SAN Diego State
UNIVERSITY

Real-time quantum Lanczos for nuclear structure

Calvin W. Johnson, San Diego State University

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0019465"

+ private funding from General Atomics Corp.
"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

Amanda Bowman, SDSU M.S. student in Computational Science

Ionel Stetcu, Staff Scientist, Los Alamos

Motivation

I would like to do an $a b$ initio calculation of Zr isotopes!

We can't do that on a classical computer!

But I heard quantum
computers will solve all problems and bring paradise!

Well....
"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

SCIENCE PROBLEMS FOR QUANTUM COMPUTING?

- Dark matter targets: some targets for dark matter (e.g. ${ }^{40} \mathrm{Ar}$) are in very large model spaces. (Similarly for neutrino targets)
* Beta decays: beta-delayed neutron emission in fission fragments; independently, look at beta decays of neutron-rich 'rare' nuclides.
* Hadronic parity violation: Experimental measurement of the anapole moment in heavy nuclides is underway (D. DeMille et al)
* Inputs for reactions in medium to heavy nuclei, including spectroscopic factors, needed for astrophysics

All of these problems require the quantum wave function of atomic nuclei

To answer this, we attempt to solve Schrödinger 's equation:

$$
\left(\sum_{i}-\frac{\hbar^{2}}{2 m} \nabla^{2}+U\left(r_{i}\right)+\sum_{i<j} V\left(\vec{r}_{i}-\vec{r}_{j}\right)\right) \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \ldots\right)=E \Psi
$$

San Diego State
UNIVERSITY

This differential equation is too difficult to solve directly
$\left(\sum_{i}-\frac{\hbar^{2}}{2 m} \nabla^{2}+U\left(r_{i}\right)+\sum_{i<j}\left(\vec{v}_{i}-\vec{r}_{j}\right)\right) \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \ldots\right)=E \Psi$

Hence we turn to the matrix formalism (configuration-interaction):
expand in some (many-body) basis

$$
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle
$$

But what do we use for the basis states?

$\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle$

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle
$$

$$
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha}
$$

SAN Diego State
UNIVERSITY

- How the basis states are represented

This differential equation is too difficult to solve directly
$\left(\sum_{i}-\frac{\hbar^{2}}{2 m} \nabla^{2}+U\left(r_{i}\right)+\sum_{i<j} V\left(\vec{r}_{i}-\vec{r}_{j}\right)\right) \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \ldots\right)=E \Psi$
Can only really solve 1D differential equation

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+U(r)\right) \phi_{i}(r)=\varepsilon_{i} \phi_{i}(r)
$$

SAN Diego State
UNIVERSITY

- How the basis states are represented

Can only really solve 1D differential equation

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+U(r)\right) \phi_{i}(r)=\varepsilon_{i} \phi_{i}(r) \longleftrightarrow\left\{\phi_{i}(\vec{r})\right\}
$$

Single-particle wave functions labeled by, e.g., n, j, l, m
Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc
Nuclear: $0 \mathrm{~s}_{1 / 2}, 0 \mathrm{p}_{3 / 2}, 0 \mathrm{p}_{1 / 2}, 0 \mathrm{~d}_{5 / 2}, 1 \mathrm{~s}_{1 / 2}, 0 \mathrm{~d}_{3 / 2}$, etc

- This gives rise to the shell model

The orbitals are solutions to a one-particle Schrodinger eqn:

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+U(r)\right) \phi_{i}(r)=\varepsilon_{i} \phi_{i}(r)
$$

How do we get many-body states?
bi We just mash many single-particle states together!

re solutions to a one-particle Schrodinger

$$
\left.\frac{d^{2}}{d r^{2}}+U(r)\right) \phi_{i}(r)=\varepsilon_{i} \phi_{i}(r)
$$

San Diego State
UNIVERSITY

- How the basis states are represented

Product wavefunction ("Slater Determinant")
$\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \ldots\right)=\phi_{\text {(n) }}\left(\vec{r}_{1}\right) \phi_{\text {(n) }}\left(\vec{r}_{2}\right) \phi_{\text {त3 }}\left(\vec{r}_{3}\right) \ldots \phi_{\text {anc }}\left(\vec{r}_{N}\right)$
Each many-body state can be uniquely determined by a list of "occupied" single-particle states
= "occupation representation"

$$
|\alpha\rangle=\hat{a}_{n_{1}}^{+} \hat{a}_{n_{2}}^{+} \hat{a}_{n_{3}}^{+} \ldots \hat{a}_{n_{N}}^{+}|0\rangle
$$

