Quantum Simulation of Nuclear Effective Field Theories

(Manuscript in Progress)

James Watson QuICS, University of Maryland

Jake Bringewatt

Andrew Childs

Zohreh Davoudi

Alexey Gorshkov

Alex Shaw

• Overview of Chiral Effective Field Theory

- Quantum Simulation
- Optimising Quantum Simulation of Chiral Effective Field Theories for Digital Quantum Computers

• Cost Estimates for Nuclear Spectroscopy

Diagram: Zohreh Davoudi

1: 2107.12769

- Want to calculate nuclear physics quantities:
 - Scattering cross-sections
 - Low-lying spectra
 - etc.

1:2107.12769

- Want to calculate nuclear physics quantities:
 - Scattering cross-sections
 - Low-lying spectra
 - etc.
- Need a model of nuclear physics to simulate.
- Could try QCD from first principles:

- Want to calculate nuclear physics quantities:
 - Scattering cross-sections
 - Low-lying spectra
 - etc.
- Need a model of nuclear physics to simulate.
- Could try QCD from first principles:
 - Classical MC can currently just simulate deuterium.
 - Quantumly, first estimates of simple quark transport properties need >10⁵⁰ gates¹.

1: 2107.12769

- Want to calculate nuclear physics quantities:
 - Scattering cross-sections
 - Low-lying spectra
 - etc.
- Need a model of nuclear physics to simulate.
- Could try QCD from first principles:
 - Classical MC can currently just simulate deuterium.
 - Quantumly, first estimates of simple quark transport properties need >10⁵⁰ gates¹.
- Semi-empirical models (e.g. mean field) aren't reliable for large nuclei or theoretically well justified.

Approaching Nuclear Physics with EFTs: Chiral EFT

 Idea (Weinberg, 1990s): take the most general possible Lagrangian which is consistent with the symmetries of strong interaction, and include all terms up to a given order in momentum expansion.

Approaching Nuclear Physics with EFTs: Chiral EFT

- Idea (Weinberg, 1990s): take the most general possible Lagrangian which is consistent with the symmetries of strong interaction, and include all terms up to a given order in momentum expansion.
- Treats protons, neutrons and pions as the degrees of freedom of the theory.
- Nucleons described by non-relativistic dynamics.

To leading order the Lagrangian looks something like this:

$$\begin{split} \widehat{\mathcal{L}}^{\Delta=0} &= \frac{1}{2} \partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \boldsymbol{\pi} - \frac{1}{2} m_{\pi}^{2} \boldsymbol{\pi}^{2} \\ &+ \frac{1 - 4\alpha}{2f_{\pi}^{2}} (\boldsymbol{\pi} \cdot \partial_{\mu} \boldsymbol{\pi}) (\boldsymbol{\pi} \cdot \partial^{\mu} \boldsymbol{\pi}) - \frac{\alpha}{f_{\pi}^{2}} \boldsymbol{\pi}^{2} \partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \boldsymbol{\pi} + \frac{8\alpha - 1}{8f_{\pi}^{2}} m_{\pi}^{2} \boldsymbol{\pi}^{4} \\ &+ \bar{N} \left[i \partial_{0} - \frac{g_{A}}{2f_{\pi}} \, \boldsymbol{\tau} \cdot (\vec{\sigma} \cdot \vec{\nabla}) \boldsymbol{\pi} - \frac{1}{4f_{\pi}^{2}} \, \boldsymbol{\tau} \cdot (\boldsymbol{\pi} \times \partial_{0} \boldsymbol{\pi}) \right] N \\ &+ \bar{N} \left\{ \frac{g_{A}(4\alpha - 1)}{4f_{\pi}^{3}} \, (\boldsymbol{\tau} \cdot \boldsymbol{\pi}) \left[\boldsymbol{\pi} \cdot (\vec{\sigma} \cdot \vec{\nabla}) \boldsymbol{\pi} \right] + \frac{g_{A}\alpha}{2f_{\pi}^{3}} \, \boldsymbol{\pi}^{2} \left[\boldsymbol{\tau} \cdot (\vec{\sigma} \cdot \vec{\nabla}) \boldsymbol{\pi} \right] \right\} N \\ &- \frac{1}{2} C_{S} \bar{N} N \bar{N} N - \frac{1}{2} C_{T} (\bar{N} \vec{\sigma} N) \cdot (\bar{N} \vec{\sigma} N) + \dots , \end{split}$$

The physical model you should have in your head is:

VERSIT

Simulating Chiral EFTs

Classically simulate time evolution: => sign problem! => huge resource costs

Classically simulate time evolution: => sign problem! => huge resource costs

Quantumly simulate time evolution: => provably no sign problem! => "efficient"

How feasible is quantum simulation of Chiral EFT?

Our Work

- We determine gate counts for NISQ and fault-tolerant quantum computers for time evolution and spectroscopy of nuclei.
- For 4 different Hamiltonians corresponding to the leading order terms in the Effective Field Theory expansion.
- Improve on fermionic encodings, bosonic encodings, error analysis, etc. to minimise gate counts and determine which is the most feasible.
- Allows us to compare efficiency of simulating leading order EFT Hamiltonians.

Time Evolution Algorithms

• Time evolution is an important primitive, e.g. for quantum phase estimation.

