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Summary
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* Overview of Chiral Effective Field Theory

e Quantum Simulation

* Optimising Quantum Simulation of Chiral Effective Field
Theories for Digital Quantum Computers

e Cost Estimates for Nuclear Spectroscopy
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Nuclear Physics

* Want to calculate nuclear physics quantities:
* Scattering cross-sections
* Low-lying spectra
e etc.

1: 2107.12769
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* Want to calculate nuclear physics quantities:
* Scattering cross-sections
* Low-lying spectra
e etc.
* Need a model of nuclear physics to simulate.
e Could try QCD from first principles:
e Classical MC can currently just simulate deuterium.
 Quantumly, first estimates of simple quark transport
properties need >10°° gates®.
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* Want to calculate nuclear physics quantities:
* Scattering cross-sections
* Low-lying spectra
e etc.
* Need a model of nuclear physics to simulate.
* Could try QCD from first principles:
e Classical MC can currently just simulate deuterium.
 Quantumly, first estimates of simple quark transport
properties need >10°° gates®.
* Semi-empirical models (e.g. mean field) aren’t reliable for
large nuclei or theoretically well justified.

1: 2107.12769



Approaching Nuclear Physics with EFTs: Chiral EFT

- |dea (Weinberg, 1990s): take the most general
possible Lagrangian which is consistent with the
symmetries of strong interaction, and include all
terms up to a given order in momentum

expansion.



Approaching Nuclear Physics with EFTs: Chiral EFT

. Idea (Weinberg, 1990s): take the most general
possible Lagrangian which is consistent with the
symmetries of strong interaction, and include all
terms up to a given order in momentum

expansion.

- Treats protons, neutrons and pions as the
degrees of freedom of the theory.

- Nucleons described by non-relativistic dynamics.

Image: Dean Lee



Modelling Nuclear Physics: Chiral EFT

To leading order the Lagrangian looks something like this:
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Modelling Nuclear Physics: Chiral EFT
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Contact Interactions Single Pion Exchange Two Pion Exchange

Higher order terms are more relevant at higher momenta



Simulating Chiral EFTs

Classically simulate time evolution:
=> sign problem!
=> huge resource costs



Simulating Chiral EFTs

Classically simulate time evolution:
=> sign problem!
=> huge resource costs

Quantumly simulate time evolution:
=> provably no sign problem!

=> “efficient”

How feasible is quantum simulation of Chiral EFT?



Our Work

Our Work



Our Work

 We determine gate counts for NISQ and fault-tolerant quantum
computers for time evolution and spectroscopy of nuclei.

* For 4 different Hamiltonians corresponding to the leading order terms in
the Effective Field Theory expansion.

* Improve on fermionic encodings, bosonic encodings, error analysis, etc.
to minimise gate counts and determine which is the most feasible.

* Allows us to compare efficiency of simulating leading order EFT
Hamiltonians.



EFTs and Quantum Computing

Time Evolution Algorithms



EFTs and Quantum Computing

 Time evolution is an important primitive, e.g. for guantum phase estimation.



EFTs and Quantum Computing

 Time evolution is an important primitive, e.g. for guantum phase estimation.

* Try simulating using product formulae. For Hamiltonian:
T
H=) H,
v=1
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g HHOt : P(dt)

€ . €

e —P(st)|| < e



EFTs and Quantum Computing

 Time evolution is an important primitive, e.g. for guantum phase estimation.

* Try simulating using product formulae. For Hamiltonian:
T
H=) H,
v=1
—ZH15t6—2H25t o e—ZHP5t —- P(ét)

e —P(st)|| < e

* Product formulae have low overhead and generally perform well!

—tHot

€ €

* How well can we improve our error bounds and optimise computational resources when
simulating Chiral Effective Field Theories?



Optimising Simulation for the Simplest Theory:
Pionless EFT



Pionless EFT

* Pionless EFT is the simplest Hamiltonian that recreates basic
properties of the nucleus! for momenta below pion mass.

+
Contact Interactions Single Pion Exchange Two Pion Exchange

1See works by: Kaplan, Savage, van Kolck, Bedaque...



Pionless EFT

* Pionless EFT is the simplest Hamiltonian that recreates basic
properties of the nucleus?.

e Discretise the theory and put on a
3D lattice rather continuous space: Q

\
N
N

O I a~1fm
* We choose a 2nd quantisation and Q

o

position-space formulation.

Image: Dean Lee

1See works by: Kaplan, Savage, van Kolck, Bedaque...
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* Pionless EFT is the simplest Hamiltonian that recreates basic
properties of the nucleus?.
k1net1c term 2-body onsite interaction 3-body onsite interaction
. Y ,C N f' N
Hgpr = ~ Z(aa i)as(7) + aa z $)Ng (1)ng(7)
Creation and annihilation Nucleon number
operators for nucleons. operator at site /.

ce{ptplnt,nl}

1See works by: Kaplan, Savage, van Kolck, Bedaque...
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* Pionless EFT is the simplest Hamiltonian that recreates basic
properties of the nucleus?.

kmetlc term 2-body onsite interaction 3-body onsite interaction

Y Vel N 7 N

2 Maz — (a Vao () + ab(5)as (3 )) + %;ﬂ Ny (1)ne (1) + % mg};ﬂ N () 1 () 120 (3)
P'? N
‘ ‘ 1See works by: Kaplan, Savage, van Kolck, Bedaque...