- How the basis is represented
"occupation representation" $|\alpha\rangle=\hat{a}_{n_{1}}^{+} \hat{a}_{n_{2}}^{+} \hat{a}_{n_{3}}^{+} \ldots \hat{a}_{n_{N}}^{+}|0\rangle$

n_{i}	1	2	3	4	5	6	7
$\alpha=1$	1	0	0	1	1	0	1
$\alpha=2$	1	0	1	0	0	1	1
$\alpha=3$	0	1	1	1	0	1	0

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}\left|\alpha^{\prime}\right\rangle \quad \begin{aligned}
& \text { Each basis state } \\
&
\end{aligned}
$$

Nuclear Hamiltonian: $\quad \hat{H}=\sum_{i}-\frac{\hbar^{2}}{2 M} \nabla_{i}^{2}+\sum_{i<j} V\left(r_{i}, r_{j}\right)$

At this point one generally goes to occupation representation:

$$
\hat{H}=\sum_{i} \varepsilon_{i} \hat{a}_{i}^{+} \hat{a}_{i}+\frac{1}{4} \sum_{i j k l} V_{i j k l} \hat{a}_{i}^{+} \hat{a}_{j}^{+} \hat{a}_{l} \hat{a}_{k}
$$

single-particle energies
two-body matrix elements

Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant
-> total ang. mom. J and z-component M are 'good' q\#s

Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant
-> total ang. mom. J and z-component M are 'good' q\#s
In classical nuclear configuration-interaction calculations, can work in the "M-scheme" with fixed total M.

Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant
-> total ang. mom. J and z-component M are 'good' q \#s
In classical nuclear configuration-interaction calculations, can work in the "M-scheme" with fixed total M.

If the single-particle states have good j, m, easy to construct many-body states with good M. (Good J emerges from diagonalizing H.)

Boring technical points important to our story:

Nuclear Hamiltonian is rotationally invariant
-> total ang. mom. J and z-component M are 'good' q\#s
In classical nuclear configuration-interaction calculations, can work in the "M-scheme" with fixed total M.

If the single-particle states have good j, m, easy to construct many-body states with good M. (Good J emerges from diagonalizing H.)

Because we can generate such single-particle states with a rotationally invariant one-body Hamiltonian, we call this the spherical basis.

Boring technical point important to our story:

However, in principle, we can choose single-particle states that mix j, m.

In particular, deformed Hartree-Fock naturally leads to states mixing j (and sometimes mixing m-> 'triaxial' states)

Boring technical point important to our story:

However, in principle, we can choose single-particle states that mix j, m.

In particular, deformed Hartree-Fock naturally leads to states mixing j (and sometimes mixing $m->$ 'triaxial' states)

The Hartree-Fock state is a single Slater determinant which has the lowest energy, i.e., let Ψ be a general Slater determinant:
Minimizing. $\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \quad$ leads to the Hartree-Fock equations.

$$
\hat{H}=\sum_{i} \varepsilon_{i} \hat{a}_{i}^{+} \hat{a}_{i}+\frac{1}{4} \sum_{i j k l} V_{i j k l} \hat{a}_{i}^{+} \hat{a}_{j}^{+} \hat{a}_{l} \hat{a}_{k}
$$

In the spherical basis (s.p. states with good j, m), many matrix elements $V_{\mathrm{ijkl}}=0$ due to angular momentum selection rules.

$$
\hat{H}=\sum_{i} \varepsilon_{i} \hat{a}_{i}^{+} \hat{a}_{i}+\frac{1}{4} \sum_{i j k l} V_{i j k l} \hat{a}_{i}^{+} \hat{a}_{j}^{+} \hat{a}_{l} \hat{a}_{k}
$$