- Time evolution is an important primitive, e.g. for quantum phase estimation.
- Try simulating using product formulae. For Hamiltonian:

$$egin{aligned} H &= \sum_{\gamma=1}^{\Gamma} H_{\gamma} \ e^{-iH\delta t} pprox e^{-iH_{1}\delta t} e^{-iH_{2}\delta t} \dots e^{-iH_{\Gamma}\delta t} =: \mathcal{P}(\delta t) \ &ig|ig| e^{-iH\delta t} - \mathcal{P}(\delta t)ig|ig| \leq \epsilon \end{aligned}$$

- Time evolution is an important primitive, e.g. for quantum phase estimation.
- Try simulating using product formulae. For Hamiltonian:

$$egin{aligned} H &= \sum_{\gamma=1}^{\Gamma} H_{\gamma} \ e^{-iH\delta t} pprox e^{-iH_{1}\delta t} e^{-iH_{2}\delta t} \dots e^{-iH_{\Gamma}\delta t} =: \mathcal{P}(\delta t) \ &ig|ig| e^{-iH\delta t} - \mathcal{P}(\delta t)ig|ig| \leq \epsilon \end{aligned}$$

- Product formulae have low overhead and generally perform well!
- How well can we improve our error bounds and optimise computational resources when simulating Chiral Effective Field Theories?

Optimising Simulation for the Simplest Theory: Pionless EFT

 Pionless EFT is the simplest Hamiltonian that recreates basic properties of the nucleus¹ for momenta below pion mass.

¹See works by: Kaplan, Savage, van Kolck, Bedaque...

- Pionless EFT is the simplest Hamiltonian that recreates basic properties of the nucleus¹.
- Discretise the theory and put on a
 3D lattice rather continuous space:
- We choose a 2nd quantisation and position-space formulation.

Pionless EFT

Pionless EFT

 Pionless EFT is the simplest Hamiltonian that recreates basic properties of the nucleus¹.

$$\sigma \in \{p\uparrow, p\downarrow, n\uparrow, n\downarrow\}$$

Pionless EFT

 Pionless EFT is the simplest Hamiltonian that recreates basic properties of the nucleus¹.

Pionless EFT

 Pionless EFT is the simplest Hamiltonian that recreates basic properties of the nucleus¹.

Take advantage of as many details as possible to reduce simulation costs!

¹See works by: Kaplan, Savage, van Kolck, Bedaque...

 In simulating the pionless EFT, the most expensive term is the kinetic hopping term.

- In simulating the pionless EFT, the most expensive term is the kinetic hopping term.
- Due to non-locality of fermions:
 - If fermions are encoded via Jordan-Wigner mapping, this term takes O(L^{D-1}) gates to implement.
 - Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens Rotation, need gate depth proportional to number of fermionic modes.

- In simulating the pionless EFT, the most expensive term is the kinetic hopping term.
- Due to non-locality of fermions:
 - If fermions are encoded via Jordan-Wigner mapping, this term takes O(L^{D-1}) gates to implement.
 - Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens Rotation, need gate depth proportional to number of fermionic modes.

- In simulating the pionless EFT, the most expensive term is the kinetic hopping term.
- Due to non-locality of fermions:
 - If fermions are encoded via Jordan-Wigner mapping, this term takes O(L^{D-1}) gates to implement.
 - Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens Rotation, need gate depth proportional to number of fermionic modes.

- In simulating the pionless EFT, the most expensive term is the kinetic hopping term.
- Due to non-locality of fermions:
 - If fermions are encoded via Jordan-Wigner mapping, this term takes O(L^{D-1}) gates to implement.
 - Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens Rotation, need gate depth proportional to number of fermionic modes.
- Leverage interaction locality + fermion no. conservation: encode fermions using Verstraete-Cirac or Compact encoding.
 - Implement a single hopping operator in O(1) depth

- Fermionic encoding + Hamiltonian structure allows a highly parallelizable implementation of each Trotter step.
- Allows for each term to be implemented in O(1) depth and the Trotter step to have O(1) depth.

- Fermionic encoding + Hamiltonian structure allows a highly parallelizable implementation of each Trotter step.
- Allows for each term to be implemented in O(1) depth and the Trotter step to have O(1) depth.

$$\overbrace{\langle i,j
angle}^{ ext{kinetic term}} \left(a^{\dagger}_{\sigma}(i)a_{\sigma}(j) + a^{\dagger}_{\sigma}(j)a_{\sigma}(i)
ight)$$

- Fermionic encoding + Hamiltonian structure allows a highly parallelizable implementation of each Trotter step.
- Allows for each term to be implemented in O(1) depth and the Trotter step to have O(1) depth.

Implementing the kinetic terms in 2D:

- Fermionic encoding + Hamiltonian structure allows a highly parallelizable implementation of each Trotter step.
- Allows for each term to be implemented in O(1) depth and the Trotter step to have O(1) depth.

Implementing the kinetic terms in 2D:

- Fermionic encoding + Hamiltonian structure allows a highly parallelizable implementation of each Trotter step.
- Allows for each term to be implemented in O(1) depth and the Trotter step to have O(1) depth.

Implementing the kinetic terms in 2D:
Implementing each Trotter Step

- Fermionic encoding + Hamiltonian structure allows a highly parallelizable implementation of each Trotter step.
- Allows for each term to be implemented in O(1) depth and the Trotter step to have O(1) depth.

Fermionic Encoding	Circuit Depth	Number of Qubits
Jordan-Wigner (Naive)	O(M ²)	М
FFFT/SWAP Networks	O(<i>M</i>)	М
VC or Compact	110	1.5 <i>M</i>

(*M* = # fermion modes, *M*=4,000 for 10x10x10 lattice)

Pionless EFT: we can actually do even better than naive VC or

Compact.

Pionless EFT: we can actually do even better than naive VC or

Compact.

- There is no mixing between different species.
- Hamiltonian is number preserving for each type of fermion individually.

Pionless EFT: we can actually do even better than naive VC or

Compact.

- There is no mixing between different species.
- Hamiltonian is number preserving for each type of fermion individually.
- Can encode each fermion "separately", and "stack" copies of encodings together.