Hgpr =
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* Pionless EFT is the simplest Hamiltonian that recreates basic
properties of the nucleus?.
kinetic term 2-body onsite interaction 3-body onsite interaction
Hprr = 52— 3 (6b(0)a,0) + al()as(@)) + 5 3 noina@+ 2 Y no(i)ne(ing (i)

(i) i,070" i,070 £

Take advantage of as many details as possible to reduce simulation costs!

1See works by: Kaplan, Savage, van Kolck, Bedaque...



Fermionic Encodings

- In simulating the pionless EFT, the most expensive term is the kinetic
hopping term.



Fermionic Encodings

In simulating the pionless EFT, the most expensive term is the kinetic
hopping term.

Due to non-locality of fermions:

If fermions are encoded via Jordan-Wigner mapping, this term takes O(L°)
gates to implement.

. Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens
Rotation, need gate depth proportional to number of fermionic modes.



Fermionic Encodings

In simulating the pionless EFT, the most expensive term is the kinetic
hopping term.

Due to non-locality of fermions:

If fermions are encoded via Jordan-Wigner mapping, this term takes O(L°)
gates to implement.

Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens
Rotation, need gate depth proportional to number of fermionic modes.
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In simulating the pionless EFT, the most expensive term is the kinetic

hopping term.

Due to non-locality of fermions:

If fermions are encoded via Jordan-Wigner mapping, this term takes O(L°)
gates to implement.

. Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens
Rotation, need gate depth proportional to number of fermionic modes.
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Fermionic Encodings

In simulating the pionless EFT, the most expensive term is the kinetic
hopping term.

Due to non-locality of fermions:

If fermions are encoded via Jordan-Wigner mapping, this term takes O(L°)
gates to implement.

. Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens
Rotation, need gate depth proportional to number of fermionic modes.

Leverage interaction locality + fermion no. conservation: encode

fermions using Verstraete-Cirac or Compact encoding.
Implement a single hopping operator in O(1) depth



Implementing each Trotter Step

- Fermionic encoding + Hamiltonian structure allows a highly
parallelizable implementation of each Trotter step.
. Allows for each term to be implemented in O(1) depth and the

Trotter step to have O(1) depth.



Implementing each Trotter Step

- Fermionic encoding + Hamiltonian structure allows a highly
parallelizable implementation of each Trotter step.
. Allows for each term to be implemented in O(1) depth and the

Trotter step to have O(1) depth.
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A
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Implementing each Trotter Step

- Fermionic encoding + Hamiltonian structure allows a highly
parallelizable implementation of each Trotter step.
. Allows for each term to be implemented in O(1) depth and the

Trotter step to have O(1) depth.

Implementing the kinetic terms in 2D:
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Implementing each Trotter Step

- Fermionic encoding + Hamiltonian structure allows a highly
parallelizable implementation of each Trotter step.
. Allows for each term to be implemented in O(1) depth and the

Trotter step to have O(1) depth.

Implementing the kinetic terms in 2D:
l o l o

(o) O C===p === G
ol Aammd eGEEp O

o D 2 Camms G

e o o
O aOammb Oy omd

o o



Q%\QERSQPQQ
Implementing each Trotter Step @
47(71’?3&?5&Q

- Fermionic encoding + Hamiltonian structure allows a highly
parallelizable implementation of each Trotter step.

. Allows for each term to be implemented in O(1) depth and the
Trotter step to have O(1) depth.

Implementing the kinetic terms in 2D:
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Implementing each Trotter Step

Fermionic encoding + Hamiltonian structure allows a highly
parallelizable implementation of each Trotter step.

. Allows for each term to be implemented in O(1) depth and the
Trotter step to have O(1) depth.

Fermionic Encoding Circuit Depth Number of Qubits
Jordan-Wigner (Naive) O(M?) M

FFFT/SWAP Networks O(M) M

VC or Compact 110 1.5M

(M = # fermion modes, M=4,000 for 10x10x10 lattice)



Fermionic Encodings

Pionless EFT: we can actually do even better than naive VC or
Compact.

kinetic term 2- body onsu;c interaction 3-body onsite interaction

A\ .
N N

D
(ab(D)ar(5) + al(j)a z) +— > (i) + 5 D noli)ng(i)ne (i)
(4,7) 1,070’ i,07%0' #o"

Hprr = 2M a?



Fermionic Encodings

Pionless EFT: we can actually do even better than naive VC or

Compact.
kinetic term 2-body onsite interaction 3-body onsite interaction
1 fon i ), C ... D NEPNEPA
Hprr = w5 > (ab(D)as(3) + ab(1)as(1)) + = D nolino(@d) + = Y. no(i)ne(i)ng (i)
2Ma* “— 2 6 . ,
(4,4) 1,070 i,070'#0’

. There is no mixing between different species.
Hamiltonian is number preserving for each type of fermion
individually.



