})\rangle},\tag{3}$$

 $^{^{6}}$ l. Stetcu et al. Phys. Rev. C 105, 064308 7 O. Kiss et al, Phys. Rev. C 106, 034325

$$|\Psi(\boldsymbol{\theta})\rangle = e^{\hat{T}(\boldsymbol{\theta})}|0\rangle \longrightarrow E_{\text{UCC}} = \min_{\boldsymbol{\theta}} \frac{\langle \Psi(\boldsymbol{\theta})|H|\Psi(\boldsymbol{\theta})\rangle}{\langle \Psi(\boldsymbol{\theta})|\Psi(\boldsymbol{\theta})\rangle},\tag{3}$$

• ADAPT requires no Trotter approximation

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n, \tag{4}$$

Good results are obtained with only one Trotter step⁶. Although symmetries can be broken in the wavefunction and be more crucial in strongly-correlated systems

⁶I. Stetcu et al. Phys. Rev. C 105, 064308

⁷O. Kiss et al, Phys. Rev. C 106, 034325

$$|\Psi(\boldsymbol{\theta})\rangle = e^{\hat{T}(\boldsymbol{\theta})}|0\rangle \longrightarrow E_{\text{UCC}} = \min_{\boldsymbol{\theta}} \frac{\langle \Psi(\boldsymbol{\theta})|H|\Psi(\boldsymbol{\theta})\rangle}{\langle \Psi(\boldsymbol{\theta})|\Psi(\boldsymbol{\theta})\rangle},\tag{3}$$

• ADAPT requires no Trotter approximation

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n, \tag{4}$$

Good results are obtained with only one Trotter step⁶. Although symmetries can be broken in the wavefunction and be more crucial in strongly-correlated systems

• ADAPT does not depend on the cluster operator order

⁶I. Stetcu et al. Phys. Rev. C 105, 064308

⁷O. Kiss et al, Phys. Rev. C 106, 034325

$$|\Psi(\boldsymbol{\theta})\rangle = e^{\hat{T}(\boldsymbol{\theta})}|0\rangle \longrightarrow E_{\text{UCC}} = \min_{\boldsymbol{\theta}} \frac{\langle \Psi(\boldsymbol{\theta})|H|\Psi(\boldsymbol{\theta})\rangle}{\langle \Psi(\boldsymbol{\theta})|\Psi(\boldsymbol{\theta})\rangle},\tag{3}$$

• ADAPT requires no Trotter approximation

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n, \tag{4}$$

Good results are obtained with only one Trotter step⁶. Although symmetries can be broken in the wavefunction and be more crucial in strongly-correlated systems

- ADAPT does not depend on the cluster operator order
- However, it is possible that ADAPT leads to deeper circuits⁷

⁶I. Stetcu et al. Phys. Rev. C 105, 064308

⁷O. Kiss et al, Phys. Rev. C 106, 034325