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Motivation

I would like to do an 
ab initio calculation 

of Zr isotopes! We can’t do that on 
a classical computer!

 

But I heard quantum 
computers will solve all 

problems and bring paradise!
Well….
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SCIENCE PROBLEMS FOR QUANTUM COMPUTING?

4

• Dark	matter	targets:	some	targets	for	dark	matter	(e.g.	40Ar)	
are	in	very	large	model	spaces.	(Similarly	for	neutrino	targets)

*	Beta	decays:			beta-delayed	neutron	emission	in	fission	fragments;
independently,		look	at	beta	decays	of	neutron-rich	‘rare’	nuclides.

*	Hadronic	parity	violation:	Experimental	measurement	of	the
anapole	moment	in	heavy	nuclides	is	underway	(D.	DeMille	et	al)

*	Inputs	for	reactions	in	medium	to	heavy	nuclei,	including
spectroscopic	factors,	needed	for	astrophysics
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All	of	these	problems	require	
the	quantum	wave	function	of	atomic	nuclei

To	answer	this,	we	attempt	to	solve	Schrödinger’s	
equation:
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This	differential	equation	is	too	difficult	to	solve	directly
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€ 

ˆ H Ψ = E Ψ

Hence we turn to the matrix formalism
(configuration-interaction):

expand in some (many-body) basis
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€ 

ˆ H Ψ = E Ψ
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Ψ = cα α
α

∑
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Hαβ = α ˆ H β
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Hαβcβ
β

∑ = Ecα

Maria Mayer

But what do we use 
for the basis states?
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•How the basis states are represented

This	differential	equation	is	too	difficult	to	solve	directly
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•How the basis states are represented
Can	only	really	solve	1D	differential	equation
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Single-particle wave functions labeled by, e.g.,   n, j, l, m

Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, etc
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•This gives rise to the shell model

The orbitals are solutions to a one-particle Schrodinger
eqn:

S orbital

P orbital

D orbital
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•This gives rise to the shell model

The orbitals are solutions to a one-particle Schrodinger
eqn:

S orbital

P orbital

D orbital
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How do we get 
many-body states? We just mash many 

single-particle states 
together!
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•How the basis states are represented

  

€ 

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N )

Product wavefunction (“Slater Determinant”)

Each many-body state can be uniquely determined 
by a list of “occupied” single-particle states
= “occupation representation” 
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•How the basis is represented
“occupation representation” 

  

€ 
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+ 0
ni 1 2 3 4 5 6 7
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Ψ = cα α
α

∑
Each basis state
a Slater determinant

~ a product of 
many ‘orbitals’
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Nuclear Hamiltonian: å å
<

+Ñ-=
i ji
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At this point one generally goes to occupation representation:

klji
i ijkl

ijkliii aaaaVaaH ˆˆˆˆˆˆˆ
4
1 +++å å+= e

single-particle energies two-body matrix elements
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Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant 
-> total ang. mom. J and z-component M are ‘good’ q#s
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Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant 
-> total ang. mom. J and z-component M are ‘good’ q#s

In classical nuclear configuration-interaction calculations, 
can  work in the “M-scheme” with fixed total M. 
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Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant 
-> total ang. mom. J and z-component M are ‘good’ q#s

In classical nuclear configuration-interaction calculations, 
can  work in the “M-scheme” with fixed total M. 

If the single-particle states have good j,m, 
easy to construct many-body states with good M. 
(Good J emerges from diagonalizing H.)
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Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant 
-> total ang. mom. J and z-component M are ‘good’ q#s

In classical nuclear configuration-interaction calculations, 
can  work in the “M-scheme” with fixed total M. 

If the single-particle states have good j,m, 
easy to construct many-body states with good M. 
(Good J emerges from diagonalizing H.)

Because we can generate such single-particle states 
with a rotationally invariant one-body Hamiltonian, 
we call this the spherical basis.



“Nuclear and particle physics on a quantum computer,” ECT*, June 5, 2023

Boring technical point important to our story:

However, in principle, we can choose 
single-particle states that mix j,m.

In particular, deformed Hartree-Fock naturally leads to 
states mixing j (and sometimes mixing m -> ‘triaxial’ states)
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Boring technical point important to our story:

However, in principle, we can choose 
single-particle states that mix j,m.

In particular, deformed Hartree-Fock naturally leads to 
states mixing j (and sometimes mixing m -> ‘triaxial’ states)

The Hartree-Fock state is a single Slater determinant which 
has the  lowest energy, i.e., 
let Y  be a general Slater determinant: 
Minimizing. Ψ 𝐻 Ψ

ΨΨ     leads to the Hartree-Fock equations.
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klji
i ijkl

ijkliii aaaaVaaH ˆˆˆˆˆˆˆ
4
1 +++å å+= e

In the spherical basis (s.p. states with good j,m), 
many matrix elements Vijkl  = 0 
due to angular momentum selection rules.
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klji
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In the spherical basis (s.p. states with good j,m), 
many matrix elements Vijkl  = 0 
due to angular momentum selection rules.

Coupled matrix element:  𝑎𝑗! , 𝑏𝑗"; 	𝐽!" 𝑉 𝑐𝑗# , 𝑑𝑗$; 	𝐽#$
 
Uncoupled matrix element: 𝑗%𝑚%, 𝑗&𝑚& 𝑉 𝑗'𝑚', 𝑗'𝑚'
(uncoupled used Clebsch-Gordan coefficients)
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4
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In the spherical basis (s.p. states with good j,m), 
many matrix elements Vijkl  = 0 
due to angular momentum selection rules.

In the single-particle Hartree-Fock basis, there are
more nonzero matrix elements Vijkl 
due to mixing/breaking of symmetries. 
(Overall symmetry is still conserved, 
if you keep all matrix elements.)

This will be important later!
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€ 

ˆ H Ψ = E Ψ

Hence we turn to the matrix formalism
(configuration-interaction):

expand in some (many-body) basis

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα

How can quantum 
computers help with 

this problem?
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Nuclear shell model on a quantum computer

Lv, Wei, Xie, Long, arXiv:2205.12087   ‘Package’ for computing shell model (not public) 

Romero, Engel, Tang, Economou, PRC 105, 064317 (2022). Advanced VQE for shell model.

Stetcu, Baroni, Carlson, arXiv: 2110.06098. Uses unitary coupled cluster for p-shell

Siwach, Arumugam, PRC 105, 064318 (2022) Computing quadrupole moment of deuteron

Kiss, Grossi, et al, arXiv:2205.0864.  Unitary coupled cluster for 6Li (really: frozen a 
+ deuteron all over again)

Talks this week: Romero (next talk)
Robin (Thursday); Perez-Obiol (Thursday) (entanglement)
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How are we going to tackle nuclear 
structure on a quantum computer?