Fermionic Encodings

Pionless EFT: we can actually do even better than naive VC or

Compact.
kinetic term 2- body onsn',c interaction 3-body onsite interaction
i D . . .
Hppr = 2M 5 ) + as(j)aq (%) —0— — E Ny (1)ng (1 E E Mo (7)Mo (1) (7)
a (4,7) 1,070’ i,07%0' #o"

. There is no mixing between different species.
Hamiltonian is number preserving for each type of fermion
individually.

. Can encode each fermion “separately”, and “stack” copies of
encodings together.



Fermionic Encodings

Hgpr =

- Pionless EFT: we can actually do even better than naive VC or

Compact.
kinetic term 2-body onsu;c interaction 3-body onsite interaction
), D NN
— 3 (ab)as ) + ab(j)ac(i ) + 23 nglingi e Y n(ine(ing)
a (4,7) za;éoJ i,07%0' #o"
. There is no mixing between different species.
Fermionic Encoding Circuit Depth Number of Qubits
Jordan-Wigner (Naive) O(M?) M
FFFT/SWAP Networks o(M) M
VC or Compact 110 1.5M
Stacked Compact 44 2.5M

(M = # fermion modes, M=4,000 for 10x10x10 lattice)



Better Trotter Bounds

Using Hamiltonian Structure for
Better Trotter Error



Better Trotter Bounds

. Childs et al. (2019)*: improve error bounds to account for
commutators: He—z’Ht B ’P(t)H < O(Ozt2€_1)

r
H — ZHV o — ZH[HW’ H,]|| (we use similar
Y S bounds for p=2)

1: 1912.08854



Better Trotter Bounds

. Childs et al. (2019)*: improve error bounds to account for

commutators: He—z’Ht B H < O ate —1)
H = H _ (we use similar
Zy: ' o ;H ot bounds for p=2)

. Take advantage of the pionless EFT’s number preserving properties

kinetic term 2-body onsite interaction 3-body onsite interaction

N\ N A\

-~ -~ "~ ~ "~

(ab)ao(s) + ab(i)as@)) + 5 3 molino(@) + 5 3 melme i)l

(4,7) 1,070’ i,0F%0'#o"

Hprr = 2M a?

1: 1912.08854



Better Trotter Bounds

. Childs et al. (2019)*: improve error bounds to account for
commutators: He—z’Ht B ’P(t)H < O(atze_l)

r
H — ZH7 o — ZH[HW’ H,]|] (we use similar
Y S bounds for p=2)

e Combine this with physical constraints on the systems (e.g.
preserved particle number as per Su, Huang & Campbell (2020)?):

a = O(# of particles)

1: 1912.08854
2:2012.09194



Comparisons

e Comparison for p=1,2 Trotter formula havmg applied these VC encoding +
error bounds vs. Roggero et al. (2019)*:

2-Qubit Gate Depth for Time Simulation 2-Qubit Gate Depth for Time Simulation

for p = 1 Product Formula

for p = 2 Product Formula
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Beyond Pionless EFT



Beyond Pionless EFT

e We now include the first order term

+
=
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Contact Interactions Single Pion Exchange Two Pion Exchange



Beyond Pionless EFT

* Pionless EFT approximates low-energy Hamiltonian.
* We can include higher order interactions:

1 1
Ly = zﬁyﬂ,ﬁ“ i — zmiﬂ'? Pion Only Terms

o G2
+N'|— - M|N
M

1 \ . 1
_ECS(M N)(N'N) — §CT(NT0-1-N)(NT07N) Nucleon Only Terms

1

A . ,
1 f2 T,'O'ja,-ﬂ',- N Nucleon-Pion Interactions

8
2=

* But what cost do we pay in simulating this?

+N' [ — € ik Ty jOo Tk —



Beyond Pionless EFT

Models we investigate:

* Dynamical pions: include and explicitly simulate pions.

1 - 1 1 :
Ho = anmﬁom +8j7rz-877rz— ~- Emiﬂf -+ ]\7]L 4f2 Ez'jkTiﬂjaoﬂk -+ 29}4 TiO'jajﬂ'j]N

N _J/
v -

Nucleon-Pion Interaction

Pion Kinetic Term



Beyond Pionless EFT

Models we investigate:

* Dynamical pions: include and explicitly simulate pions.

'7rj807rk —+

1 1 .
Ho = —807rz807rz + 0jm; 0 m; + 2m 4 Nt [4f2 29}4 Tiajﬁjwj]N

Pion Kinetic Term Nucleon-Pion Interaction
* Instantaneous pions: include pions, but remove their dynamics.

1 : 1
Ho = — j7T7;6]7T2+2m7T -+ NT[

. (simulation requires
Tz‘O'JajT('j N additional Monte Carlo runs)

2

Kinetic Ter with Oym; removed

L.