Pionless EFT: we can actually do even better than naive VC or

Compact.

• There is no mixing between different species.

Fermionic Encoding	Circuit Depth	Number of Qubits
Jordan-Wigner (Naive)	O(M ²)	М
FFFT/SWAP Networks	O(<i>M</i>)	М
VC or Compact	110	1.5 <i>M</i>
Stacked Compact	44	2.5 <i>M</i>

(*M* = # fermion modes, *M*=4,000 for 10x10x10 lattice)

Using Hamiltonian Structure for Better Trotter Error

Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} - \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2, \gamma_1}^{\Gamma} ||[H_{\gamma_2}, H_{\gamma_1}]|| \quad \text{(we use similar bounds for p=2)}$

- Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} - \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2, \gamma_1}^{\Gamma} ||[H_{\gamma_2}, H_{\gamma_1}]|| \quad \text{(we use similar bounds for p=2)}$
- Take advantage of the pionless EFT's number preserving properties

1: 1912.08854

- Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2, \gamma_1}^{\Gamma} ||[H_{\gamma_2}, H_{\gamma_1}]|| \quad \text{(we use similar bounds for p=2)}$
- Combine this with physical constraints on the systems (e.g. preserved particle number as per Su, Huang & Campbell (2020)²):

$$\alpha = O(\# ext{ of particles})$$

1: 1912.08854 2: 2012.09194

Comparisons

 Comparison for p=1,2 Trotter formula having applied these VC encoding + error bounds vs. Roggero et al. (2019)¹:

• We now include the first order term

• Pionless EFT approximates low-energy Hamiltonian.

• We can include higher order interactions:

$$\mathcal{L}_{0} = \frac{1}{2} \partial_{\mu} \pi_{i} \partial^{\mu} \pi_{i} - \frac{1}{2} m_{\pi}^{2} \pi_{i}^{2} \qquad \text{Pion Only Terms} \\ + N^{\dagger} \left[\frac{\nabla^{2}}{2M} - M \right] N \\ - \frac{1}{2} C_{S} (N^{\dagger} N) (N^{\dagger} N) - \frac{1}{2} C_{T} (N^{\dagger} \sigma_{i} N) (N^{\dagger} \sigma_{i} N) \qquad \text{Nucleon Only Terms} \\ + N^{\dagger} \left[- \frac{1}{4 f_{\pi}^{2}} \epsilon_{ijk} \tau_{i} \pi_{j} \partial_{0} \pi_{k} - \frac{g_{A}}{2 f_{\pi}} \tau_{i} \sigma_{j} \partial_{j} \pi_{i} \right] N \qquad \text{Nucleon-Pion Interactions}$$

• But what cost do we pay in simulating this?

Beyond Pionless EFT

Models we investigate:

• Dynamical pions: include and explicitly simulate pions.

$$\mathcal{H}_{\theta} = \underbrace{\frac{1}{2} \partial_{\theta} \pi_{i} \partial^{\theta} \pi_{i} + \partial_{j} \pi_{i} \partial^{j} \pi_{i} + \frac{1}{2} m_{\pi}^{2} \pi_{i}^{2}}_{Pion \, \textit{Kinetic Term}} + \underbrace{N^{\dagger} \left[\frac{1}{4 f_{\pi}^{2}} \epsilon_{ijk} \tau_{i} \pi_{j} \partial_{0} \pi_{k} + \frac{g_{A}}{2 f_{\pi}} \tau_{i} \sigma^{j} \partial_{j} \pi_{j} \right] N}_{Nuclear \, \text{Pion Interaction}}$$

Nucleon-Pion Interaction

Models we investigate:

• **Dynamical pions**: include and explicitly simulate pions.

$$\mathcal{H}_{\theta} = \underbrace{\frac{1}{2}\partial_{\theta}\pi_{i}\partial^{\theta}\pi_{i} + \partial_{j}\pi_{i}\partial^{j}\pi_{i} + \frac{1}{2}m_{\pi}^{2}\pi_{i}^{2}}_{\mathcal{H}_{\pi}} + \underbrace{N^{\dagger}\left[\frac{1}{4f_{\pi}^{2}}\epsilon_{ijk}\tau_{i}\pi_{j}\partial_{0}\pi_{k} + \frac{g_{A}}{2f_{\pi}}\tau_{i}\sigma^{j}\partial_{j}\pi_{j}\right]N}_{\mathcal{H}_{\pi}}$$

Pion Kinetic Term Nucleon-Pion Interaction • Instantaneous pions: include pions, but remove their dynamics.

 ${\cal H}_0 = rac{1}{2} \partial_j \pi_i \partial^j \pi_i + rac{1}{2} m_\pi^2 \pi_i^2 + N^\dagger \left| rac{g_A}{2 f_\pi} au_i \sigma^j \partial_j \pi_j
ight| N$ with $\partial_0 \pi_i$ removed Kinetic Ter

(simulation requires additional Monte Carlo runs)

Interaction terms with $\partial_0 \pi_i$ removed

Models we investigate:

• Dynamical pions: include and explicitly simulate pions.

$${\cal H}_{0}= \underbrace{rac{1}{2}\partial_{0}\pi_{i}\partial^{0}\pi_{i}+\partial_{j}\pi_{i}\partial^{j}\pi_{i}+rac{1}{2}m_{\pi}^{2}\pi_{i}^{2}}_{2}+ \underbrace{N^{\dagger}igg[rac{1}{4f_{\pi}^{2}}\epsilon_{ijk} au_{i}\pi_{j}\partial_{0}\pi_{k}+rac{g_{A}}{2f_{\pi}} au_{i}\sigma^{j}\partial_{j}\pi_{j}igg]N}_{2}$$