In the spherical basis (s.p. states with good j, m),

 many matrix elements $Y_{\mathrm{ijkl}}=0$ due to angular momentym selection rules.Coupled matrix element: $\left\langle a j_{a}, b j_{b} ; J_{q b}\right| V\left|c j_{c}, d j_{d} ; J_{c d}\right\rangle$
Uncoupled matrix element: $\left\langle j_{1} m_{1}, j_{2} m_{2}\right| V\left|j_{3} m_{3}, j_{3} m_{3}\right\rangle$ (uncoupled used Clebsch-Gordan coefficients)

$$
\hat{H}=\sum_{i} \varepsilon_{i} \hat{a}_{i}^{+} \hat{a}_{i}+\frac{1}{4} \sum_{i j k l} V_{i j k l} \hat{a}_{i}^{+} \hat{a}_{j}^{+} \hat{a}_{l} \hat{a}_{k}
$$

In the spherical basis (s.p. states with good j, m), many matrix elements $V_{\mathrm{ijkl}}=0$ due to angular momentum selection rules.

In the single-particle Hartree-Fock basis, there are more nonzero matrix elements V_{ijkl} due to mixing/breaking of symmetries. (Overall symmetry is still conserved, if you keep all matrix elements.)

This will be important later!

Hence we turn to the matrix formalism (configuration-interaction):

How can quantum computers help with this problem?

$$
I_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle
$$

α

$$
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha}
$$

Nuclear shell model on a quantum computer

Lv, Wei, Xie, Long, arXiv:2205.12087 'Package’ for computing shell model (not public)
Romero, Engel, Tang, Economou, PRC 105, 064317 (2022). Advanced VQE for shell model.
Stetcu, Baroni, Carlson, arXiv: 2110.06098. Uses unitary coupled cluster for p-shell
Siwach, Arumugam, PRC 105, 064318 (2022) Computing quadrupole moment of deuteron
Kiss, Grossi, et al, arXiv:2205.0864. Unitary coupled cluster for ${ }^{6} \mathrm{Li}$ (really: frozen α + deuteron all over again)

Talks this week: Romero (next talk)
Robin (Thursday); Perez-Obiol (Thursday) (entanglement)

How are we going to tackle nuclear structure on a quantum computer?

Can we adapt our current approaches to quantum computers?

- Lattice
- Coupled cluster \rightarrow 'unitary' coupled cluster
- Advanced VQE (cf. next talk)
- Configuration-interaction \rightarrow Lanczos

(Cornelius Lanczos)

The Lanczos Algorithm!

(Cornelius Lanczos)

The Lanczos Algorithm!

Note: these quantum algorithms may not be practical on current machines, but reflect thinking about longer-term applications

(Cornelius Lanczos)

$$
\begin{aligned}
& \mathbf{A} \vec{v}_{1}=\alpha_{1} \vec{v}_{1}+\beta_{1} \vec{v}_{2} \\
& \mathbf{A} \vec{v}_{2}=\beta_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\beta_{2} \vec{v}_{3} \\
& \mathbf{A} \vec{v}_{3}=\quad \beta_{2} \vec{v}_{2}+\alpha_{3} \vec{v}_{3}+\beta_{3} \vec{v}_{4} \\
& \mathbf{A} \vec{v}_{4}=\quad \quad \beta_{3} \vec{v}_{3}+\alpha_{4} \vec{v}_{4}+\beta_{4} \vec{v}_{5}
\end{aligned}
$$

Starting from some initial vector (the "pivot") v_{1}, the Lanczos algorithm iteratively creates a new basis (a "Krylov space").

This is an example of a 'reduced basis method'

(Cornelius Lanczos)

$$
H \rightarrow \hat{H}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

(Cornelius Lanczos)

$$
H \rightarrow \hat{H}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

The extremal eigenvalues of the transformed, truncated matrix quickly converge to the extremal eigenvalues of the original matrix!

(Cornelius Lanczos)

Whitehead, R. R., et al. Advances in nuclear physics. (1977) 123-176.