"

2fx

Interaction terms with 9ym; removed
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Beyond Pionless EFT

Models we investigate:

* Dynamical pions: include and explicitly simulate pions.

1 - 1 .
Ho = anmaom + 0;m;0'm; + Emfrwf + NT [ i €k Ti ;O Ty + 29}4 Tiojﬁjwj]N
o W, iy

N _J/
v -~

Pion Kinetic Term Nucleon-Pion Interaction
* Instantaneous pions: include pions, but remove their dynamics.

1 - 1
Ho = 3 00T + 2m2w2 + NT[

Kinetic Ter with Oym; removed

. (simulation requires
Tz'O'Jaj?Tj N additional Monte Carlo runs)

.

2fr
Interaction terms with 9ym; removed
* One pion exchange: remove explicit pions and introduce a Yukawa-type potential

between fermions.

1 ga 2 i i 5 e " 3 3
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Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008) and Madeira et al. (2018)?

Dynamical Pions Instantaneous Pions Long-Ranged Interaction
® O O
@ @ ® @
O O O O
@ ®

o O )g O O
O 0 & B 0o
O O O O O

Hollow circles: fermionic sites.

Red circles: bosonic sites. 1: 0804.3501
2:1803.10725




Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008) and Madeira et al. (2018)?

Dynamical Pions

O O

O O O

© O ) L
o o d b

O O O O

Hollow circles: fermionic sites.
Red circles: bosonic sites.

Instantaneous Pions

O O O
O O O O
O O Q O O
O o O b o
O O O O O

Monte Carlo samples are taken over boson
field configurations

Long-Ranged Interaction

1: 0804.3501
2:1803.10725



Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008) and Madeira et al. (2018)?

Dynamical Pions Instantaneous Pions Long-Ranged Interaction
® O O O O O O O O O O
@ @ ® @ @ © ® ®
O O O O O O O O O O 49 O O
® ® @ @ ® © : 3 ' J

O 0 )g £ O] 0 0 Q HL O | 0 @ QKO0
o o &% ol o o & B o |0 oo
o o0 o 0o o| o o o o o | o o Jd o ©

Hollow circles: fermionic sites. Monte Carlo samples are taken over boson

Red circles: bosonic sites. field configurations 1: 0804.3501
2:1803.10725




Beyond Pionless EFT

Models we investigate:

e Dynamical and instantaneous case:
o Requires explicit encoding of scalar field theory + fermion interactions.
o See work by Jordan, Lee & Preskill (2012)?%, Klco & Savage (2018)? for scalar fields.
o Need to:
m Choose pion basis to minimise circuit depth.
m Choose pion field representation as spin operators.
m Choose pion field and conjugate momentum cut-off.

® One Pion Exchange case:
o Determine best representation for interaction given the fermionic encoding.
o Determining a cut-off length for the long-ranged interaction.

e Both:

o Circuit decompositions, Hamiltonian decompositions, etc. 1:1111.3633
2:1808.10378
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Resource Costs for Spectroscopy
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Cost Estimates for Quantum Phase Estimation

* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.3.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless
OPE (Long-Ranged)
Instantaneous Pions

Dynamical Pions

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

 State preparation step not included!

1: 1605.07197
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Cost Estimates for Quantum Phase Estimation

* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.3.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 2x107
OPE (Long-Ranged) 4x10"7
Instantaneous Pions 3x10%
Dynamical Pions 1x10%8

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

 State preparation step not included!

1: 1605.07197



Cost Estimates for Quantum Phase Estimation e -

Q

* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.3.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 2x107 1x10"" 3x10% - 3x10° years
OPE (Long-Ranged) 4x10"7 2x1028 10" - 10" years
Instantaneous Pions 3x1026 9x1030 10"% - 10"8 years
Dynamical Pions 1x10%8 2x10%0 1026 - 10?8 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

 State preparation step not included!

1: 1605.07197



Cost Estimates for Quantum Phase Estimation e -
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* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.3.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 2x107 1x10"" 3x10% - 3x10° years
OPE (Long-Ranged) 4x10"7 2x1028 10" - 10" years
Instantaneous Pions 3x102° 9x1030 10"% - 10"8 years
Dynamical Pions 1x10%8 2x10%0 1026 - 10?8 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

* Current NISQ devices are nowhere near achieving this:

- Google’s Quantum Supremacy Experiment had depth ~30.
- IBM currently claims depth ~100. L 1605.07197



Cost Estimates for Quantum Phase Estimation

* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision, on 10x10x10 lattice,
with correctness probability p>0.3.