Can we adapt our current approaches to quantum computers?

• Lattice

• Coupled cluster à ‘unitary’ coupled cluster

• Advanced VQE (cf. next talk)

• Configuration-interaction à Lanczos
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(Cornelius Lanczos)

The Lanczos 
Algorithm!
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(Cornelius Lanczos)

The Lanczos 
Algorithm!

Note: these quantum algorithms may not 
be practical on current machines, 

but reflect thinking about longer-term
applications



“Nuclear and particle physics on a quantum computer,” ECT*, June 5, 2023 30

(Cornelius Lanczos)
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Starting from some initial vector (the “pivot”) v1 , 
the Lanczos algorithm iteratively creates 
a new basis (a “Krylov space”).

This is an example of a ‘reduced basis method’



“Nuclear and particle physics on a quantum computer,” ECT*, June 5, 2023 31

(Cornelius Lanczos)

This transforms the matrix A into a new basis,
in which A is now tridiagonal

126 R. R. Whitehead et al. 

insignificant modifications lead to an algorithm of almost unbelievable 
accuracy and stability. Here we will only sketch in the method and point 
out the features that make it suitable for shell-model work. 

In order to be able to use the Lanczos method efficiently we must choose 
the shell-model basis states, the representation, carefully. It turns out that, 
despite the obvious disadvantages, a basis of Slater determinants is the most 
useful set of states. The use of such states will be discussed at length in 
Section 3. 

2.1. The Lanczos Method 

Let Hbe any hermitian operator and Vl any vector of the N-dimensional 
space on which H operates such that Vl tVl = 1. We form additional or-
thonormal vectors by repeated operations with H thus: 

HVl = alvl + {3lV2 

HV2 = {3lVl + a 2v 2 + {32V3 

The tri-diagonal structure of these equations is a consequence of the hermi-
ticity of H. The process terminates automatically when the vectors Vl , V2 , ... 

exhaust the space, for at the Nth step we have 

but since there cannot be a further vector orthogonal to Vl , .•• , VN the 
new vector VN+1 must be zero. The method thus has the delightful feature 
that it terminates properly even if we do not know the dimensionality of 
the vector space at the beginning. (Here we are treating operators in general, 
not just matrices, and such ignorance of dimensionality may not be inex-
cusable.) 

The vectors Vl , ... , VN, which we refer to as Lanczos vectors, form an 
orthonormal basis, in which the operator H takes on the tri-diagonal matrix 
representation 

C 
(31 p,) A P1 a 2 {32 

H--H= {32 a3 
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(Cornelius Lanczos)

This transforms the matrix A into a new basis,
in which A is now tridiagonal

The extremal eigenvalues of  the transformed, truncated matrix quickly
converge to the extremal eigenvalues of  the original matrix!

126 R. R. Whitehead et al. 

insignificant modifications lead to an algorithm of almost unbelievable 
accuracy and stability. Here we will only sketch in the method and point 
out the features that make it suitable for shell-model work. 

In order to be able to use the Lanczos method efficiently we must choose 
the shell-model basis states, the representation, carefully. It turns out that, 
despite the obvious disadvantages, a basis of Slater determinants is the most 
useful set of states. The use of such states will be discussed at length in 
Section 3. 

2.1. The Lanczos Method 

Let Hbe any hermitian operator and Vl any vector of the N-dimensional 
space on which H operates such that Vl tVl = 1. We form additional or-
thonormal vectors by repeated operations with H thus: 

HVl = alvl + {3lV2 

HV2 = {3lVl + a 2v 2 + {32V3 

The tri-diagonal structure of these equations is a consequence of the hermi-
ticity of H. The process terminates automatically when the vectors Vl , V2 , ... 

exhaust the space, for at the Nth step we have 

but since there cannot be a further vector orthogonal to Vl , .•• , VN the 
new vector VN+1 must be zero. The method thus has the delightful feature 
that it terminates properly even if we do not know the dimensionality of 
the vector space at the beginning. (Here we are treating operators in general, 
not just matrices, and such ignorance of dimensionality may not be inex-
cusable.) 

The vectors Vl , ... , VN, which we refer to as Lanczos vectors, form an 
orthonormal basis, in which the operator H takes on the tri-diagonal matrix 
representation 

C 
(31 p,) A P1 a 2 {32 

H--H= {32 a3 
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(Cornelius Lanczos)

Computational Methods for Shell-Model Calculations 
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No. of Iterations 
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10 90 

133 
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3 
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Fig. 1. Convergence diagram for 26Al, odd J, T = O. Note the extensive interference 
between different levels as they converge. The dots on the lines indicate the points at 
which the eigenvalues have fully converged. 

previously unpublished (Whi 69) method, which is rather closer to the 
conventional ideas of the shell model and illustrates the advantages of our 
ultimate choice. 

We take as our shell-model basis states of the form 

(I) 

in which there is antisymmetry among the first (N - 2) and last two particles, 
but no definite symmetry under interchanges of particle indices between 
these two groups. The notation (j)m denotes the most general situation, 

eigenvalues of 
truncated matrix increasing # of

Lanczos vectors =
dimension of truncated
matrix

Whitehead, R. R., et al. 
Advances in nuclear physics. 
(1977) 123-176.

The one drawback of  Lanczos is,
due to round-off  error, 
one must explicitly enforce 
orthogonality of  Lanczos vectors

(“reorthogonalization”) 
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(Cornelius Lanczos)

But ordinary linear algebra is not 
straightforward on a quantum computer
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(Cornelius Lanczos)

But ordinary linear algebra is not 
straightforward on a quantum computer

We can take dot products:   Φ Ψ
compute matrix elements:  Φ $𝑂 Ψ

and of course apply unitary 
transformations:      ⟩|Φ = )𝑈| ⟩Ψ
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(Cornelius Lanczos)

But ordinary linear algebra is not 
straightforward on a quantum computer

We can take dot products:   Φ Ψ
compute matrix elements:  Φ $𝑂 Ψ

and of course apply unitary 
transformations:      ⟩|Φ = )𝑈| ⟩Ψ

BUT: linear combinations: 	 ⟩|Φ − 𝑎| ⟩Ψ
(though possible) is not easy

(cf. linear combinations of unitaries (LCU))
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(Cornelius Lanczos)

But ordinary linear algebra is not 
straightforward on a quantum computer

Let’s do a hybrid approach:

some parts on a quantum machine

and some parts on a classical machine
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Quantum Lanczos in imaginary time

Motta, et al, Nature Physics 16, 205 (2020)
McArdle et al, npj Quantum Inf. 5, 75 (2019)
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Quantum Lanczos in imaginary time