Pion Kinetic Term • Instantaneous pions: include pions, but remove their dynamics.

$$\underbrace{\mathcal{H}_{0} = \frac{1}{2} \partial_{j} \pi_{i} \partial^{j} \pi_{i} + \frac{1}{2} m_{\pi}^{2} \pi_{i}^{2}}_{\text{Kinetic Ter with } \partial_{0} \pi_{i} \text{ removed}} = \underbrace{N^{\dagger} \left[\frac{g_{A}}{2f_{\pi}} \tau_{i} \sigma^{j} \partial_{j} \pi_{j} \right] N}_{\text{Interaction terms with } \partial_{0} \pi_{i} \text{ removed}}$$

(simulation requires additional Monte Carlo runs)

Interaction terms with $\partial_0 \pi_i$ removed

• One pion exchange: remove explicit pions and introduce a Yukawa-type potential between fermions.

$$egin{aligned} V(r) &= rac{1}{4\pi} igg(rac{g_A}{2f_\pi}igg)^2 \sum_{x,y} [au^\mu]_{ik} [au^\mu]_{lpha\gamma} igg[m_\pi^2 rac{e^{-m_\pi r}}{r} igg\{S_{12} igg(1+rac{3}{m_\pi r}+rac{3}{m_\pi^2 r^2}igg) \ &+ [\sigma^
u]_{jl} [\sigma^
u]_{eta\delta}igg\} - rac{4\pi}{3} [\sigma^
u]_{jl} [\sigma^
u]_{eta\delta} \delta_{xy}igg] a^\dagger_{ij}(x) a^\dagger_{lphaeta}(y) a_{kl}(x) a_{\gammaeta}(y) \sim rac{e^{-m_\pi r}}{r} \end{aligned}$$

1: 0804.3501 2: 1803.10725

For discretised Hamiltonians, see: Lee (2008)¹ and Madeira *et al.* (2018)²

Dynamical Pions

Hollow circles: fermionic sites. Red circles: bosonic sites. **Instantaneous Pions**

Long-Ranged Interaction

For discretised Hamiltonians, see: Lee (2008)¹ and Madeira *et al.* (2018)²

Hollow circles: fermionic sites. Red circles: bosonic sites.

Monte Carlo samples are taken over boson field configurations

Long-Ranged Interaction

1: 0804.3501 2: 1803.10725

For discretised Hamiltonians, see: Lee (2008)¹ and Madeira *et al.* (2018)²

Hollow circles: fermionic sites. Red circles: bosonic sites.

Monte Carlo samples are taken over boson field configurations

1: 0804.3501 2: 1803.10725

Models we investigate:

- Dynamical and instantaneous case:
 - Requires explicit encoding of scalar field theory + fermion interactions.
 - See work by Jordan, Lee & Preskill (2012)¹, Klco & Savage (2018)² for scalar fields.
 - Need to:
 - Choose pion basis to minimise circuit depth.
 - Choose pion field representation as spin operators.
 - Choose pion field and conjugate momentum cut-off.
- One Pion Exchange case:
 - Determine best representation for interaction given the fermionic encoding.
 - Determining a cut-off length for the long-ranged interaction.
- Both:
 - Circuit decompositions, Hamiltonian decompositions, etc.

Resource Costs for Spectroscopy

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.3.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless			
OPE (Long-Ranged)			
Instantaneous Pions			
Dynamical Pions			

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• State preparation step not included!

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.3.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	2x10 ⁷		
OPE (Long-Ranged)	4x10 ¹⁷		
Instantaneous Pions	3x10 ²⁵		
Dynamical Pions	1x10 ³⁸		

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• State preparation step not included!

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.3.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	2x10 ⁷	1x10 ¹⁷	$3x10^{3} - 3x10^{5}$ years
OPE (Long-Ranged)	4x10 ¹⁷	2x10 ²⁸	10 ¹⁴ - 10 ¹⁶ years
Instantaneous Pions	3x10 ²⁶	9x10 ³⁰	10 ¹⁶ - 10 ¹⁸ years
Dynamical Pions	1x10 ³⁸	2x10 ⁴⁰	10 ²⁶ - 10 ²⁸ years

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• State preparation step not included!

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.3.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	2x10 ⁷	1x10 ¹⁷	$3x10^{3} - 3x10^{5}$ years
OPE (Long-Ranged)	4x10 ¹⁷	2x10 ²⁸	10 ¹⁴ - 10 ¹⁶ years
Instantaneous Pions	3x10 ²⁵	9x10 ³⁰	10 ¹⁶ - 10 ¹⁸ years
Dynamical Pions	1x10 ³⁸	2x10 ⁴⁰	10 ²⁶ - 10 ²⁸ years

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

- Current NISQ devices are nowhere near achieving this:
 - Google's Quantum Supremacy Experiment had depth ~30.
 - IBM currently claims depth ~100.

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision, on 10x10x10 lattice, with correctness probability p>0.3.