Phase Estimation Circuit Depths for Different EFTs Phase Estimation T-Gate Counts for Different EFTs
using p=1 Product Formula using p=1 Product Formula

—— Pionless —— Pionless

1038 4

—— OPE 10% - —— OPE

—— Dynamical Pions —— Dynamical Pions
1033 -

—— Instantaneous Pions —— Instantaneous Pions

1039
=
28
§ 10 103
o i
= 8
> 23
B W Y 102
O ©
= ©
Qo 18 -
10
= 24
o 10
o~
1013 4

0 20 40 60 80 0 20 40 60 80
Number of Fermions Number of Fermions



Asymptotic Scaling , =

 Scaling of resources for time-simulation with p" order product

formula for fixed time: n Number of | E Energy Scale
fermions
Lattice size Precision
_
Pionless 1/pL3
1/p 3 1/p
(el/P T log(n'/PL° /e
OPE (Long-Ranged) 1/p 1/p13
n n 1/p73/.1/p O(L?)
O(el/p> O( T log(n/PL°/e'?)
i 279.3\ 1/P 2712,3\ 1/P
Instantaneous Pions O((E Ly ) ) O((E L3 n ) ) O(L* log (P L3 E/é))
€3 €
Dynamical Pions 279,4\ 1/p 27124\ 1/P
o (222)") o (222)") O g/ )
€ €
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Pionless 2x107 1x10" 3x10% - 3x10° years

OPE (Long-Ranged) 4x10"7 2x1028 10'* - 10" years

Instantaneous Pions 3x102° 9x103° 106 - 1078 years

Dynamical Pions 1x1038 2x1040 10%° - 10?8 years

Conclusions

. Without major improvements to hardware or algorithm,
spectroscopy looks unfeasible for NISQ devices.

- OPE and Instantaneous pion models achieve similar efficiencies.

- Dynamical pion models are significantly more expensive than
others.



Summary

. Examined the task of time evolution and spectroscopy for 4 Chiral
Effective Field Theories.

. For Pionless EFT model, utilising Hamiltonian details allows for
10%-10° better circuit depths using new techniques.

- Provided the first resource estimates for higher order terms in
Effective Field Theory.

. Demonstrated a trade-off between different approximations to the
first order terms.

. However, all are infeasible for the near/mid-term.
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Maybe there’s some hope...

Successive improvements have been found for the Fermi-Hubbard
model:

Trotter Bounds Standard Gate Decompositions Subcircuit Gate Decompositions

Analytic [Ch+18] 976,710 59,830

Analytic [CBC21] 77,236 1,686

Numerical [CBC21] 3,428 259
2-qubit gate depth for Fermi-Hubbard model for particular time, error and
particle number (Clinton, Bausch, & Cubitt, (2021)%).

1: 2003.06886



Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms. T K

(c) brickwall of three layers
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Error reduction by factor of ~100,
McKeever & Lubasch, (2022)!

1: 2205.11427



Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

Non-standard gate decompositions.

.

Trotter Bounds Standard Subcircuit

analytic 1236 1,686

Cost reduction by ~10, Clinton,
Bausch & Cubitt, (2020)

1: 2003.06886


https://arxiv.org/abs/2003.06886

Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

- Non-standard gate decompositions.

- New fermionic encodings?

_ , Standard Subcircuit
Fermion encoding  Trotter bounds i -
decomposition decomposition
VC analytic 121,478 95,447
compact analytic 98,339 72,308

Gate cost reduction from developing new
fermionic encoding, Clinton, Bausch, & Cubitt
(2020)*

1: 2003.06886


https://arxiv.org/abs/2003.06886

Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

- Non-standard gate decompositions.

- New fermionic encodings?

. Better phase estimation algorithms.
\

Somma (2020)%, removes need
for controlled unitaries —
reduces costs by ~20%.

1: 1907.11748



Routes to Improvement

Further improvements we can make:

Circuit optimisation algorithms.

Non-standard gate decompositions.

New fermionic encodings?

Better phase estimation algorithms.

Empirical vs analytical error?
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System size
Empirically, the error is often a factor
~102 smaller than the analytical

bounds Childs et al. (2017)*.

1:1711.10980
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. Empirical vs analytical error?

. T-gate reduction with different hardware models.
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Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

Non-standard gate decompositions.
New fermionic encodings?
Better phase estimation algorithms.
Empirical vs analytical error?
. T-gate reduction with different hardware models.
Lower-cost use cases?
Partial error correcting properties of fermionic encodings?
Randomised simulation/using Hamiltonian symmetries/etc.
. Other ways of simulating nuclear physics besides lattice EFT

formulation?
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* Techniques improving quantum algorithms for simulating

time evolution of EFTs.

* Beyond pionless EFT & associated costs.



EFTs and Quantum Computing

* First principles nuclear dynamics is difficult — use an effective field theory instead!

 Time evolution is an important primitive, e.g. for qguantum phase estimation.
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* First principles nuclear dynamics is difficult — use an effective field theory instead!

 Time evolution is an important primitive, e.g. for qguantum phase estimation.

L
e Try simulating using product formulae. For Hamiltonian: H = Z H,
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EFTs and Quantum Computing

First principles nuclear dynamics is difficult — use an effective field theory instead!

Time evolution is an important primitive, e.g. for quantum phase estimation.

L
Try simulating using product formulae. For Hamiltonian: H — Z H,

. . . . 7:1
—1 Hdt ~ e—'I,chste—’l,szt L 6—’LHL5t — P(dt)

e —P(st)|| < e

€

Product formulae have low overhead and generally perform well!

How well can we improve our error bounds and optimise computational resources?