0.000 46. The lowest 01 excitation of 4He is at 20.2 MeV
and this energy was not varied in the fit. The x2 of the fit is
19 for 31 E(t) ~25 degrees of freedom!, so the E(t) are not
statistically independent. We have not attempted to estimate
the correlations between the energies at different times. The
x2 increases by 1 when E0 is changed by 10.02 or 20.03.
The dashed curve shows a fit without the 20.2 MeV excita-
tion; it gives x25 23 and E05228.28 MeV. For most of the
other GFMC calculations reported in this paper, we did not
compute E(t) at the many t,0.1 MeV21 used in these fits.
Therefore we made several fits to the E(t) for t>0.1. A fit
using E1

!520.2 MeV and one adjustable Ei
! gives

E05228.33(3) with x2514.6 ~11 degrees of freedom!,
while a fit with just one Ei

! results in E05228.3320.12
10.04 ,

E1
!530, and x2516.0. Finally, the heavy solid line with
short dashed error bars shows the average of the E(t) for
0.04<t<0.1:228.300(15). It appears that in this most fa-
vorable case, with high statistics, high first excited state, and
large maximum t , we can see that including the first excited
state improves the extrapolation marginally. However, the
extrapolated E0 is not significantly lower than a simple av-
erage of the E(t) for 0.04<t<0.1.
Figure 5 shows the E(t) and fits made for the ground

state of 6Li. The values for t.0.06 MeV21 were computed

with 200 000 initial configurations, those for
t50,0.01, . . . ,0.06 MeV21 have 280 000 configurations,
while those for the other small t have only 50 000 configu-
rations. The energy at very small t is influenced by admix-
tures of very high-energy states in CT . These have little
effect on the E(t.0.1 MeV21), therefore we make fits to
E(t) only for t.0.01. The dashed curve is a fit to the E(t)
for 0.01<t<0.06, which is the range that is available for the
other p-shell nuclear states in this paper. The extrapolated
energy is E05231.5620.50

10.24 MeV, where the indicated errors
correspond to x2 increasing by 1. This fit was made using a
single excitation energy, E1

!536 MeV. The first 11 excited
state of 6Li is at 5.65 MeV. A single-energy fit constrained
to this energy gives large x2. Two-energy fits with one en-
ergy constrained to 5.65 MeV have a very flat x2(E0) from
which useful values of E0 cannot be extracted. The solid
curve shows a single-energy fit made to the E(t) up to 0.1
MeV21 available for this state; it gives E05231.3820.18

10.12 .
We see that including data up to 0.1 MeV21 reduces the
error in E0 by about a factor of 2. Finally the solid line with
short dashed error bars is the average of the t5 0.04, 0.05,
and 0.06 values, denoted by Eav . Its value, 231.25~11!
MeV, is formally an upper bound for E0 and is above the
extrapolated E0 by only one standard deviation.
Because of the difficulties in making useful extrapolations

in t , it is important to understand contaminations in CT ,
particularly from low-excitation-energy states which will not
be fully filtered out by t50.06 MeV21. We have made sev-
eral calculations of the ground state of 6Li to study the ef-
fects of changes in CT on the GFMC E(t). Figure 6 shows
the effects of removing some of the noncentral correlations
in CT ; the solid circles are from a calculation with the full
CT and are the same as in Fig. 5. The open diamonds were
computed by using the simpler CP of Eq. ~3.3!. This makes
the energy at t50 worse by ;1.7 MeV. However by
t50.01, the GFMC has fully corrected for this defect and
thereafter the differences are just statistical fluctuations.
Hence removing Ũi jk

TNI from CT enhances the admixtures of
excitations .250 MeV. Calculations without the Ũi jk

TNI would
be about 20% faster than full calculations, but the poorer

FIG. 4. 4He GFMC energy as a function of imaginary time. The
fits are described in the text.

FIG. 5. 6Li GFMC energy as a function of imaginary time. The
fits are described in the text.

1738 56B. S. PUDLINER et al.lim
(→*

𝑒+( ,-| ⟩𝜓./0!1 ∝ | 4Ψ23

Imaginary-time evolution is the workhorse of 
“Quantum Monte Carlo” on classical computers

imaginary time t  (MeV-1)
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Quantum Lanczos in imaginary time

0.000 46. The lowest 01 excitation of 4He is at 20.2 MeV
and this energy was not varied in the fit. The x2 of the fit is
19 for 31 E(t) ~25 degrees of freedom!, so the E(t) are not
statistically independent. We have not attempted to estimate
the correlations between the energies at different times. The
x2 increases by 1 when E0 is changed by 10.02 or 20.03.
The dashed curve shows a fit without the 20.2 MeV excita-
tion; it gives x25 23 and E05228.28 MeV. For most of the
other GFMC calculations reported in this paper, we did not
compute E(t) at the many t,0.1 MeV21 used in these fits.
Therefore we made several fits to the E(t) for t>0.1. A fit
using E1

!520.2 MeV and one adjustable Ei
! gives

E05228.33(3) with x2514.6 ~11 degrees of freedom!,
while a fit with just one Ei

! results in E05228.3320.12
10.04 ,

E1
!530, and x2516.0. Finally, the heavy solid line with
short dashed error bars shows the average of the E(t) for
0.04<t<0.1:228.300(15). It appears that in this most fa-
vorable case, with high statistics, high first excited state, and
large maximum t , we can see that including the first excited
state improves the extrapolation marginally. However, the
extrapolated E0 is not significantly lower than a simple av-
erage of the E(t) for 0.04<t<0.1.
Figure 5 shows the E(t) and fits made for the ground

state of 6Li. The values for t.0.06 MeV21 were computed

with 200 000 initial configurations, those for
t50,0.01, . . . ,0.06 MeV21 have 280 000 configurations,
while those for the other small t have only 50 000 configu-
rations. The energy at very small t is influenced by admix-
tures of very high-energy states in CT . These have little
effect on the E(t.0.1 MeV21), therefore we make fits to
E(t) only for t.0.01. The dashed curve is a fit to the E(t)
for 0.01<t<0.06, which is the range that is available for the
other p-shell nuclear states in this paper. The extrapolated
energy is E05231.5620.50

10.24 MeV, where the indicated errors
correspond to x2 increasing by 1. This fit was made using a
single excitation energy, E1

!536 MeV. The first 11 excited
state of 6Li is at 5.65 MeV. A single-energy fit constrained
to this energy gives large x2. Two-energy fits with one en-
ergy constrained to 5.65 MeV have a very flat x2(E0) from
which useful values of E0 cannot be extracted. The solid
curve shows a single-energy fit made to the E(t) up to 0.1
MeV21 available for this state; it gives E05231.3820.18

