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Summary

• Overview of Chiral Effective Field Theory

• Quantum Simulation

• Optimising Quantum Simulation of Chiral Effective Field 
Theories for Digital Quantum Computers

• Cost Estimates for Nuclear Spectroscopy
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Nuclear Physics

• Want to calculate nuclear physics quantities:
• Scattering cross-sections
• Low-lying spectra
• etc.

• Need a model of nuclear physics to simulate.
• Could try QCD from first principles:

• Classical MC can currently just simulate deuterium.
• Quantumly, first estimates of simple quark transport 

properties need >1050 gates1.
• Semi-empirical models (e.g. mean field) aren’t reliable for 

large nuclei or theoretically well justified.
1: 2107.12769



Approaching Nuclear Physics with EFTs: Chiral EFT

• Idea (Weinberg, 1990s): take the most general 
possible Lagrangian which is consistent with the 
symmetries of strong interaction, and include all 
terms up to a given order in momentum 
expansion.



Approaching Nuclear Physics with EFTs: Chiral EFT

• Idea (Weinberg, 1990s): take the most general 
possible Lagrangian which is consistent with the 
symmetries of strong interaction, and include all 
terms up to a given order in momentum 
expansion.

• Treats protons, neutrons and pions as the 
degrees of freedom of the theory.

• Nucleons described by non-relativistic dynamics.

Image: Dean Lee



Modelling Nuclear Physics: Chiral EFT

To leading order the Lagrangian looks something like this:



Modelling Nuclear Physics: Chiral EFT

The physical model you should have in your head is:

+ +

Contact Interactions Single Pion Exchange Two Pion Exchange

+ ...

Higher order terms are more relevant at higher momenta
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Simulating Chiral EFTs

Classically simulate time evolution: 

=> sign problem!

=> huge resource costs

Quantumly simulate time evolution:

=> provably no sign problem!

=> “efficient”

How feasible is quantum simulation of Chiral EFT?
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Our Work

• We determine gate counts for NISQ and fault-tolerant quantum 
computers for time evolution and spectroscopy of nuclei.

• For 4 different Hamiltonians corresponding to the leading order terms in 
the Effective Field Theory expansion.

• Improve on fermionic encodings, bosonic encodings, error analysis, etc. 
to minimise gate counts and determine which is the most feasible.

• Allows us to compare efficiency of simulating leading order EFT 
Hamiltonians.



EFTs and Quantum Computing

Time Evolution Algorithms
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• Time evolution is an important primitive, e.g. for quantum phase estimation.

• Try simulating using product formulae. For Hamiltonian:

• Product formulae have low overhead and generally perform well!

EFTs and Quantum Computing

• How well can we improve our error bounds and optimise computational resources when 
simulating Chiral Effective Field Theories?



Optimising Simulation for the Simplest Theory: 

Pionless EFT



Pionless EFT

• Pionless EFT is the simplest Hamiltonian that recreates basic 
properties of the nucleus1 for momenta below pion mass.

+ +

Contact Interactions Single Pion Exchange Two Pion Exchange

1See works by: Kaplan, Savage, van Kolck, Bedaque…



Pionless EFT

• Pionless EFT is the simplest Hamiltonian that recreates basic 
properties of the nucleus1.

• Discretise the theory and put on a

3D lattice rather continuous space:

• We choose a 2nd quantisation and 

      position-space formulation.

Image: Dean Lee

1See works by: Kaplan, Savage, van Kolck, Bedaque…



Pionless EFT

• Pionless EFT is the simplest Hamiltonian that recreates basic 
properties of the nucleus1.

Creation and annihilation 
operators for nucleons.

Nucleon number 
operator at site i.
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Pionless EFT

• Pionless EFT is the simplest Hamiltonian that recreates basic 
properties of the nucleus1.

Take advantage of as many details as possible to reduce simulation costs!

1See works by: Kaplan, Savage, van Kolck, Bedaque…
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Fermionic Encodings

• In simulating the pionless EFT, the most expensive term is the kinetic 

hopping term.