The one drawback of Lanczos is, due to round-off error, one must explicitly enforce orthogonality of Lanczos vectors
("reorthogonalization")

(Cornelius Lanczos)

But ordinary linear algebra is not

 straightforward on a quantum computer

(Cornelius Lanczos)

But ordinary linear algebra is not straightforward on a quantum computer

We can take dot products: $\langle\Phi \mid \Psi\rangle$ compute matrix elements: $\langle\Phi| \hat{O}|\Psi\rangle$ and of course apply unitary transformations: $\quad|\Phi\rangle=\widehat{U}|\Psi\rangle$

(Cornelius Lanczos)

But ordinary linear algebra is not straightforward on a quantum computer

We can take dot products: $\langle\Phi \mid \Psi\rangle$
compute matrix elements: $\langle\Phi| \hat{O}|\Psi\rangle$ and of course apply unitary transformations: $\quad|\Phi\rangle=\widehat{U}|\Psi\rangle$

BUT: linear combinations: $|\Phi\rangle-a|\Psi\rangle$
(though possible) is not easy
(cf. linear combinations of unitaries (LCU))

(Cornelius Lanczos)
some parts on a quantum machine
and some parts on a classical machine
But ordinary linear algebra is not straightforward on a quantum computer

Let's do a hybrid approach:

Quantum Lanczos in imaginary time

San Diego State UNIVERSITY

Motta, et al, Nature Physics 16, 205 (2020) McArdle et al, npj Quantum Inf. 5, 75 (2019)

Quantum Lanczos in imaginary time

SAN Diego State
UNIVERSITY

Imaginary-time evolution is the workhorse of "Quantum Monte Carlo" on classical computers

$$
\lim _{\tau \rightarrow \infty} e^{-\tau \widehat{H}}\left|\psi_{\text {trial }}\right\rangle \propto\left|\Psi_{g s}\right\rangle
$$

Quantum Lanczos in imaginary time

Key idea of "Quantum Lanczos": take states at different 'times' to form a non-orthogonal reduced basis

$$
\left|\psi_{n}\right\rangle=e^{-n \Delta \tau \widehat{H}}\left|\psi_{0}\right\rangle \quad N_{m n}=\left\langle\psi_{m} \mid \psi_{n}\right\rangle \quad H_{m n}=\left\langle\psi_{m}\right| \widehat{H}\left|\psi_{n}\right\rangle
$$

Motta, et al, Nature Physics 16, 205 (2020)
McArdle et al, npj Quantum Inf. 5, 75 (2019)

Quantum Lanczos in imaginary time

Key idea of "Quantum Lanczos": take states at different 'times' to form a non-orthogonal reduced basis

$$
\left|\psi_{n}\right\rangle=e^{-n \Delta \tau \widehat{H}}\left|\psi_{0}\right\rangle \quad N_{m n}=\left\langle\psi_{m} \mid \psi_{n}\right\rangle \quad H_{m n}=\left\langle\psi_{m}\right| \widehat{H}\left|\psi_{n}\right\rangle
$$

Do this on a quantum machine

Quantum Lanczos in imaginary time

Key idea of "Quantum Lanczos": take states at different 'times' to form a non-orthogonal reduced basis

Do this on a

$$
\left|\psi_{n}\right\rangle=e^{-n \Delta \tau \widehat{H}}\left|\psi_{0}\right\rangle \quad N_{m n}=\left\langle\psi_{m} \mid \psi_{n}\right\rangle \quad H_{m n}=\left\langle\psi_{m}\right| \widehat{H}\left|\psi_{n}\right\rangle
$$

quantum machine
 BUT:
imaginary time evolution is not unitary!

Instead one has to find a unitary operator that approximates imaginary time evolution

In this reduced basis, solve generalized eigenvalue problem:
$\widehat{H} \vec{v}=E \widehat{N} \vec{v}$

Quantum Lanczos in imaginary time

That is, some \mathbf{U} such that

$$
U|\psi\rangle \approx e^{-\Delta \tau \hat{H}}|\psi\rangle
$$

> BUT:
> imaginary time evolution is not unitary!

Instead one has to find a unitary operator that approximates imaginary time evolution

Quantum Lanczos in imaginary time

That is, some \mathbf{U} such that

$$
U|\psi\rangle \approx e^{-\Delta \tau \widehat{H}}|\psi\rangle
$$

BUT:

imaginary time evolution is not unitary!

Instead one has to find a unitary operator that approximates imaginary time evolution

Quantum Lanczos in real time

Quantum computers are good at unitary transformations so why not use real time evolution?