10.12 .
We see that including data up to 0.1 MeV21 reduces the
error in E0 by about a factor of 2. Finally the solid line with
short dashed error bars is the average of the t5 0.04, 0.05,
and 0.06 values, denoted by Eav . Its value, 231.25~11!
MeV, is formally an upper bound for E0 and is above the
extrapolated E0 by only one standard deviation.
Because of the difficulties in making useful extrapolations

in t , it is important to understand contaminations in CT ,
particularly from low-excitation-energy states which will not
be fully filtered out by t50.06 MeV21. We have made sev-
eral calculations of the ground state of 6Li to study the ef-
fects of changes in CT on the GFMC E(t). Figure 6 shows
the effects of removing some of the noncentral correlations
in CT ; the solid circles are from a calculation with the full
CT and are the same as in Fig. 5. The open diamonds were
computed by using the simpler CP of Eq. ~3.3!. This makes
the energy at t50 worse by ;1.7 MeV. However by
t50.01, the GFMC has fully corrected for this defect and
thereafter the differences are just statistical fluctuations.
Hence removing Ũi jk

TNI from CT enhances the admixtures of
excitations .250 MeV. Calculations without the Ũi jk

TNI would
be about 20% faster than full calculations, but the poorer
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0.000 46. The lowest 01 excitation of 4He is at 20.2 MeV
and this energy was not varied in the fit. The x2 of the fit is
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statistically independent. We have not attempted to estimate
the correlations between the energies at different times. The
x2 increases by 1 when E0 is changed by 10.02 or 20.03.
The dashed curve shows a fit without the 20.2 MeV excita-
tion; it gives x25 23 and E05228.28 MeV. For most of the
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compute E(t) at the many t,0.1 MeV21 used in these fits.
Therefore we made several fits to the E(t) for t>0.1. A fit
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Figure 5 shows the E(t) and fits made for the ground
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while those for the other small t have only 50 000 configu-
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for 0.01<t<0.06, which is the range that is available for the
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MeV21 available for this state; it gives E05231.3820.18
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We see that including data up to 0.1 MeV21 reduces the
error in E0 by about a factor of 2. Finally the solid line with
short dashed error bars is the average of the t5 0.04, 0.05,
and 0.06 values, denoted by Eav . Its value, 231.25~11!
MeV, is formally an upper bound for E0 and is above the
extrapolated E0 by only one standard deviation.
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eral calculations of the ground state of 6Li to study the ef-
fects of changes in CT on the GFMC E(t). Figure 6 shows
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and this energy was not varied in the fit. The x2 of the fit is
19 for 31 E(t) ~25 degrees of freedom!, so the E(t) are not
statistically independent. We have not attempted to estimate
the correlations between the energies at different times. The
x2 increases by 1 when E0 is changed by 10.02 or 20.03.
The dashed curve shows a fit without the 20.2 MeV excita-
tion; it gives x25 23 and E05228.28 MeV. For most of the
other GFMC calculations reported in this paper, we did not
compute E(t) at the many t,0.1 MeV21 used in these fits.
Therefore we made several fits to the E(t) for t>0.1. A fit
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E05228.33(3) with x2514.6 ~11 degrees of freedom!,
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10.04 ,
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short dashed error bars shows the average of the E(t) for
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vorable case, with high statistics, high first excited state, and
large maximum t , we can see that including the first excited
state improves the extrapolation marginally. However, the
extrapolated E0 is not significantly lower than a simple av-
erage of the E(t) for 0.04<t<0.1.
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which useful values of E0 cannot be extracted. The solid
curve shows a single-energy fit made to the E(t) up to 0.1
MeV21 available for this state; it gives E05231.3820.18

10.12 .
We see that including data up to 0.1 MeV21 reduces the
error in E0 by about a factor of 2. Finally the solid line with
short dashed error bars is the average of the t5 0.04, 0.05,
and 0.06 values, denoted by Eav . Its value, 231.25~11!
MeV, is formally an upper bound for E0 and is above the
extrapolated E0 by only one standard deviation.
Because of the difficulties in making useful extrapolations

in t , it is important to understand contaminations in CT ,
particularly from low-excitation-energy states which will not
be fully filtered out by t50.06 MeV21. We have made sev-
eral calculations of the ground state of 6Li to study the ef-
fects of changes in CT on the GFMC E(t). Figure 6 shows
the effects of removing some of the noncentral correlations
in CT ; the solid circles are from a calculation with the full
CT and are the same as in Fig. 5. The open diamonds were
computed by using the simpler CP of Eq. ~3.3!. This makes
the energy at t50 worse by ;1.7 MeV. However by
t50.01, the GFMC has fully corrected for this defect and
thereafter the differences are just statistical fluctuations.
Hence removing Ũi jk

TNI from CT enhances the admixtures of
excitations .250 MeV. Calculations without the Ũi jk
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BUT: 
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Quantum Lanczos in imaginary time

BUT: 
imaginary time evolution 

is not unitary!

Instead one has to find a
unitary operator that

approximates imaginary
time evolution

That is, some U such that

𝑈| ⟩𝜓 ≈ 𝑒+5( ,- | ⟩𝜓
That unitary 

approximation will be 
state dependent and 
not trivial to find!

but see Jouzdani, CWJ, Mucciolo, 
and Stectu, PRA 106, 062435 (2022)

for improvements 
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Quantum Lanczos in real time

Quantum computers 
are good at unitary 

transformations 
so why not use 

real time evolution?
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Quantum Lanczos in real time
Parrish and McMahon, arXiv:1909.08925
“Quantum Filter Diagonalization”

Key idea of “Quantum Lanczos”: take states at different ‘times’
to form a non-orthogonal reduced basis

| ⟩𝜓4 = 𝑒+045. ,-| ⟩𝜓6         𝑁74 = 𝜓7 𝜓4      𝐻74 = 𝜓7 9𝐻 𝜓4

In this reduced basis,
solve generalized
eigenvalue problem:

        9𝐻�⃗� = 𝐸 9𝑁�⃗�
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Quantum Lanczos in real time

Key idea of “Quantum Lanczos”: take states at different ‘times’
to form a non-orthogonal reduced basis

| ⟩𝜓4 = 𝑒+045. ,-| ⟩𝜓6         𝑁74 = 𝜓7 𝜓4      𝐻74 = 𝜓7 9𝐻 𝜓4

In this reduced basis,
solve generalized
eigenvalue problem:

        9𝐻�⃗� = 𝐸 9𝑁�⃗�

But will this filter out 
the low-lying states?

Parrish and McMahon, arXiv:1909.08925
“Quantum Filter Diagonalization”
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Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical 
computer

Baseline
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Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Does basic idea work?
Baseline
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Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Partial emulation
using bit & Pauli
string representation

Does basic idea work?