Asymptotic Scaling

 Scaling of resources for time-simulation with pth order product formula for fixed time: Number of Ε Energy Scale η fermions Lattice size Precision L 3 Model 2-Qubit Gate Depth **T-Gate Costs** Number of Qubits $O\left(\frac{\eta^{1/p}}{1/p}\right) \qquad O\left(\frac{\eta^{1/p}L^3}{1/p}\log(n^{1/p}L^3/\epsilon^{1/p})\right)$ **Pionless** $O(L^3)$

	${}^{\cup} \left(\ \epsilon^{1/p} \ ight)$	$\left(\begin{array}{c} \epsilon^{1/p} \end{array} \right)$	- (-)
OPE (Long-Ranged)	$O\!\left(rac{\eta^{1/p}}{\epsilon^{1/p}} ight)$	$Oigg(rac{\eta^{1/p}L^3}{\epsilon^{1/p}}{ m log}(\eta^{1/p}L^3/\epsilon^{1/p})igg)$	$Oig(L^3ig)$
Instantaneous Pions	$ ilde{O}\!\left(\left(rac{E^2L^9\eta^3}{\epsilon^3} ight)^{1/p} ight)$	$ ilde{O}igg(igg(rac{E^2L^{12}\eta^3}{\epsilon^3}igg)^{1/p}igg)$	$O(L^3\log(\eta^2L^3E/\epsilon^2))$
Dynamical Pions	$ ilde{O}igg(igg(rac{E^2L^9\eta^4}{\epsilon^3}igg)^{1/p}igg)$	$ ilde{O}igg(igg(rac{E^2L^{12}\eta^4}{\epsilon^3}igg)^{1/p}igg)$	$O(L^3\log(\eta^3L^3E/\epsilon^2))$

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	2x10 ⁷	1x10 ¹⁷	$3x10^{3} - 3x10^{5}$ years
OPE (Long-Ranged)	4x10 ¹⁷	2x10 ²⁸	10 ¹⁴ - 10 ¹⁶ years
Instantaneous Pions	3x10 ²⁵	9x10 ³⁰	10 ¹⁶ - 10 ¹⁸ years
Dynamical Pions	1x10 ³⁸	2x10 ⁴⁰	10 ²⁶ - 10 ²⁸ years

Conclusions

- Without major improvements to hardware or algorithm, spectroscopy looks unfeasible for NISQ devices.
- OPE and Instantaneous pion models achieve similar efficiencies.
- Dynamical pion models are significantly more expensive than others.

- Examined the task of time evolution and spectroscopy for 4 Chiral Effective Field Theories.
- For Pionless EFT model, utilising Hamiltonian details allows for 10⁴-10⁶ better circuit depths using new techniques.
- Provided the first resource estimates for higher order terms in Effective Field Theory.
- Demonstrated a trade-off between different approximations to the first order terms.
- However, all are infeasible for the near/mid-term.

Maybe there's some hope...

Successive improvements have been found for the Fermi-Hubbard model:

Trotter Bounds	Standard Gate Decompositions	Subcircuit Gate Decompositions
Analytic [Ch+18]	976,710	59,830
Analytic [CBC21]	77,236	1,686
Numerical [CBC21]	3,428	259

2-qubit gate depth for Fermi-Hubbard model for particular time, error and particle number (Clinton, Bausch, & Cubitt, (2021)¹).

Further improvements we can make:

• Circuit optimisation algorithms.

Error reduction by factor of ~100, McKeever & Lubasch, (2022)¹

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.

Cost reduction by ~10, Clinton, Bausch & Cubitt, (2020)

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?

Fermion encoding	Trotter bounds	Standard	Subcircuit
		decomposition	decomposition
VC	analytic	121,478	$95,\!447$
compact	analytic	98,339	72,308
Gate ferm (2020	cost reduction from ionic encoding, Clint 0) ¹	developing new on, Bausch, & Cubitt	

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.

Somma (2020)¹, removes need for controlled unitaries – reduces costs by ~20%.

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?

bounds Childs *et al.* (2017)¹.

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?
- Partial error correcting properties of fermionic encodings?

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?
- Partial error correcting properties of fermionic encodings?
- Randomised simulation/using Hamiltonian symmetries/etc.

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?
- Partial error correcting properties of fermionic encodings?
- Randomised simulation/using Hamiltonian symmetries/etc.
- Other ways of simulating nuclear physics besides lattice EFT formulation?

• Techniques improving quantum algorithms for simulating time evolution of EFTs.

• Beyond pionless EFT & associated costs.

EFTs and Quantum Computing

- First principles nuclear dynamics is difficult use an effective field theory instead!
- Time evolution is an important primitive, e.g. for quantum phase estimation.

EFTs and Quantum Computing

- First principles nuclear dynamics is difficult use an effective field theory instead!
- Time evolution is an important primitive, e.g. for quantum phase estimation.
- Try simulating using product formulae. For Hamiltonian: $H = \sum_{\gamma=1}^{L} H_{\gamma}$ $e^{-iH\delta t} pprox e^{-iH_1\delta t} e^{-iH_2\delta t} \dots e^{-iH_L\delta t} =: \mathcal{P}(\delta t)$

$$\left|\left|e^{-iH\delta t}-\mathcal{P}(\delta t)
ight|
ight|\leq\epsilon$$

EFTs and Quantum Computing

- First principles nuclear dynamics is difficult use an effective field theory instead!
- Time evolution is an important primitive, e.g. for quantum phase estimation.
- Try simulating using product formulae. For Hamiltonian: $H = \sum_{\gamma=1}^{L} H_{\gamma}$ $e^{-iH\delta t} \approx e^{-iH_1\delta t} e^{-iH_2\delta t} \dots e^{-iH_L\delta t} =: \mathcal{P}(\delta t)$ $||e^{-iH\delta t} - \mathcal{P}(\delta t)|| \leq \epsilon$
- Product formulae have low overhead and generally perform well!
- How well can we improve our error bounds and optimise computational resources?

Roggero *et al.* (2019)¹ on simulating time evolution and linear response function using pionless effective field theory model.

Roggero *et al.* (2019)¹ on simulating time evolution and linear response function using pionless effective field theory model.

Roggero *et al.* (2019)¹ on simulating time evolution and linear response function using pionless effective field theory model.

The Fermi-Hubbard model is similar and well studied – can we apply techniques from its analysis + improved Trotter analysis to get bounds?