"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

Quantum Lanczos in real time

Parrish and McMahon, arXiv:1909.08925
"Quantum Filter Diagonalization"
San Diego State
Key idea of "Quantum Lanczos": take states at different 'times' to form a non-orthogonal reduced basis

$$
\left|\psi_{n}\right\rangle=e-i n \Delta t h\left|\psi_{0}\right\rangle \quad N_{m n}=\left\langle\psi_{m} \mid \psi_{n}\right\rangle \quad H_{m n}=\left\langle\psi_{m}\right| \widehat{H}\left|\psi_{n}\right\rangle
$$

In this reduced basis, solve generalized eigenvalue problem:

$$
\widehat{H} \vec{v}=E \widehat{N} \vec{v}
$$

Quantum Lanczos in real time

Parrish and McMahon, arXiv: 1909.08925
"Quantum Filter Diagonalization"
Key idea of "Quantum Lanczos": take states at different 'times' to form a non-orthogonal reduced basis

$$
\left|\psi_{n}\right\rangle=e-i n \Delta t h \quad\left|\psi_{0}\right\rangle \quad N_{m n}=\left\langle\psi_{m} \mid \psi_{n}\right\rangle \quad H_{m n}=\left\langle\psi_{m}\right| \widehat{H}\left|\psi_{n}\right\rangle
$$

In this reduced basis, solve generalized eigenvalue problem:

$$
\widehat{H} \vec{v}=E \widehat{N} \vec{v}
$$

Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical computer

Baseline

Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical computer

Baseline

Comparison of realand imaginary-time evolution with synthetic data (working in eigenbasis)

Does basic idea work?

Quantum Lanczos in real time

We took several steps to investigate this approach

Lanczos
on a classical computer

Baseline
Comparison of real-
and imaginary-time
evolution with
synthetic data
(working in eigenbasis)

Does basic idea work? basis, Trotterization)

Quantum Lanczos in real time

We took several steps to investigate this approach

San Diego State
Lanczos
on a classical
computer

Baseline

Comparison of real-	Partial emulation
and imaginary-time	using bit \& Pauli
evolution with	string representation

Checking technical details (HF vs spherical
Does basic idea work? basis, Trotterization)
synthetic data (working in eigenbasis)

Quantum Lanczos in real time

We took several steps to investigate this approach

San Diego State
UNIVERSITY

| Lanczos |
| :--- | :--- | :--- | :--- | :--- | :--- |
| on a classical |
computer	\quad	Comparison of real-
and imaginary-time		
evolution with		
synthetic data		
(working in eigenbasis)	\quad	Partial emulation
:---		
using bit \& Pauli		
string representation	\quad	Checking technical
:---		
details (HF vs spherical		
emulation	\quad	Not
:---		
done		

Baseline

Lanczos on a classical computer	Comparison of realand imaginary-time evolution with	Partial emulation using bit \& Pauli string representation	Full Qiskit emulation	Not done
Baseline	(working in eigenbasis) Does basic idea work?	Checking technical details (HF vs spherical basis, Trotterization)	Run on quantum computer	Not done

Checking technical details (HF vs spherical basis, Trotterization)

Quantum Lanczos in real time

Lanczos
on a classical
computer

Baseline

Comparison of realand imaginary-time evolution with synthetic data (working in eigenbasis)

Does basic idea work?

For this step, we fully diagonalized a nuclear Hamiltonian (USDB) in a valence space to get all the eigenenergies: $\widehat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle$

We then generated a random trial vector

$$
\left|\psi_{t r i a l}\right\rangle=\sum_{n} c_{n}\left|\phi_{n}\right\rangle
$$

Evolution in the energy basis is easy:

$$
e^{-i \widehat{H} t}\left|\psi_{\text {trial }}\right\rangle=\sum_{n} c_{n} e^{-i E_{n} t}\left|\phi_{n}\right\rangle
$$

Quantum Lanczos in real time

"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

Quantum Lanczos in real time

Quantum Lanczos in real time

We can also get excited states

Here $\Delta \mathrm{t}=\Delta \tau=0.1 \mathrm{MeV}^{-1}$
Number of iterations fixed at $S=9$
$\mathrm{R}=\#$ of reference states

Quantum Lanczos in real time

SAN Diego State
UNIVERSITY

Here $\Delta \mathrm{t}=\Delta \tau=0.1 \mathrm{MeV}^{-1}$
$\mathrm{R}=\#$ of reference states
S = \# of iterations

We added noise (1%) to check robustness of solving generalized eigenvalue equation

Quantum Lanczos in real time

Lanczos
on a classical computer

Comparison of realand imaginary-time evolution with
synthetic data
(working in eigenbasis)

Does basic idea work?