• Due to non-locality of fermions:
• If fermions are encoded via Jordan-Wigner mapping, this term takes O(LD-1) 

gates to implement.
• Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens 

Rotation, need gate depth proportional to number of fermionic modes.

• Leverage interaction locality + fermion no. conservation: encode 

fermions using Verstraete-Cirac or Compact encoding.
• Implement a single hopping operator in O(1) depth
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Implementing each Trotter Step

• Fermionic encoding + Hamiltonian structure allows a highly 

parallelizable implementation of each Trotter step.

• Allows for each term to be implemented in O(1) depth and the 

Trotter step to have O(1) depth.

(M = # fermion modes, M=4,000 for 10x10x10 lattice)

Fermionic Encoding Circuit Depth Number of Qubits

Jordan-Wigner (Naive) O(M2) M

FFFT/SWAP Networks O(M) M

VC or Compact 110 1.5M
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encodings together.



Fermionic Encodings

• Pionless EFT: we can actually do even better than naive VC or 

Compact.

• There is no mixing between different species.

Fermionic Encoding Circuit Depth Number of Qubits

Jordan-Wigner (Naive) O(M2) M

FFFT/SWAP Networks O(M) M

VC or Compact 110 1.5M

Stacked Compact 44 2.5M

(M = # fermion modes, M=4,000 for 10x10x10 lattice)
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Better Trotter Error
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Better Trotter Bounds

• Childs et al. (2019)1: improve error bounds to account for 
commutators:

• Take advantage of the pionless EFT’s number preserving properties

•

(we use similar 
bounds for p=2)
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Better Trotter Bounds

• Childs et al. (2019)1: improve error bounds to account for 
commutators:

• Combine this with physical constraints on the systems (e.g. 
preserved particle number as per Su, Huang & Campbell (2020)2):

•

(we use similar 
bounds for p=2)

1: 1912.08854
2: 2012.09194



Comparisons

• Comparison for p=1,2 Trotter formula having applied these VC encoding + 
error bounds vs. Roggero et al. (2019)1:

1: 1911.06368
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Beyond Pionless EFT

• We now include the first order term 

+ +

Contact Interactions Single Pion Exchange Two Pion Exchange



Beyond Pionless EFT

• Pionless EFT approximates low-energy Hamiltonian.
• We can include higher order interactions:

• But what cost do we pay in simulating this?
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Beyond Pionless EFT

Models we investigate:

• Dynamical pions: include and explicitly simulate pions.

• Instantaneous pions: include pions, but remove their dynamics.

• One pion exchange: remove explicit pions and introduce a Yukawa-type potential 

between fermions.

(simulation requires 
additional Monte Carlo runs)



Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008)1 and Madeira et al. (2018)2

Dynamical Pions Instantaneous  Pions Long-Ranged Interaction

Hollow circles: fermionic sites.
Red circles: bosonic sites. 1: 0804.3501

2: 1803.10725
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field configurations
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Beyond Pionless EFT

Models we investigate:

● Dynamical and instantaneous case:

○ Requires explicit encoding of scalar field theory + fermion interactions.

○ See work by Jordan, Lee & Preskill (2012)1, Klco & Savage (2018)2 for scalar fields.

○ Need to:

■ Choose pion basis to minimise circuit depth.

■ Choose pion field representation as spin operators.

■ Choose pion field and conjugate momentum cut-off.

● One Pion Exchange case:

○ Determine best representation for interaction given the fermionic encoding.

○ Determining a cut-off length for the long-ranged interaction.

● Both:

○ Circuit decompositions, Hamiltonian decompositions, etc. 1: 1111.3633
2: 1808.10378



Resource Costs for Spectroscopy



Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.3.

• State preparation step not included!

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless

OPE (Long-Ranged)

Instantaneous Pions

Dynamical Pions

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

1: 1605.07197
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• State preparation step not included!
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Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.3.

• Current NISQ devices are nowhere near achieving this:
• Google’s Quantum Supremacy Experiment had depth ~30.
• IBM currently claims depth ~100.  