Checking technical
details (HF vs spherical
basis, Trotterization)

Baseline
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Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Partial emulation
using bit & Pauli
string representation

Full Qiskit
emulation

Does basic idea work?

Checking technical
details (HF vs spherical
basis, Trotterization)

Baseline

Not 
done
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Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Partial emulation
using bit & Pauli
string representation

Full Qiskit
emulation

Run on 
quantum
computerDoes basic idea work?

Checking technical
details (HF vs spherical
basis, Trotterization)

Baseline

Not 
done

Not 
done
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Quantum Lanczos in real time

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Does basic idea work?
Baseline

For this step, we fully diagonalized 
a nuclear Hamiltonian (USDB) in 
a valence space to get all the 
eigenenergies:  9𝐻 ⟩|𝜙4 = 𝐸4 ⟩|𝜙4

We then generated a random trial 
vector

⟩|𝜓./0!1 =@
4

𝑐4 ⟩|𝜙4

Evolution in the energy basis is easy:

4𝑒+0 ,-.|𝜓./0!1 =@
4

𝑐4 4𝑒+08!.|𝜙4
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i
, (4.9)

where N~u = v~u, r labels the eigenpairs, and � is a cuto↵ for near singular eigenvalues.

Then the e↵ective Hamiltonian is calculated,

Heff = N
� 1

2HN
� 1

2 . (4.10)

Figure 4.1 shows the results of numerical simulations comparing QLanczos with

exact real- and imaginary-time evolution. The simulations were carried out until the

computed energies were within 5% of the correlation energy, Ec. The time step size for

imaginary-time evolution was �⌧ = 0.1, and for real-time evolution was �t = 0.1. The

QLanczos algorithm using imaginary-time evolution converges in fewer iterations than

real-time evolution for all three cases. However, real-time evolution still converges to

the ground state within ten iterations, a fraction of the full space. This is because the

Lanczos algorithm alone works very well at finding eigenvalues. The advantage of

real-time evolution is that it is unitary and, therefore, more straightforward to

implement on a quantum computer.

(a)

Mer
pants

me her

16

(b)

(c)

Figure 4.1. Numerical simulation of the QLanczos algorithm with exact
imaginary-time evolution (QITE) and real-time evolution (RTE) in the eigen-
basis to find the ground state energy of (a) 20Ne, (b) 22Na, and (c) 29Na. The
initial reference states are the simulated Hartree-Fock energies. S is the total
number of time iterations with a time step sizes of �⌧ = �t = 0.1. Conver-
gence to 5% of Ec.

Real time

Imaginary time

= # iterations

= # iterations

20Ne

22Na

g.s. energy

g.s. energy

Initial state: We evolved in 
imaginary time a random state 
until < H > = EHF

Here Dt = Dt = 0.1 MeV-1 Higher density of  states (odd-odd)
= smaller separation of  g.s. 
= more work to extract g.s.
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(b)
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Quantum Lanczos in real time

= # iterations

= # iterations

20Ne

22Na

g.s. energy

g.s. energy

Here Dt = Dt = 0.1 MeV-1 

R = # of  reference states

Use of  multiple reference states
improves convergence
(Stair, Huang, Evangelista,
J. Chem. Theory Comput. 16, 2236 (2022))
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Quantum Lanczos in real time

20Ne

20

(a)

(b)

22Na

Here Dt = Dt = 0.1 MeV-1 

Number of  iterations fixed at S = 9

R = # of  reference states

We can also get excited states
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(c)

Figure 4.4. Numerical simulations of the QLanczos algorithm with real-time
evolution (RTE) to solve for the ground state energy of (a) 20Ne, (b) 22Na,
and (c) 29Na using di↵erent numbers of reference states, R, and less than
1% of noise added to each basis state. S is the total number of real-time
iterations with a time step size of �t = 0.1. Convergence to 5% of Ec. Error
bars represent the standard deviation of 100 runs.

The numerical simulations in this chapter demonstrate that the QLanczos

algorithm with real-time evolution is a viable method for solving for the ground state

and excited states energies of nuclei. The nonstandard Krylov basis leads to relatively

quick convergences. Additionally, using multiple reference states reduced the number of

real-time iterations needed to converge to the exact energies. Using multiple reference

states also reduced the number of real-time iterations needed when noise was added to

the system, representing a more realistic implementation of the QLanczos algorithm on

a quantum computer. These preliminary results motivated the next step to map the

system to qubits and develop the algorithm to be implemented on a quantum computer.

57

Quantum Lanczos in real time

29Na

Here Dt = Dt = 0.1 MeV-1 

R = # of  reference states
S = # of  iterations

We added noise (1%) to check
robustness of  solving 
generalized eigenvalue equation
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Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Does basic idea work? Yes!
Basic idea works!
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Quantum Lanczos in real time

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Partial emulation
using bit & Pauli
string representation

Checking technical
details (HF vs spherical
basis, Trotterization)

For this next step, we generated the full wave function 
using operators, e.g., A𝑎%

9 A𝑎'
9 A𝑎:

9 A𝑎%%
9 | ⟩0 , and the Hamiltonian,

These were mapped to Pauli strings.  We then simulated time-evolution,
but using the operators directly, not using gates in Qiskit.

(Instead, these were applied in basis of all possible bitstrings | 0001 > etc.

6

where the subscript labels the single-particle state the creation operator applies to.

The Hamiltonian in second quantization is

Ĥ =
X

ij

hi| T̂ |ji â†
i
âj +

1

4

X

ijkl

hij| V̂ |kli â†
i
â
†
j
âlâk, (2.10)

where the first term is the one-body operator, which defines the kinetic energy, and the

second term is the two-body operator, which defines the interactions between particles.

2.4 Nuclear Shell Model
The nuclear shell model is a framework for choosing the single-particle states, �i.

The interaction between particles, the second term of Equation (2.10), can be

approximated as a mean field where each nucleon interacts with the average potential

of the other nucleons. The single-particle states are taken as time-independent solutions

to the potentials. A common approximation to the mean-field potential is the

3-dimensional harmonic oscillator.