Better Trotter Bounds

• Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} - \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2,\gamma_1}^L ||[H_{\gamma_2}, H_{\gamma_1}]||$ (we use similar bounds for p=2)

Better Trotter Bounds

• Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} - \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2,\gamma_1}^L ||[H_{\gamma_2}, H_{\gamma_1}]||$ (we use similar bounds for p=2)

Combine this with physical constraints on the systems (e.g. preserved particle number as per Su, Huang & Campbell (2020)²):

$$lpha = O(\# ext{ of particles})$$

1: 1912.08854 2: 2012.09194

Better Trotter Bounds

1: 1912.08854 2: 2012.09194

3:2102.12655

• Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} - \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2,\gamma_1}^L ||[H_{\gamma_2}, H_{\gamma_1}]||$ (we use similar bounds for p=2)

Combine this with physical constraints on the systems (e.g. preserved particle number as per Su, Huang & Campbell (2020)²):

$$lpha = O(\# ext{ of particles})$$

• Yi & Crosson(2021)³: improve error for quantum phase estimation by considering the effective Trotterised Hamiltonian.

Better Circuit Depths

 In simulating the pionless EFT, the most expensive term is the kinetic hopping term.

Better Circuit Depths

- In simulating the pionless EFT, the most expensive term is the kinetic hopping term.
- Due to non-locality of fermions:
 - If fermions are encoded via Jordan-Wigner mapping, this term takes O(L^{D-1}) gates to implement.
 - Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens Rotation, need gate depth proportional to number of fermionic modes.

Better Circuit Depths

- In simulating the pionless EFT, the most expensive term is the kinetic hopping term.
- Due to non-locality of fermions:
 - If fermions are encoded via Jordan-Wigner mapping, this term takes O(L^{D-1}) gates to implement.
 - Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens Rotation, need gate depth proportional to number of fermionic modes.
- Leverage interaction locality: encode fermions using Verstraete-Cirac encoding.
 - Implement in circuit of depth ~100, regardless of number of fermions or lattice size.

Comparisons

 Comparison for p=1,2 Trotter formula having applied these methods vs. bounds from Roggero et al. (2019)¹:

• Pionless EFT approximates low-energy Hamiltonian.

• We can include higher order interactions:

$$\mathcal{L}_{0} = \frac{1}{2} \partial_{\mu} \pi_{i} \partial^{\mu} \pi_{i} - \frac{1}{2} m_{\pi}^{2} \pi_{i}^{2} \qquad \text{Pion Only Terms} \\ + N^{\dagger} \left[\frac{\nabla^{2}}{2M} - M \right] N \\ - \frac{1}{2} C_{S} (N^{\dagger} N) (N^{\dagger} N) - \frac{1}{2} C_{T} (N^{\dagger} \sigma_{i} N) (N^{\dagger} \sigma_{i} N) \qquad \text{Nucleon Only Terms} \\ + N^{\dagger} \left[- \frac{1}{4 f_{\pi}^{2}} \epsilon_{ijk} \tau_{i} \pi_{j} \partial_{0} \pi_{k} - \frac{g_{A}}{2 f_{\pi}} \tau_{i} \sigma_{j} \partial_{j} \pi_{i} \right] N \qquad \text{Nucleon-Pion Interactions}$$

• But what cost do we pay in simulating this?

Beyond Pionless EFT

Models we investigate:

• Dynamical pions: include and explicitly simulate pions.

$$\mathcal{H}_{\theta} = \underbrace{\frac{1}{2}\partial_{\theta}\pi_{i}\partial^{\theta}\pi_{i} + \partial_{j}\pi_{i}\partial^{j}\pi_{i} + \frac{1}{2}m_{\pi}^{2}\pi_{i}^{2}}_{Pion\, \textit{Kinetic Term}} + \underbrace{N^{\dagger}\left[\frac{1}{4f_{\pi}^{2}}\epsilon_{ijk}\tau_{i}\pi_{j}\partial_{\theta}\pi_{k} + \frac{g_{A}}{2f_{\pi}}\tau_{i}\sigma^{j}\partial_{j}\pi_{j}\right]N}_{Nuclear \, \text{Pion Interaction}}$$

Nucleon-Pion Interaction

Models we investigate:

• **Dynamical pions**: include and explicitly simulate pions.

$$\mathcal{H}_{\theta} = \underbrace{\frac{1}{2}\partial_{\theta}\pi_{i}\partial^{\theta}\pi_{i} + \partial_{j}\pi_{i}\partial^{j}\pi_{i} + \frac{1}{2}m_{\pi}^{2}\pi_{i}^{2}}_{Pion\,Kinetic\,Term} + \underbrace{N^{\dagger}\left[\frac{1}{4f_{\pi}^{2}}\epsilon_{ijk}\tau_{i}\pi_{j}\partial_{0}\pi_{k} + \frac{g_{A}}{2f_{\pi}}\tau_{i}\sigma^{j}\partial_{j}\pi_{j}\right]N}_{N \to N}$$

• Instantaneous pions: include pions, but remove their dynamics.

$$\underbrace{\mathcal{H}_{0} = \frac{1}{2} \partial_{j} \pi_{i} \partial^{j} \pi_{i} + \frac{1}{2} m_{\pi}^{2} \pi_{i}^{2}}_{\text{Kinetic Ter with } \partial_{0} \pi_{i} \text{ removed}} N^{\dagger} \begin{bmatrix} \frac{g_{A}}{2f_{\pi}} \tau_{i} \sigma^{j} \partial_{j} \pi_{j} \end{bmatrix} N$$

Interaction terms with $\partial_0 \pi_i$ removed

Models we investigate:

• **Dynamical pions**: include and explicitly simulate pions.