Previous Work in EFTs and Quantum Computing

Roggero et al. (2019)! on simulating time evolution and linear response
function using pionless effective field theory model.

k1net1c term 2-body onsite interaction 3-body onsite interaction
Hppr = = E (a(,- i)as(J) + aa z' $)Ng (1)ng(7)
) V | U#J ‘\\ | U#d:///((
Creation and annihilation Nucleon number

operators for nucleons. operator at site i.

1: 1911.06368



Previous Work in EFTs and Quantum Computing

Roggero et al. (2019)! on simulating time evolution and linear response
function using pionless effective field theory model.

kinetic term 2-body onsite interaction 3-body onsite interaction
] . C . .. D NEPNEA
Hprr = —— (a(, $)ao(j) + aj,(])aa(z)> + = Y (i) + = Y e (@)ng (i) (i)
M 2 6 ,
1,070’ 1,070 #o’

0

X

3N G
eI G

1: 1911.06368



Previous Work in EFTs and Quantum Computing

Roggero et al. (2019)! on simulating time evolution and linear response
function using pionless effective field theory model.

kinetic term 2-body onsite interaction 3-body onsite interaction
Hppr = _1 § j(af,(z‘)aa(j) + a:r,(j)ad(z'))\ +,—C E na(i)nd(i; +F—D E na(i)n(f(i)noﬂ(i;
2Ma? 2 6 ,
(1,7) 1,070 i,070'#0'

HFH — JZ(G'];(i)aa(j) + ac];(j)a'a(i)) + U Z na(i)na’(i)
(i,4)

1,040
\ - _J/ . _J/
TV TV

kinetic terms 2-body onsite interaction

The Fermi-Hubbard model is similar and well studied — can we apply
techniques from its analysis + improved Trotter analysis to get bounds?

1: 1911.06368



Better Trotter Bounds

* Childs et al. (2019)*: improve error bounds to account for
commutators: He—z’Ht B ’P(t)H < O(Ozt2€_1)

L
H — ZHV o — ZH[HW H,]|] (we use similar
2 S~y bounds for p=2)

1: 1912.08854



Better Trotter Bounds

* Childs et al. (2019)*: improve error bounds to account for
commutators: He—z’Ht B ’P(t)H < O(atze_l)

L
H — ZH7 o — ZH[HW H,]|] (we use similar
Y vl bounds for p=2)

e Combine this with physical constraints on the systems (e.g.
preserved particle number as per Su, Huang & Campbell (2020)?):

a = O(# of particles)

1: 1912.08854
2:2012.09194



Better Trotter Bounds

* Childs et al. (2019)*: improve error bounds to account for
commutators: He—z’Ht B ’P(t)H < O(at2e_1)

L
H — ZH7 o — ZH[H’)’N H,]|] (we use similar
Y vl bounds for p=2)

e Combine this with physical constraints on the systems (e.g.
preserved particle number as per Su, Huang & Campbell (2020)?):

a = O(# of particles)

*Yi & Crosson(2021)3: improve error for quantum phase estimation 110120885

by considering the effective Trotterised Hamiltonian. 3 21091265
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- In simulating the pionless EFT, the most expensive term is the kinetic
hopping term.



Better Circuit Depths

In simulating the pionless EFT, the most expensive term is the kinetic
hopping term.

Due to non-locality of fermions:

If fermions are encoded via Jordan-Wigner mapping, this term takes O(L°)
gates to implement.

. Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens
Rotation, need gate depth proportional to number of fermionic modes.



Better Circuit Depths

In simulating the pionless EFT, the most expensive term is the kinetic

hopping term.

Due to non-locality of fermions:
If fermions are encoded via Jordan-Wigner mapping, this term takes O(L"*)

gates to implement.
. Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens

Rotation, need gate depth proportional to number of fermionic modes.

Leverage interaction locality: encode fermions using

Verstraete-Cirac encoding.
Implement in circuit of depth ~100, regardless of number of fermions or

lattice size.



Comparisons

e Comparison for p=1,2 Trotter formula having applied these methods vs.
bounds from Roggero et al. (2019)*:

2-Qubit Gate Depth for Time Simulation 2-Qubit Gate Depth for Time Simulation

for p = 1 Product Formula

for p = 2 Product Formula
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Beyond Pionless EFT



Beyond Pionless EFT

* Pionless EFT approximates low-energy Hamiltonian.
* We can include higher order interactions:

1 1
Ly = zﬁyﬂ,ﬁ“ i — zmiﬂ'? Pion Only Terms

o G2
+N'|— - M|N
M

1 \ . 1
_ECS(M N)(N'N) — §CT(NT0-1-N)(NT07N) Nucleon Only Terms

1

A . ,
1 f2 T,'O'ja,-ﬂ',- N Nucleon-Pion Interactions

8
2=

* But what cost do we pay in simulating this?

+N' [ — € ik Ty jOo Tk —



Beyond Pionless EFT

Models we investigate:

* Dynamical pions: include and explicitly simulate pions.