The potential is chosen to be rotationally invariant, resulting in four good

quantum numbers; the radial quantum number (n), the orbital quantum number (l),

the total angular momentum (j), and the z-component of total angular momentum

(m). The radial quantum number is an integer value that describes the number of

nodes in the radial wavefunction. Some authors start at n = 1, although it does not

coincide with the physical meaning. Here I use the convention of starting the radial

quantum number at n = 0. In spectroscopic notation, letters label the levels of orbital

quantum number; s is l = 0, p is l = 1, d is l = 2, f is l = 3, and so on. Combinations

of the quantum numbers label unique orbits written as nlj. There are 2j + 1

degeneracies for each orbit with m = �j,�j + 1, ..., j � 1, j. The first orbit is 0s1/2

which means n = 0, l = 0 and j = 1/2 and there are two possible states, m = +1/2 and

m = �1/2. Table 2.1 shows the first few orbits.

orbit n l j m

0s1/2 0 0 1/2 +1/2, -1/2
0p3/2 0 1 3/2 +3/2, +1/2, -1/2, -3/2
0p1/2 0 1 1/2 +1/2, -1/2
0d5/2 0 2 5/2 +5/2, +3/2, +1/2, -1/2, -3/2, -5/2
1s1/2 1 0 1/2 +1/2, -1/2
0d3/2 0 2 3/2 +3/2, +1/2, -1/2, -3/2

Table 2.1. The first six orbits of the nuclear shell model. Three quantum
numbers, nlj, describe an orbit. Each orbit can contain up to 2j + 1 nucleons
with a unique m for each species.
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example: 14N in 0p1/2 -shell

Jordan-Wigner mapping

30

Ĥ =
1

4
(h0, 2| V̂ |0, 2i â†

0
â
†
2
â2â0 + h0, 3| V̂ |0, 3i â†

0
â
†
3
â3â0 + h1, 2| V̂ |1, 2i â†

1
â
†
2
â2â1

+ h0, 3| V̂ |1, 2i â†
0
â
†
3
â2â1 + h1, 2| V̂ |0, 3i â†

1
â
†
2
â3â0 + h1, 3| V̂ |1, 3i â†

1
â
†
3
â3â1).

(6.4)

From the Jordan-Wigner transformation the creation operators are

â
†
0
=

1

2
(X0 � iY0)

â
†
1
=

1

2
(Z0X1 � iZ0Y1)

â
†
2
=

1

2
(Z0Z1X2 � iZ0Z1Y2)

â
†
3
=

1

2
(Z0Z1Z2X3 � iZ0Z1Z2Y3),

(6.5)

and the annihilation operators are

â0 =
1

2
(X0 + iY0)

â1 =
1

2
(Z0X1 + iZ0Y1)

â2 =
1

2
(Z0Z1X2 + iZ0Z1Y2)

â3 =
1

2
(Z0Z1Z2X3 + iZ0Z1Z2Y3).

(6.6)

When the creation (6.5) and annihilation (6.6) operators are substituted in to Equation

(6.4) the resulting Hamiltonian is a summation of Pauli strings,

Ĥ = c0I + c1Z0 + c2Z1 + c3Z2 + c4Z3 + c5Z0Z3 + c6Z1Z2

+ c7Z0Z2 + c8Z1Z3 + c9Y0Y1Y2Y3 + c10X0X1X2X3

+ c11Y0Y1X2X3 + c1,2X0X1Y2Y3 + c13Y0X1Y2X3

+ c14X0Y1X2Y3 + c15X0Y1Y2X3 + c16Y0X1X2Y3,

(6.7)

where the subscript of the Pauli matrices labels the qubit that the Pauli or identity

operator applies to and ci are the coe�cients.

I chose this problem to work through because it is small enough to write by

hand. For a slightly larger case, such as two protons and two neutrons in the full

p-shell, which is 8Be, the Hamiltonian contains 975 Pauli string terms in the spherical

basis. This process is tedious when done by hand, but software development kits for

quantum computing, such as Qiskit by IBM, have packages that can compute these

automatically.

A gene website at a reference

proton, m= + ½

proton, m = -1/2

neutron, m= + ½

neutron, m = -1/2
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â
†
3
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â
†
3
=

1

2
(Z0Z1Z2X3 � iZ0Z1Z2Y3),

(6.5)

and the annihilation operators are
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+ c14X0Y1X2Y3 + c15X0Y1Y2X3 + c16Y0X1X2Y3,

(6.7)

where the subscript of the Pauli matrices labels the qubit that the Pauli or identity

operator applies to and ci are the coe�cients.

I chose this problem to work through because it is small enough to write by

hand. For a slightly larger case, such as two protons and two neutrons in the full

p-shell, which is 8Be, the Hamiltonian contains 975 Pauli string terms in the spherical

basis. This process is tedious when done by hand, but software development kits for

quantum computing, such as Qiskit by IBM, have packages that can compute these

automatically.

A gene website at a reference

Luckily, this can be automated in Qiskit and other packages!
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Figure 8.1. Numerical simulations of the QLanczos algorithm with exact real-
time evolution to solve for the lowest five energy states of the valence particles
of 8Be (two protons and two neutrons in the full p-shell). The simulation was
run using a single reference state; (a) the lowest energy configuration in the
spherical basis and (b) the Hartree-Fock state. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of �t = 0.1.
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E1 (MeV) -27.299726 -27.299363 1.33e-05 -27.299715 3.91e-07

E2 (MeV) -19.161827 -18.627811 2.79e-02 -19.159959 9.75e-05

E3 (MeV) -18.248746 -16.522363 9.46e-02 -17.30544 5.17e-02

E4 (MeV) -16.722200 -13.331682 2.03e-01 -13.384411 2.00e-01

Table 8.1. The lowest five energy states of two protons and two neutrons in
the full p-shell (nucleus of 8Be). The first column contains the exact energies
computed in the Hartree-Fock basis. In the second column are the energies
computed in the spherical basis from the simulations in Figure 8.1 at S = 8.
The third column are their relative errors. In the fourth column are the
energies computed in the Hartree-Fock basis from the simulations in Figure
8.1 at S = 8. The fifth column are their relative errors.

I carried out numerical simulations to find the five lowest energies in the

Hartree-Fock and spherical basis using di↵erent numbers of reference states, R. Stair et

al. [30] demonstrated that Trotter numbers of N = 4, 8 were su�cient to simulate exact

real-time evolution. Additionally, they discuss the computational trade-o↵ of using a

smaller Trotter number, N = 1, and more reference states. Based on these findings, I

carried out these simulations for di↵erent Trotter numbers, N = 1, 4, 8, and compared

them to exact real-time evolution in the spherical basis (Figure 8.2) and the
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Figure 8.1. Numerical simulations of the QLanczos algorithm with exact real-
time evolution to solve for the lowest five energy states of the valence particles
of 8Be (two protons and two neutrons in the full p-shell). The simulation was
run using a single reference state; (a) the lowest energy configuration in the
spherical basis and (b) the Hartree-Fock state. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of �t = 0.1.
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Table 8.1. The lowest five energy states of two protons and two neutrons in
the full p-shell (nucleus of 8Be). The first column contains the exact energies
computed in the Hartree-Fock basis. In the second column are the energies
computed in the spherical basis from the simulations in Figure 8.1 at S = 8.
The third column are their relative errors. In the fourth column are the
energies computed in the Hartree-Fock basis from the simulations in Figure
8.1 at S = 8. The fifth column are their relative errors.