$${\cal H}_{0}= \underbrace{rac{1}{2}\partial_{0}\pi_{i}\partial^{0}\pi_{i}+\partial_{j}\pi_{i}\partial^{j}\pi_{i}+rac{1}{2}m_{\pi}^{2}\pi_{i}^{2}}_{2}+ \underbrace{N^{\dagger}igg[rac{1}{4f_{\pi}^{2}}\epsilon_{ijk} au_{i}\pi_{j}\partial_{0}\pi_{k}+rac{g_{A}}{2f_{\pi}} au_{i}\sigma^{j}\partial_{j}\pi_{j}igg]N}_{2}$$

Pion Kinetic Term Nucleon-Pion Interaction • Instantaneous pions: include pions, but remove their dynamics.

$$\mathcal{H}_{0} = rac{1}{2} \partial_{j} \pi_{i} \partial^{j} \pi_{i} + rac{1}{2} m_{\pi}^{2} \pi_{i}^{2} + \underbrace{N^{\dagger} \left[rac{g_{A}}{2f_{\pi}} au_{i} \sigma^{j} \partial_{j} \pi_{j} \right] N}_{ ext{Kinetic Ter with } \partial_{0} \pi_{i} \text{ removed}}$$

Interaction terms with $\partial_0 \pi_i$ removed

• One pion exchange: remove explicit pions and introduce an effective Yukawa-type potential between fermions.

$$V(r) = rac{1}{4\pi} igg(rac{g_A}{2f_\pi} igg)^2 \sum_{x,y} [au^\mu]_{ik} [au^\mu]_{lpha\gamma} igg[m_\pi^2 rac{e^{-m_\pi r}}{r} igg\{ S_{12} igg(1 + rac{3}{m_\pi r} + rac{3}{m_\pi^2 r^2} igg) \ + [\sigma^
u]_{jl} [\sigma^
u]_{eta\delta} igg\} - rac{4\pi}{3} [\sigma^
u]_{jl} [\sigma^
u]_{eta\delta} \delta_{xy} igg] a^\dagger_{ij}(x) a^\dagger_{lphaeta}(y) a_{kl}(x) a_{\gammaeta}(y) \sim rac{e^{-m_\pi r}}{r}$$

1: 0804.3501 2: 1803.10725

For discretised Hamiltonians, see: Lee (2008)¹ and Madeira *et al.* (2018)²

Dynamical Pions

Hollow circles: fermionic sites. Red circles: bosonic sites. **Instantaneous Pions**

Long-Ranged Interaction

For discretised Hamiltonians, see: Lee (2008)¹ and Madeira *et al.* (2018)²

Hollow circles: fermionic sites. Red circles: bosonic sites.

Long-Ranged Interaction

1: 0804.3501 2: 1803.10725

For discretised Hamiltonians, see: Lee (2008)¹ and Madeira *et al.* (2018)²

Hollow circles: fermionic sites. Red circles: bosonic sites.

1: 0804.3501 2: 1803.10725

Models we investigate:

- Dynamical and instantaneous case:
 - Requires explicit encoding of scalar field theory + fermion interactions.
 - See work by Jordan, Lee & Preskill (2012)¹, Klco & Savage (2018)² for scalar fields.
 - Need to:
 - Choose pion basis to minimise circuit depth.
 - Choose pion field representation as spin operators.
 - Choose pion field and conjugate momentum cut-off.

1: 1111.3633 2: 1808.10378

Models we investigate:

- Dynamical and instantaneous case:
 - Requires explicit encoding of scalar field theory + fermion interactions.
 - See work by Jordan, Lee & Preskill (2012)¹, Klco & Savage (2018)² for scalar fields.
 - Need to:
 - Choose pion basis to minimise circuit depth.
 - Choose pion field representation as spin operators.
 - Choose pion field and conjugate momentum cut-off.
- One Pion Exchange case:
 - Determine best representation for interaction given the fermionic encoding.
 - Determining a cut-off length for the long-ranged interaction.

1: 1111.3633 2: 1808.10378

Cost Estimates for Quantum Phase Estimation

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.9.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless			
OPE			
Instantaneous Pions			
Dynamical Pions			

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• State preparation step not included!

Cost Estimates for Quantum Phase Estimation

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.9.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	8x10 ¹²		
OPE	7x10 ²⁶		
Instantaneous Pions	3x10 ²⁵		
Dynamical Pions	2x10 ³⁴		

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• State preparation step not included!

Cost Estimates for Quantum Phase Estimation

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.9.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	8x10 ¹²	1x10 ¹⁷	3x10 ³ - 3x10 ⁵ years
OPE	7x10 ²⁶	2x10 ²⁸	10 ¹⁴ - 10 ¹⁶ years
Instantaneous Pions	3x10 ²⁵	9x10 ³⁰	10 ¹⁶ - 10 ¹⁸ years
Dynamical Pions	2x10 ³⁴	2x10 ⁴⁰	10 ²⁶ - 10 ²⁸ years

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• State preparation step not included!
Cost Estimates for Quantum Phase Estimation

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.9.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	8x10 ¹²	1x10 ¹⁷	3x10 ³ - 3x10 ⁵ years
OPE	7x10 ²⁶	2x10 ²⁸	10 ¹⁴ - 10 ¹⁶ years
Instantaneous Pions	3x10 ²⁵	9x10 ³⁰	10 ¹⁶ - 10 ¹⁸ years
Dynamical Pions	2x10 ³⁴	2x10 ⁴⁰	10 ²⁶ - 10 ²⁸ years

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

- Current NISQ devices are nowhere near achieving this:
 - Google's Quantum Supremacy Experiment had depth ~30.
 - IBM currently claims depth ~100.