1 - 1 1 :
Ho = anmﬁom +8j7rz-877rz— ~- Emiﬂf -+ ]\7]L 4f2 Ez'jkTiﬂjaoﬂk -+ 29}4 TiO'jajﬂ'j]N

N _J/
v -

Nucleon-Pion Interaction

Pion Kinetic Term
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Beyond Pionless EFT
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Models we investigate:

* Dynamical pions: include and explicitly simulate pions.

1 .
Hoy = —807&80%z + Bjma i + 2m27r2 + NT [ i €k TiT;00T) + 29}4 TiCT]Bjﬂ'j]N
& W, iy

- N _J/

-~

Pion Kinetic Term Nucleon-Pion Interaction
* Instantaneous pions: include pions, but remove their dynamics.

1 : 1
HO:E j7T7;8]7T2+ 2m2w2—|— NT[

Kinetic Ter with Oym; removed

Tz'O'Jaj?Tj]N

.

2fx

Interaction terms with 9ym; removed
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Beyond Pionless EFT

Models we investigate:

* Dynamical pions: include and explicitly simulate pions.

1 - 1 .
Ho = anmaom + 0;m;0'm; + Emfrwf + NT [ i €k Ti ;O Ty + J4 Tiojﬁjwj]N

" _ 2f7T

— - -y
-

Pion Kinetic Term Nucleon-Pion Interaction
* Instantaneous pions: include pions, but remove their dynamics.

1 : 1
Hop = =0;m0'm; + 2m2w2 + NT[

2

Kinetic Ter with Oym; removed

Tz'O'Jaj?Tj]N

.

"

2fr
~
Interaction terms with 9ym; removed

* One pion exchange: remove explicit pions and introduce an effective Yukawa-type
potential between fermions.

1 (g4’ w1 5 e " 3 3
= — . 1
V(r) Ar (2f7r> ;[T it oy | M r Sz 1+ m.r T m2r?
4
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Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008) and Madeira et al. (2018)?

Dynamical Pions Instantaneous Pions Long-Ranged Interaction
® O O
@ @ ® @
O O O O
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O O O O O

Hollow circles: fermionic sites.

Red circles: bosonic sites. 1: 0804.3501
2:1803.10725
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For discretised Hamiltonians, see: Lee (2008) and Madeira et al. (2018)?
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Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008) and Madeira et al. (2018)?

Dynamical Pions Instantaneous Pions Long-Ranged Interaction
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Hollow circles: fermionic sites.

Red circles: bosonic sites. 1: 0804.3501
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Beyond Pionless EFT

Models we investigate:

e Dynamical and instantaneous case:
o Requires explicit encoding of scalar field theory + fermion interactions.
o See work by Jordan, Lee & Preskill (2012)?%, Klco & Savage (2018)? for scalar fields.
o Need to:
m Choose pion basis to minimise circuit depth.
m Choose pion field representation as spin operators.
m Choose pion field and conjugate momentum cut-off.

1:1111.3633
2:1808.10378



Beyond Pionless EFT

Models we investigate:

e Dynamical and instantaneous case:
o Requires explicit encoding of scalar field theory + fermion interactions.
o See work by Jordan, Lee & Preskill (2012)?%, Klco & Savage (2018)? for scalar fields.
o Need to:
m Choose pion basis to minimise circuit depth.
m Choose pion field representation as spin operators.
m Choose pion field and conjugate momentum cut-off.

® One Pion Exchange case:
o Determine best representation for interaction given the fermionic encoding.
o Determining a cut-off length for the long-ranged interaction.

1:1111.3633
2:1808.10378
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Cost Estimates for Quantum Phase Estimation

* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.9.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless
OPE
Instantaneous Pions

Dynamical Pions

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

 State preparation step not included!

1: 1605.07197
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* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.9.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x10"2
OPE 7x1026
Instantaneous Pions 3x10%
Dynamical Pions 2x1034

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

 State preparation step not included!

1: 1605.07197
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* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.9.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x10"2 1x10"" 3x10% - 3x10° years
OPE 7x1026 2x1028 10" - 10" years
Instantaneous Pions 3x102° 9x1030 10"% - 10"8 years
Dynamical Pions 2x1034 2x10%0 1026 - 10?8 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

 State preparation step not included!

1: 1605.07197
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* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.9.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x10"2 1x10"" 3x10% - 3x10° years
OPE 7x1026 2x1028 10" - 10" years
Instantaneous Pions 3x102° 9x1030 10"% - 10"8 years
Dynamical Pions 2x1034 2x10%0 1026 - 10?8 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

* Current NISQ devices are nowhere near achieving this:
- Google’s Quantum Supremacy Experiment had depth ~30.

* IBM currently claims depth ~100. 1: 1605.07197



Cost Estimates for Quantum Phase Estimation e -
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* Using the standard quantum phase estimation algorithm and p=1
product formulae: 1MeV of energy precision for 6 fermions, on
10x10x10 lattice, with correctness probability p>0.9.