I carried out numerical simulations to find the five lowest energies in the

Hartree-Fock and spherical basis using di↵erent numbers of reference states, R. Stair et

al. [30] demonstrated that Trotter numbers of N = 4, 8 were su�cient to simulate exact

real-time evolution. Additionally, they discuss the computational trade-o↵ of using a

smaller Trotter number, N = 1, and more reference states. Based on these findings, I

carried out these simulations for di↵erent Trotter numbers, N = 1, 4, 8, and compared

them to exact real-time evolution in the spherical basis (Figure 8.2) and the
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Figure 8.1. Numerical simulations of the QLanczos algorithm with exact real-
time evolution to solve for the lowest five energy states of the valence particles
of 8Be (two protons and two neutrons in the full p-shell). The simulation was
run using a single reference state; (a) the lowest energy configuration in the
spherical basis and (b) the Hartree-Fock state. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of �t = 0.1.
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Table 8.1. The lowest five energy states of two protons and two neutrons in
the full p-shell (nucleus of 8Be). The first column contains the exact energies
computed in the Hartree-Fock basis. In the second column are the energies
computed in the spherical basis from the simulations in Figure 8.1 at S = 8.
The third column are their relative errors. In the fourth column are the
energies computed in the Hartree-Fock basis from the simulations in Figure
8.1 at S = 8. The fifth column are their relative errors.

I carried out numerical simulations to find the five lowest energies in the

Hartree-Fock and spherical basis using di↵erent numbers of reference states, R. Stair et

al. [30] demonstrated that Trotter numbers of N = 4, 8 were su�cient to simulate exact

real-time evolution. Additionally, they discuss the computational trade-o↵ of using a

smaller Trotter number, N = 1, and more reference states. Based on these findings, I

carried out these simulations for di↵erent Trotter numbers, N = 1, 4, 8, and compared

them to exact real-time evolution in the spherical basis (Figure 8.2) and the
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Figure 8.1. Numerical simulations of the QLanczos algorithm with exact real-
time evolution to solve for the lowest five energy states of the valence particles
of 8Be (two protons and two neutrons in the full p-shell). The simulation was
run using a single reference state; (a) the lowest energy configuration in the
spherical basis and (b) the Hartree-Fock state. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of �t = 0.1.
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Table 8.1. The lowest five energy states of two protons and two neutrons in
the full p-shell (nucleus of 8Be). The first column contains the exact energies
computed in the Hartree-Fock basis. In the second column are the energies
computed in the spherical basis from the simulations in Figure 8.1 at S = 8.
The third column are their relative errors. In the fourth column are the
energies computed in the Hartree-Fock basis from the simulations in Figure
8.1 at S = 8. The fifth column are their relative errors.

I carried out numerical simulations to find the five lowest energies in the

Hartree-Fock and spherical basis using di↵erent numbers of reference states, R. Stair et

al. [30] demonstrated that Trotter numbers of N = 4, 8 were su�cient to simulate exact

real-time evolution. Additionally, they discuss the computational trade-o↵ of using a

smaller Trotter number, N = 1, and more reference states. Based on these findings, I

carried out these simulations for di↵erent Trotter numbers, N = 1, 4, 8, and compared

them to exact real-time evolution in the spherical basis (Figure 8.2) and the
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6.3 Simulating Hamiltonian Dynamics

Trotterization (also called Suzuki-Trotter splitting) [40] simulates time evolution

for non-commuting operators [41]. Although Trotterization is not relevant solely to

quantum computing, it is included in this chapter because I will discuss it in the

context of quantum computing. When the exponential Hamiltonian is decomposed,

each term may not commute. The Hamiltonian is defined as a sum of local terms,

Ĥ =
P

m
cmPm, where Pm are the Pauli strings and cm are the coe�cients. The

first-order Trotter decomposition of real-time evolution is,

e
�iĤ�tk ⇡

 
Y

m

e
�icmPm�tk/N

!N

= Uk, (6.8)

where k = 0, 1, ...S and N is the Trotter number [41]. The Trotter decomposition of 14N

with N = 1 is

Uk =exp(�ic0I�tk) exp(�ic1Z0�tk) exp(�ic2Z1�tk)

exp(�ic3Z2�tk) exp(�ic4Z3�tk) exp(�ic5Z0Z3�tk)

exp(�ic6Z1Z2�tk) exp(�ic7Z0Z2�tk) exp(�ic8Z1Z3�tk)

exp(�ic9Y0Y1Y2Y3�tk) exp(�ic10X0X1X2X3�tk)

exp(�ic11Y0Y1X2X3�tk) exp(�ic12X0X1Y2Y3�tk)

exp(�ic13Y0X1Y2X3�tk) exp(�ic14X0Y1X2Y3�tk)

exp(�ic15X0Y1Y2X3�tk) exp(�ic16Y0X1X2Y3�tk)

(6.9)

The next step is to design the quantum circuits to compute these equations on a

quantum computer.
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(6.9)

The next step is to design the quantum circuits to compute these equations on a

quantum computer.

example: 14N in 0p1/2 -shell



“Nuclear and particle physics on a quantum computer,” ECT*, June 5, 2023 67

Quantum Lanczos in real time

We can investigate the importance of  Trotterization

31
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The next step is to design the quantum circuits to compute these equations on a

quantum computer.

example: 14N in 0p1/2 -shell

37

7.3 Constructing Real-Time Unitary Gates

Continuing with the 14N example, I will sketch the quantum circuits for the

Trotterized real-time evolution operator, Ûk, where k is the number of real-time

evolution iterations. For one trotter step, there are 17 terms to compute in Equation

(6.9). Each exponential term is computed using a series of CX , H, S, and RZ(✓) gates.

For example, the circuit to compute the eighth term from Equation (6.9),

exp(�ic7Z0Z2�tk), is

|q0i
|q1i

|q2i RZ(✓7)

|q3i

where ✓7 = c7�tk. If the Pauli string includes X or Y Pauli operators, then H and S

gates are used to change the basis from the computational basis (see Equations 5.5 and

5.6). For example, the circuit for the 12th term from Equation (6.9),

exp(�ic11Y0Y1X2X3�tk), is

|q0i H S S
† H

|q1i H S S
† H

|q2i H H

|q3i H RZ(✓11) H

where ✓11 = c11�tk. The H and S gate puts |q0i and |q1i in the Y basis and the H gate

puts |q2i and |q3i in the X basis (see Equations 5.6 and 5.5). The sequence of the 17

terms in Equation (6.9) would generate the state | ki.
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quantum computer.
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(6.9). Each exponential term is computed using a series of CX , H, S, and RZ(✓) gates.