Quantum Lanczos in real time

Lanczos
on a classical computer

Comparison of realand imaginary-time evolution with synthetic data (working in eigenbasis)

Partial emulation
using bit \& Pauli string representation

Checking technical details (HF vs spherical basis, Trotterization)

For this next step, we generated the full wave function using operators, e.g., $\hat{a}_{1}^{\dagger} \hat{a}_{3}^{\dagger} \hat{a}_{6}^{\dagger} \hat{a}_{11}^{\dagger}|0\rangle$, and the Hamiltonian,

$$
\hat{H}=\sum_{i j}\langle i| \hat{T}|j\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{4} \sum_{i j k l}\langle i j| \hat{V}|k l\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}
$$

These were mapped to Pauli strings. We then simulated time-evolution, but using the operators directly, not using gates in Qiskit.
(Instead, these were applied in basis of all possible bitstrings | 0001 > etc.

Quantum Lanczos in real time

example: ${ }^{14} \mathbf{N}$ in $\mathbf{O p}_{1 / 2}$-shell

Jordan-Wigner mapping

$$
\begin{aligned}
\hat{a}_{0}^{\dagger}=\frac{1}{2}\left(X_{0}-i Y_{0}\right) \quad \text { proton, } \mathrm{m}=+1 / 2 \\
\hat{a}_{1}^{\dagger}=\frac{1}{2}\left(Z_{0} X_{1}-i Z_{0} Y_{1}\right) \quad \text { proton, } \mathrm{m}=-1 / 2 \\
\hat{a}_{2}^{\dagger}=\frac{1}{2}\left(Z_{0} Z_{1} X_{2}-i Z_{0} Z_{1} Y_{2}\right) \quad \text { neutron, } \mathrm{m}=+1 / 2 \\
\hat{a}_{3}^{\dagger}=\frac{1}{2}\left(Z_{0} Z_{1} Z_{2} X_{3}-i Z_{0} Z_{1} Z_{2} Y_{3}\right), \quad \text { neutron, } \mathrm{m}=-1 / 2
\end{aligned}
$$

Quantum Lanczos in real time

example: ${ }^{\mathbf{1 4}} \mathbf{N}$ in $\mathbf{O p}_{1 / 2}$-shell

San Diego State
UNIVERSITY

Jordan-Wigner mapping

$$
\begin{aligned}
\hat{H} & =c_{0} I+c_{1} Z_{0}+c_{2} Z_{1}+c_{3} Z_{2}+c_{4} Z_{3}+c_{5} Z_{0} Z_{3}+c_{6} Z_{1} Z_{2} \\
& +c_{7} Z_{0} Z_{2}+c_{8} Z_{1} Z_{3}+c_{9} Y_{0} Y_{1} Y_{2} Y_{3}+c_{10} X_{0} X_{1} X_{2} X_{3} \\
& +c_{11} Y_{0} Y_{1} X_{2} X_{3}+c_{1,2} X_{0} X_{1} Y_{2} Y_{3}+c_{13} Y_{0} X_{1} Y_{2} X_{3} \\
& +c_{14} X_{0} Y_{1} X_{2} Y_{3}+c_{15} X_{0} Y_{1} Y_{2} X_{3}+c_{16} Y_{0} X_{1} X_{2} Y_{3},
\end{aligned}
$$

Luckily, this can be automated in Qiskit and other packages!

Quantum Lanczos in real time

${ }^{8} \mathrm{Be}$ in full 0 p -shell

SAN Diego State
UNIVERSITY

(a)

Hartree-Fock basis

(b)

Figure 8.1. Numerical simulations of the QLanczos algorithm with exact realtime evolution to solve for the lowest five energy states of the valence particles of ${ }^{8} \mathrm{Be}$ (two protons and two neutrons in the full p-shell). The simulation was run using a single reference state; (a) the lowest energy configuration in the spherical basis and (b) the Hartree-Fock state. A fixed number of real-time evolution iterations was used $(S=8)$ with a time step size of $\Delta t=0.1$.

Quantum Lanczos in real time

${ }^{8} \mathrm{Be}$ in full 0 p-shell

San Diego State
UNIVERSITY

H requires 975 Pauli strings and $\sim 24,000$ gates
tir
of

Hartree-Fock basis

run using a single reference state; (a) the lowest energy configuration in the spherical basis and (b) the Hartree-Fock state. A fixed number of real-time evolution iterations was used $(S=8)$ with a time step size of $\Delta t=0.1$.