_ 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x10"2 1x10"" 3x10% - 3x10° years
OPE 7x1026 2x1028 10" - 10" years
Instantaneous Pions 3x102° 9x1030 10"% - 10"8 years
Dynamical Pions 2x1034 2x10%0 1026 - 10?8 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

* Additional question: what is the “correct” precision to work to for
each model? High precision pointless if the effective Hamiltonian has
larger systematic error. 1: 1605.07197
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Maybe there’s some hope...

Successive improvements have been found for the Fermi-Hubbard
model:

Trotter Bounds Standard Gate Decompositions Subcircuit Gate Decompositions

Analytic [Ch+18] 976,710 59,830

Analytic [CBC21] 77,236 1,686

Numerical [CBC21] 3,428 259
2-qubit gate depth for Fermi-Hubbard model for particular time, error and
particle number (Clinton, Bausch, & Cubitt, (2021)%).

1: 2003.06886



Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms. T K
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Error reduction by factor of ~100,
McKeever & Lubasch, (2022)!

1: 2205.11427



Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

Non-standard gate decompositions.

.

Trotter Bounds Standard Subcircuit

analytic 1236 1,686

Cost reduction by ~10, Clinton,
Bausch & Cubitt, (2020)

1: 2003.06886


https://arxiv.org/abs/2003.06886

Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

- Non-standard gate decompositions.

- New fermionic encodings?

_ , Standard Subcircuit
Fermion encoding  Trotter bounds i -
decomposition decomposition
VC analytic 121,478 95,447
compact analytic 98,339 72,308

Gate cost reduction from developing new
fermionic encoding, Clinton, Bausch, & Cubitt
(2020)*

1: 2003.06886


https://arxiv.org/abs/2003.06886

Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

- Non-standard gate decompositions.

- New fermionic encodings?

. Better phase estimation algorithms.
\

Somma (2020)%, removes need
for controlled unitaries —
reduces costs by ~20%.

1: 1907.11748



Routes to Improvement

Further improvements we can make:

Circuit optimisation algorithms.

Non-standard gate decompositions.

New fermionic encodings?

Better phase estimation algorithms.

Empirical vs analytical error?
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Empirically, the error is often a factor
~102 smaller than the analytical

bounds Childs et al. (2017)*.
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Routes to Improvement

Further improvements we can make:
- Circuit optimisation algorithms.

Non-standard gate decompositions.
New fermionic encodings?
Better phase estimation algorithms.
Empirical vs analytical error?
. T-gate reduction with different hardware models.
Lower-cost use cases?
Partial error correcting properties of fermionic encodings?
Randomised simulation/using Hamiltonian symmetries/etc.
. Other ways of simulating nuclear physics besides lattice EFT

formulation?









Limitations of New Techniques

* Childs et al error improve bounds to account for commutators:

He_th — Pp(t)H < O(at”pe_p)

a = Z ‘ ‘ [H’Ypﬂa- i [H72’ H%” ‘ ‘
Yp+1,Vp- - -1

* Calculating nested commutator is difficult for p>2.

* Verstraete-Cirac encoding comes with more difficult state
preparation.



Future Work

 Different spectroscopy/QPE algorithms.

e Optimising circuit depths and T-gate counts.

* Non-standard gate decompositions.

* |Inherent error correction in fermionic encodings

* Lower-cost use cases generally?




Beyond Pionless EFT

* Pionless EFT approximates low-energy Hamiltonian.
* We can include higher order interactions:

0_2 [TLE) 0 o' tm 12 0 2}\[0
1 A
4f2 — €ijkTiTj Ok — Ena )0;m; — ]\fIO]N

- 5cs(z\ﬂ‘N)(z\ﬁN) - §CT(NT02’N )(N'oiN)

* But what cost do we pay in simulating this?



Better Trotter Bounds

* Childs et al. (2019)*: improve error bounds to account for
commutators: He—z’Ht B ’P(t)H < O(at2e_1)

L
H — ZH7 o — ZH[H’)’N H,]|] (we use similar
Y vl bounds for p=2)

e Combine this with physical constraints on the systems (e.g.
preserved particle number as per Su, Huang & Campbell (2020)?):

a = O(# of particles)

*Yi & Crosson(2021)3: improve error for quantum phase estimation 110120885

by considering the effective Trotterised Hamiltonian. 3 21091265



Previous Work in EFTs and Quantum Computing

* Pionless EFT is the simplest Hamiltonian that recreates basic
properties of the nucleus.

kinetic term 2-body onsite interaction 3-body onsite interaction
Hppr = _1 § j(af,(z‘)aa(j) + a:r,(j)ad(z'))\ +,—C E na(i)nd(i; +F—D E na(i)n(f(i)noﬂ(i;
2Ma? 2 6 ,
(1,7) 1,070 i,070'#0'

1,040
\ - _J/ . _J/
TV TV

HFH — JZ(G'];(i)aa(j) + ac];(j)a'a(i)) + U Z na(i)na’(i)
(i,4)

kinetic terms 2-body onsite interaction

The Fermi-Hubbard model is similar and well studied — can we apply
techniques from its analysis + improved Trotter analysis to get bounds?

1: 1911.06368