For example, the circuit to compute the eighth term from Equation (6.9),

exp(�ic7Z0Z2�tk), is

|q0i
|q1i

|q2i RZ(✓7)

|q3i

where ✓7 = c7�tk. If the Pauli string includes X or Y Pauli operators, then H and S

gates are used to change the basis from the computational basis (see Equations 5.5 and

5.6). For example, the circuit for the 12th term from Equation (6.9),

exp(�ic11Y0Y1X2X3�tk), is

|q0i H S S
† H

|q1i H S S
† H

|q2i H H

|q3i H RZ(✓11) H

where ✓11 = c11�tk. The H and S gate puts |q0i and |q1i in the Y basis and the H gate

puts |q2i and |q3i in the X basis (see Equations 5.6 and 5.5). The sequence of the 17
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Hartree-Fock basis (Figure 8.3). The simulations were run for a fixed number of

real-time iterations, S = 8, with a time step size of �t = 0.1.

(a) (b)

(c) (d)

Figure 8.2. Numerical simulations of the QLanczos algorithm with real-time
evolution to solve for the lowest five energy states of the valence particles of
8Be (two protons and two neutrons in the full p-shell) using di↵erent num-
bers of reference states, R. The Hamiltonian was put in the spherical basis,
and the reference states were the lowest energy configurations. The simu-
lation was run using (a) exact real-time evolution, (b) Trotterized real-time
evolution with N = 1, (b) Trotterized real-time evolution with N = 4, and
(d) Trotterized real-time evolution with N = 8. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of �t = 0.1.

There are five degeneracies for the first excited state, E1, nine for the second,

E2, five for the third excited state, E3, and three for the fourth excited state, E4. The

degeneracies were avoided in the spherical basis because the chosen states preserved

M = 0. The Hartree-Fock basis produced degeneracies due to the mixing of states

outside of M = 0.

Dt = 0.1 MeV-1 

R = # of  reference states
S = # of  iterations = 8

exact time evolution # Trotter steps = 1

# Trotter steps = 4 # Trotter steps = 8
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Hartree-Fock basis (Figure 8.3). The simulations were run for a fixed number of

real-time iterations, S = 8, with a time step size of �t = 0.1.
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Figure 8.2. Numerical simulations of the QLanczos algorithm with real-time
evolution to solve for the lowest five energy states of the valence particles of
8Be (two protons and two neutrons in the full p-shell) using di↵erent num-
bers of reference states, R. The Hamiltonian was put in the spherical basis,
and the reference states were the lowest energy configurations. The simu-
lation was run using (a) exact real-time evolution, (b) Trotterized real-time
evolution with N = 1, (b) Trotterized real-time evolution with N = 4, and
(d) Trotterized real-time evolution with N = 8. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of �t = 0.1.

There are five degeneracies for the first excited state, E1, nine for the second,

E2, five for the third excited state, E3, and three for the fourth excited state, E4. The

degeneracies were avoided in the spherical basis because the chosen states preserved

M = 0. The Hartree-Fock basis produced degeneracies due to the mixing of states

outside of M = 0.

Dt = 0.1 MeV-1 

R = # of  reference states
S = # of  iterations = 8

exact time evolution # Trotter steps = 1

# Trotter steps = 4 # Trotter steps = 8

For this Dt, 
2-4 Trotter steps
seems optimal
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Quantum Lanczos in real time

Lanczos
on a classical 
computer

Comparison of  real-
and imaginary-time
evolution with 
synthetic data 
(working in eigenbasis)

Partial emulation
using bit & Pauli
string representation

Full Qiskit
emulation

Run on 
quantum
computer

Not 
done

Not 
done

8Be in full 0p shell 
requires 975  Pauli strings

and ~ 24,000 gates
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Quantum Lanczos in real time

So, what have we learned?

Quantum Lanczos with real-time evolution works!
and is competitive with imaginary-time evolution.

As with classical Lanczos, convergence is not very 
sensitive to pivot (initial reference state).

Trotterization improves convergence, 
but is not huge.
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QC
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Let’s look at the data requirements
in more detail

Consider 12C, Nmax=8

M-scheme dimension 0.6 billion

55 single-particle orbitals ( n l j)
440 single particle states (n l j m)   | 0 1 1 0 0 1 … >
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Let’s look at the data requirements
in more detail

Consider 12C, Nmax=8

M-scheme dimension 0.6 billion

55 single-particle orbitals ( n l j)
440 single particle states (n l j m)   | 0 1 1 0 0 1 … >

= estimate # of qubits needed
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Let’s look at the data requirements
in more detail

Consider 12C, Nmax=8

M-scheme dimension 0.6 billion

# J-coupled 2-body matrix elements: ~ 1.5 million
< a b J | H | c d J >

# uncoupled 2-body matrix elements  ~ 10 million
Vijkl a+

i a+
j al ak

# many-body matrix elements: ~ 1.2 trillion
(or 5 Tb storage)
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Let’s look at the data requirements
in more detail

Consider 12C, Nmax=8

M-scheme dimension 0.6 billion by superposition

# J-coupled 2-body matrix elements: ~ 1.5 million
< a b J | H | c d J >  input

# uncoupled 2-body matrix elements  ~ 10 
million! Vijkl a+

i a+
j al ak   = # ‘Pauli strings’

# many-body matrix elements: ~ 1.2 trillion
(or 5 Tb storage)  not relevant?
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Let’s look at the data requirements
in more detail

Consider 12C, Nmax=8

M-scheme dimension 0.6 billion by superposition

# uncoupled 2-body matrix elements  ~ 10 
million! Vijkl a+

i a+
j al ak   = # ‘Pauli strings’

= # of terms to be evaluated in a quantum circuit
(or, # of separate quantum circuits to be evaluated!)
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We’re still a long
ways from catching
the car we want!
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Lessons learned

Quantum computing requires a new way of thinking—how to use
unitary transformation as the basis for processing

The eigenpair problem is important in nuclear and other fields—
on classical machines, the Lanczos algorithm is often the method of choice.

A real-time version of the quantum Lanczos algorithm 
works well and can compete with the imaginary-time version. 

Multiple reference states improves performance; 
so does modest Trotterization.

To tackle problems our community cares about, we will need on the 
order of  > 105-7 logical qubits (with error correction, 106-9 physics qubits)

Nonetheless, science has stared down seemingly insurmountable challenges
before
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Lessons learned

LIGO noise budget



“Nuclear and particle physics on a quantum computer,” ECT*, June 5, 2023 83

=?
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=?
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or

=?
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or

=?



“Nuclear and particle physics on a quantum computer,” ECT*, June 5, 2023

The quantum computing gold rush….

There’s gold 
(or at least highly cited 

papers) in those calculations!