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 2x107 1x1017 3x103 - 3x105  years

OPE (Long-Ranged) 4x1017 2x1028 1014 - 1016 years

Instantaneous Pions 3x1025 9x1030 1016 - 1018 years

Dynamical Pions 1x1038 2x1040 1026 - 1028 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

1: 1605.07197



Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision, on 10x10x10 lattice, 
with correctness probability p>0.3.



Asymptotic Scaling

• Scaling of resources for time-simulation with pth order product 
formula for fixed time:

Model 2-Qubit Gate Depth T-Gate Costs Number of Qubits

Pionless

OPE (Long-Ranged)

Instantaneous Pions

Dynamical Pions

η Number of 
fermions

E Energy Scale

L Lattice size ε Precision



Cost Estimates for Quantum Phase Estimation

Conclusions

• Without major improvements to hardware or algorithm, 
spectroscopy looks unfeasible for NISQ devices.

• OPE and Instantaneous pion models achieve similar efficiencies.

• Dynamical pion models are significantly more expensive than 
others.

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 2x107 1x1017 3x103 - 3x105  years

OPE (Long-Ranged) 4x1017 2x1028 1014 - 1016 years

Instantaneous Pions 3x1025 9x1030 1016 - 1018 years

Dynamical Pions 1x1038 2x1040 1026 - 1028 years



Summary

• Examined the task of time evolution and spectroscopy for 4 Chiral 
Effective Field Theories.

• For Pionless EFT model, utilising Hamiltonian details allows for 
104-106 better circuit depths using new techniques.

• Provided the first resource estimates for higher order terms in 
Effective Field Theory.

• Demonstrated a trade-off between different approximations to the 
first order terms.

• However, all are infeasible for the near/mid-term.



Maybe there’s some hope…
Successive improvements have been found for the Fermi-Hubbard 
model:

2-qubit gate depth for Fermi-Hubbard model for particular time, error and 
particle number (Clinton, Bausch, & Cubitt, (2021)1).

Trotter Bounds Standard Gate Decompositions Subcircuit Gate Decompositions

Analytic [Ch+18] 976,710 59,830

Analytic [CBC21] 77,236 1,686 

Numerical [CBC21] 3,428 259

1: 2003.06886



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms. 

Error reduction by factor of ~100, 
McKeever & Lubasch, (2022)1

1: 2205.11427 



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

Cost reduction by ~10, Clinton, 
Bausch & Cubitt, (2020)

1: 2003.06886 

https://arxiv.org/abs/2003.06886


Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

Gate cost reduction from developing new 
fermionic encoding,  Clinton, Bausch, & Cubitt 
(2020)1

1: 2003.06886 

https://arxiv.org/abs/2003.06886


Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

• Better phase estimation algorithms.
Somma (2020)1, removes need 
for controlled unitaries – 
reduces costs by ~20%.

1: 1907.11748



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

• Better phase estimation algorithms.

• Empirical vs analytical error?

Empirically, the error is often a factor 
~102 smaller than the analytical 
bounds Childs et al. (2017)1.

1: 1711.10980
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Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

• Better phase estimation algorithms.

• Empirical vs analytical error?

• T-gate reduction with different hardware models.

• Lower-cost use cases?

• Partial error correcting properties of fermionic encodings?

• Randomised simulation/using Hamiltonian symmetries/etc. 

• Other ways of simulating nuclear physics besides lattice EFT 

formulation?













Our Work

•Techniques improving quantum algorithms for simulating 
time evolution of EFTs.

•Beyond pionless EFT & associated costs. 
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EFTs and Quantum Computing

• First principles nuclear dynamics is difficult – use an effective field theory instead!

• Time evolution is an important primitive, e.g. for quantum phase estimation.

• Try simulating using product formulae. For Hamiltonian:

• Product formulae have low overhead and generally perform well!

• How well can we improve our error bounds and optimise computational resources?



Previous Work in EFTs and Quantum Computing

Roggero et al. (2019)1 on simulating time evolution and linear response 
function using pionless effective field theory model.

Creation and annihilation 
operators for nucleons.