Cost Estimates for Quantum Phase Estimation

 Using the standard quantum phase estimation algorithm and p=1 product formulae: 1MeV of energy precision for 6 fermions, on 10x10x10 lattice, with correctness probability p>0.9.

Model	2-Qubit Gate Depth	T-Gate Cost	T-Gate Time Generation
Pionless	8x10 ¹²	1x10 ¹⁷	$3x10^{3} - 3x10^{5}$ years
OPE	7x10 ²⁶	2x10 ²⁸	10 ¹⁴ - 10 ¹⁶ years
Instantaneous Pions	3x10 ²⁵	9x10 ³⁰	10 ¹⁶ - 10 ¹⁸ years
Dynamical Pions	2x10 ³⁴	2x10 ⁴⁰	10 ²⁶ - 10 ²⁸ years

T-gate generation time from "Quantum computation with realistic magic state factories", O'Gorman and Campbell, 2016.

• Additional question: what is the "correct" precision to work to for each model? High precision pointless if the effective Hamiltonian has larger systematic error.

Maybe there's some hope...

Successive improvements have been found for the Fermi-Hubbard model:

Trotter Bounds	Standard Gate Decompositions	Subcircuit Gate Decompositions
Analytic [Ch+18]	976,710	59,830
Analytic [CBC21]	77,236	1,686
Numerical [CBC21]	3,428	259

2-qubit gate depth for Fermi-Hubbard model for particular time, error and particle number (Clinton, Bausch, & Cubitt, (2021)¹).

Further improvements we can make:

• Circuit optimisation algorithms.

Error reduction by factor of ~100, McKeever & Lubasch, (2022)¹

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.

Cost reduction by ~10, Clinton, Bausch & Cubitt, (2020)

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?

Fermion encoding	Trotter bounds	Standard	Subcircuit
		decomposition	decomposition
VC	analytic	121,478	$95,\!447$
compact	analytic	98,339	72,308
Gate ferm (2020	cost reduction from ionic encoding, Clint 0) ¹	developing new on, Bausch, & Cubitt	

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.

Somma (2020)¹, removes need for controlled unitaries – reduces costs by ~20%.

Further improvements we can make:

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?

bounds Childs *et al.* (2017)¹.

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?
- Partial error correcting properties of fermionic encodings?

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?
- Partial error correcting properties of fermionic encodings?
- Randomised simulation/using Hamiltonian symmetries/etc.

- Circuit optimisation algorithms.
- Non-standard gate decompositions.
- New fermionic encodings?
- Better phase estimation algorithms.
- Empirical vs analytical error?
- T-gate reduction with different hardware models.
- Lower-cost use cases?
- Partial error correcting properties of fermionic encodings?
- Randomised simulation/using Hamiltonian symmetries/etc.
- Other ways of simulating nuclear physics besides lattice EFT formulation?

Limitations of New Techniques

• Childs et al error improve bounds to account for commutators:

$$ig|ig|e^{-iHt}-\mathcal{P}_p(t)ig|ig|\leq Oig(lpha t^{1+p}\epsilon^{-p}ig) \ lpha = \sum_{\gamma_{p+1},\gamma_p\ldots\gamma_1}ig|ig|ig|H_{\gamma_{p+1},\ldots}[H_{\gamma_2},H_{\gamma_1}]ig]ig|ig|$$

• Calculating nested commutator is difficult for p>2.

• Verstraete-Cirac encoding comes with more difficult state preparation.

Future Work

- Different spectroscopy/QPE algorithms.
- Optimising circuit depths and T-gate counts.
- Non-standard gate decompositions.
- Inherent error correction in fermionic encodings
- Lower-cost use cases generally?

Beyond Pionless EFT

- Pionless EFT approximates low-energy Hamiltonian.
- We can include higher order interactions:

$$\mathcal{L}_{0} = \frac{1}{2} \partial_{\mu} \pi_{i} \partial^{\mu} \pi_{i} - \frac{1}{2} m_{\pi}^{2} \pi_{i} \pi_{i} + N^{\dagger} \Big[i \partial_{0} + \frac{\nabla^{2}}{2M_{0}} \\ - \frac{1}{4f_{\pi}^{2}} \epsilon_{ijk} \tau_{i} \pi_{j} \partial_{0} \pi_{k} - \frac{g_{A}}{2f_{\pi}} \tau_{i} \sigma^{j} \partial_{j} \pi_{i} - M_{0} \Big] N \\ - \frac{1}{2} C_{S} (N^{\dagger} N) (N^{\dagger} N) - \frac{1}{2} C_{T} (N^{\dagger} \sigma_{i} N) (N^{\dagger} \sigma_{i} N)$$

• But what cost do we pay in simulating this?

Better Trotter Bounds

1: 1912.08854 2: 2012.09194

3:2102.12655

• Childs *et al.* (2019)¹: improve error bounds to account for commutators: $||e^{-iHt} - \mathcal{P}(t)|| \leq O(\alpha t^2 \epsilon^{-1})$ $H = \sum_{\gamma} H_{\gamma} \qquad \alpha = \sum_{\gamma_2,\gamma_1}^L ||[H_{\gamma_2}, H_{\gamma_1}]||$ (we use similar bounds for p=2)

Combine this with physical constraints on the systems (e.g. preserved particle number as per Su, Huang & Campbell (2020)²):

$$lpha = O(\# ext{ of particles})$$

• Yi & Crosson(2021)³: improve error for quantum phase estimation by considering the effective Trotterised Hamiltonian.

Previous Work in EFTs and Quantum Computing

 Pionless EFT is the simplest Hamiltonian that recreates basic properties of the nucleus.

The Fermi-Hubbard model is similar and well studied – can we apply techniques from its analysis + improved Trotter analysis to get bounds?