Quantum Lanczos in real time

${ }^{8}$ Be in full 0p-shell

San Diego State
Hartree-Fock basis

Fis
tin
of
ru

evolution iterations was used $(S=8)$ with a time step size of $\Delta t=0.1$.

Quantum Lanczos in real time

${ }^{8}$ Be in full 0p-shell

San Diego State
Hartree-Fock basis

Fis tin can affect the convergence of the first 1-3 states
ru

evolution iterations was used $(S=8)$ with a time step size of $\Delta t=0.1$.

Quantum Lanczos in real time

We can investigate the importance of Trotterization

$$
e^{-i \hat{H} \Delta t k} \approx\left(\prod_{m} e^{-i c_{m} P_{m} \Delta t k / N}\right)^{N}=U_{k}
$$

example: ${ }^{14} \mathbf{N}$ in $\mathbf{O p}_{1 / 2}$-shell

$$
\begin{aligned}
U_{k}= & \exp \left(-i c_{0} I \Delta t k\right) \exp \left(-i c_{1} Z_{0} \Delta t k\right) \exp \left(-i c_{2} Z_{1} \Delta t k\right) \\
& \exp \left(-i c_{3} Z_{2} \Delta t k\right) \exp \left(-i c_{4} Z_{3} \Delta t k\right) \exp \left(-i c_{5} Z_{0} Z_{3} \Delta t k\right) \\
& \exp \left(-i c_{6} Z_{1} Z_{2} \Delta t k\right) \exp \left(-i c_{7} Z_{0} Z_{2} \Delta t k\right) \exp \left(-i c_{8} Z_{1} Z_{3} \Delta t k\right) \\
& \exp \left(-i c_{9} Y_{0} Y_{1} Y_{2} Y_{3} \Delta t k\right) \exp \left(-i c_{10} X_{0} X_{1} X_{2} X_{3} \Delta t k\right) \\
& \exp \left(-i c_{11} Y_{0} Y_{1} X_{2} X_{3} \Delta t k\right) \exp \left(-i c_{12} X_{0} X_{1} Y_{2} Y_{3} \Delta t k\right) \\
& \exp \left(-i c_{13} Y_{0} X_{1} Y_{2} X_{3} \Delta t k\right) \exp \left(-i c_{14} X_{0} Y_{1} X_{2} Y_{3} \Delta t k\right) \\
& \exp \left(-i c_{15} X_{0} Y_{1} Y_{2} X_{3} \Delta t k\right) \exp \left(-i c_{16} Y_{0} X_{1} X_{2} Y_{3} \Delta t k\right)
\end{aligned}
$$

Quantum Lanczos in real time

We can investigate the importance of Trotterization
$e^{-i \hat{H} \Delta t k} \approx\left(\prod_{m} e^{-i c_{m} P_{m} \Delta t k / N}\right)^{N}=U_{k}$,

example: ${ }^{\mathbf{1 4}} \mathbf{N}$ in $\mathbf{O p}_{1 / 2}$-shell

For example, the circuit to compute
$\exp \left(-i c_{7} Z_{0} Z_{2} \Delta t k\right)$, is

$\left|q_{3}\right\rangle$
where $\theta_{7}=c_{7} \Delta t k$.

Quantum Lanczos in real time

We can investigate the importance of Trotterization
$e^{-i \hat{H} \Delta t k} \approx\left(\prod_{m} e^{-i c_{m} P_{m} \Delta t k / N}\right)^{N}=U_{k}$,

example: ${ }^{14} \mathrm{~N}$ in $\mathbf{O p}_{1 / 2}$-shell

For example, the circuit for
$\exp \left(-i c_{11} Y_{0} Y_{1} X_{2} X_{3} \Delta t k\right)$, is

where $\theta_{11}=c_{11} \Delta t k$.