Nucleon number 
operator at site i.

1: 1911.06368
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Previous Work in EFTs and Quantum Computing

Roggero et al. (2019)1 on simulating time evolution and linear response 
function using pionless effective field theory model.

The Fermi-Hubbard model is similar and well studied – can we apply 
techniques from its analysis + improved Trotter analysis to get bounds?

1: 1911.06368



Better Trotter Bounds

• Childs et al. (2019)1: improve error bounds to account for 
commutators:

•

(we use similar 
bounds for p=2)

1: 1912.08854
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• Childs et al. (2019)1: improve error bounds to account for 
commutators:

• Combine this with physical constraints on the systems (e.g. 
preserved particle number as per Su, Huang & Campbell (2020)2):

•

(we use similar 
bounds for p=2)
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Better Trotter Bounds

• Childs et al. (2019)1: improve error bounds to account for 
commutators:

• Combine this with physical constraints on the systems (e.g. 
preserved particle number as per Su, Huang & Campbell (2020)2):

• Yi & Crosson(2021)3: improve error for quantum phase estimation 
   by considering the effective Trotterised Hamiltonian.

•

(we use similar 
bounds for p=2)

1: 1912.08854
2: 2012.09194
3: 2102.12655
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Better Circuit Depths

• In simulating the pionless EFT, the most expensive term is the kinetic 

hopping term.

• Due to non-locality of fermions:
• If fermions are encoded via Jordan-Wigner mapping, this term takes O(LD-1) 

gates to implement.
• Alternatives: Fast Fermionic Fourier Transform/SWAP Network/Givens 

Rotation, need gate depth proportional to number of fermionic modes.

• Leverage interaction locality: encode fermions using 

Verstraete-Cirac encoding.
• Implement in circuit of depth ~100, regardless of number of fermions or 

lattice size.



Comparisons

• Comparison for p=1,2 Trotter formula having applied these methods vs. 
bounds from Roggero et al. (2019)1:

1: 1911.06368
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Beyond Pionless EFT

• Pionless EFT approximates low-energy Hamiltonian.
• We can include higher order interactions:

• But what cost do we pay in simulating this?
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Beyond Pionless EFT

Models we investigate:

• Dynamical pions: include and explicitly simulate pions.

• Instantaneous pions: include pions, but remove their dynamics.

• One pion exchange: remove explicit pions and introduce an effective Yukawa-type 

potential between fermions.
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For discretised Hamiltonians, see: Lee (2008)1 and Madeira et al. (2018)2
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Beyond Pionless EFT

For discretised Hamiltonians, see: Lee (2008)1 and Madeira et al. (2018)2
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Beyond Pionless EFT

Models we investigate:

● Dynamical and instantaneous case:

○ Requires explicit encoding of scalar field theory + fermion interactions.

○ See work by Jordan, Lee & Preskill (2012)1, Klco & Savage (2018)2 for scalar fields.

○ Need to:

■ Choose pion basis to minimise circuit depth.

■ Choose pion field representation as spin operators.

■ Choose pion field and conjugate momentum cut-off.

1: 1111.3633
2: 1808.10378



Beyond Pionless EFT

Models we investigate:

● Dynamical and instantaneous case:

○ Requires explicit encoding of scalar field theory + fermion interactions.

○ See work by Jordan, Lee & Preskill (2012)1, Klco & Savage (2018)2 for scalar fields.

○ Need to:

■ Choose pion basis to minimise circuit depth.

■ Choose pion field representation as spin operators.

■ Choose pion field and conjugate momentum cut-off.

● One Pion Exchange case:

○ Determine best representation for interaction given the fermionic encoding.

○ Determining a cut-off length for the long-ranged interaction.

1: 1111.3633
2: 1808.10378



Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.9.

• State preparation step not included!

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless

OPE

Instantaneous Pions

Dynamical Pions

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

1: 1605.07197



Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.9.

• State preparation step not included!

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x1012

OPE 7x1026

Instantaneous Pions 3x1025

Dynamical Pions 2x1034

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.
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Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.9.

• State preparation step not included!