Quantum Lanczos in real time

${ }^{8} \mathrm{Be}$ in full Op -shell

SAN Diego State
UNIVERSITY
$\Delta \mathrm{t}=0.1 \mathrm{MeV}^{-1}$
$\mathrm{R}=\#$ of reference states
$\mathrm{S}=\#$ of iterations $=8$

Quantum Lanczos in real time

${ }^{8}$ Be in full Op-shell

Quantum Lanczos in real time

SAN Diego State
UNIVERSITY

Lanczos on a classical computer

Comparison of real- Partial emulation and imaginary-time \quad using bit \& Pauli evolution with synthetic data (working in eigenbasis)
string representation

Full Qiskit emulation	Not done
Run on quantum computer	Not done

${ }^{8} \mathrm{Be}$ in full 0 p shell
requires 975 Pauli strings
and $\sim 24,000$ gates

Quantum Lanczos in real time

So, what have we learned?

Quantum Lanczos with real-time evolution works! and is competitive with imaginary-time evolution.

As with classical Lanczos, convergence is not very sensitive to pivot (initial reference state).

Trotterization improves convergence, but is not huge.

SAN Diego State
UNIVERSITY

"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

Let's look at the data requirements in more detail

Consider ${ }^{12} \mathrm{C}, \mathrm{N}_{\max }=8$
M-scheme dimension 0.6 billion
55 single-particle orbitals (n 1 j)
440 single particle states (n 1 j m) | 011001 ... >

Let's look at the data requirements in more detail

Consider ${ }^{12} \mathrm{C}, \mathrm{N}_{\max }=8$
M-scheme dimension 0.6 billion
55 single-particle orbitals (n 1 j)
440 single particle states (n 1 j m) | 011001 ... >
= estimate \# of qubits needed

Let's look at the data requirements in more detail

Consider ${ }^{12} \mathrm{C}, \mathrm{N}_{\max }=8$
M-scheme dimension 0.6 billion
\# J-coupled 2-body matrix elements: ~ 1.5 million <abJ|H|cdJ >
\# uncoupled 2-body matrix elements ~ 10 million
$V_{i j k l} a_{i}^{+} a^{+}{ }_{j} a_{1} a_{k}$
\# many-body matrix elements: ~ 1.2 trillion (or 5 Tb storage)

Let's look at the data requirements in more detail

Consider ${ }^{12} \mathrm{C}, \mathrm{N}_{\max }=8$
M-scheme dimension 0.6 billion by superposition
\# J-coupled 2 -body matrix elements: ~ 1.5 million $<a b J|H| c d J>$ input
\# uncoupled 2-body matrix elements ~10 million! $\mathbf{V}_{\mathrm{ijkl} 1} \mathbf{a}^{+} \mathbf{a}^{\mathbf{~}}{ }_{\mathbf{j}} \mathbf{a}_{\mathbf{1}} \mathbf{a}_{\mathbf{k}}=$ \# 'Pauli strings' $^{\prime}$
\# many body matrix elements: ~ 1.2 trillion (or 5 Tb storage)-not relevant?

Let's look at the data requirements in more detail

Consider ${ }^{12} \mathrm{C}, \mathrm{N}_{\max }=8$
M-scheme dimension 0.6 billion by superposition
\# uncoupled 2-body matrix elements ~10 million! $\mathbf{V}_{\mathrm{ijkl}} \mathbf{a}^{+}{ }_{\mathbf{i}} \mathbf{a}^{+}{ }_{\mathbf{j}} \mathbf{a}_{\mathbf{1}} \mathbf{a}_{\mathbf{k}}=$ \# 'Pauli strings' $^{\prime}$
= \# of terms to be evaluated in a quantum circuit (or, \# of separate quantum circuits to be evaluated!)

We're still a long ways from catching the car we want!
"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

Lessons learned

Quantum computing requires a new way of thinking - how to use unitary transformation as the basis for processing

The eigenpair problem is important in nuclear and other fieldson classical machines, the Lanczos algorithm is often the method of choice.

A real-time version of the quantum Lanczos algorithm works well and can compete with the imaginary-time version.

Multiple reference states improves performance; so does modest Trotterization.

To tackle problems our community cares about, we will need on the order of $>10^{5-7}$ logical qubits (with error correction, 10^{6-9} physics qubits)

Nonetheless, science has stared down seemingly insurmountable challenges before

LIGO - A GIGANTIC INTERFEROMETER

LIGO - A GIGANTIC INTERFEROMETER

San Diego State

 UNIVERSITY

The quantum computing gold rush....

"Nuclear and particle physics on a quantum computer," ECT*, June 5, 2023