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x1012 1x1017 3x103 - 3x105  years

OPE 7x1026 2x1028 1014 - 1016 years

Instantaneous Pions 3x1025 9x1030 1016 - 1018 years

Dynamical Pions 2x1034 2x1040 1026 - 1028 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.
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Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.9.

• Current NISQ devices are nowhere near achieving this:
• Google’s Quantum Supremacy Experiment had depth ~30.

• IBM currently claims depth ~100.  

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x1012 1x1017 3x103 - 3x105  years

OPE 7x1026 2x1028 1014 - 1016 years

Instantaneous Pions 3x1025 9x1030 1016 - 1018 years

Dynamical Pions 2x1034 2x1040 1026 - 1028 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

1: 1605.07197



Cost Estimates for Quantum Phase Estimation

• Using the standard quantum phase estimation algorithm and p=1 
product formulae: 1MeV of energy precision for 6 fermions, on 
10x10x10 lattice, with correctness probability p>0.9.

• Additional question: what is the “correct” precision to work to for 
each model? High precision pointless if the effective Hamiltonian has 
larger systematic error.

Model 2-Qubit Gate Depth T-Gate Cost T-Gate Time Generation

Pionless 8x1012 1x1017 3x103 - 3x105  years

OPE 7x1026 2x1028 1014 - 1016 years

Instantaneous Pions 3x1025 9x1030 1016 - 1018 years

Dynamical Pions 2x1034 2x1040 1026 - 1028 years

T-gate generation time from “Quantum computation with realistic magic state factories”, O’Gorman and Campbell, 2016.

1: 1605.07197



Maybe there’s some hope…
Successive improvements have been found for the Fermi-Hubbard 
model:

2-qubit gate depth for Fermi-Hubbard model for particular time, error and 
particle number (Clinton, Bausch, & Cubitt, (2021)1).

Trotter Bounds Standard Gate Decompositions Subcircuit Gate Decompositions

Analytic [Ch+18] 976,710 59,830

Analytic [CBC21] 77,236 1,686 

Numerical [CBC21] 3,428 259

1: 2003.06886



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms. 

Error reduction by factor of ~100, 
McKeever & Lubasch, (2022)1

1: 2205.11427 



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

Cost reduction by ~10, Clinton, 
Bausch & Cubitt, (2020)

1: 2003.06886 

https://arxiv.org/abs/2003.06886


Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

Gate cost reduction from developing new 
fermionic encoding,  Clinton, Bausch, & Cubitt 
(2020)1

1: 2003.06886 

https://arxiv.org/abs/2003.06886


Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

• Better phase estimation algorithms.
Somma (2020)1, removes need 
for controlled unitaries – 
reduces costs by ~20%.

1: 1907.11748



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

• Better phase estimation algorithms.

• Empirical vs analytical error?

Empirically, the error is often a factor 
~102 smaller than the analytical 
bounds Childs et al. (2017)1.

1: 1711.10980
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• T-gate reduction with different hardware models.
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• Randomised simulation/using Hamiltonian symmetries/etc. 



Routes to Improvement

Further improvements we can make:
• Circuit optimisation algorithms.

• Non-standard gate decompositions.

• New fermionic encodings?

• Better phase estimation algorithms.

• Empirical vs analytical error?

• T-gate reduction with different hardware models.

• Lower-cost use cases?

• Partial error correcting properties of fermionic encodings?

• Randomised simulation/using Hamiltonian symmetries/etc. 

• Other ways of simulating nuclear physics besides lattice EFT 

formulation?







Limitations of New Techniques

• Childs et al error improve bounds to account for commutators:

• Calculating nested commutator is difficult for p>2.

• Verstraete-Cirac encoding comes with more difficult state 
preparation.



Future Work

• Different spectroscopy/QPE algorithms.

• Optimising circuit depths and T-gate counts.

• Non-standard gate decompositions.

• Inherent error correction in fermionic encodings

• Lower-cost use cases generally?



Beyond Pionless EFT

• Pionless EFT approximates low-energy Hamiltonian.
• We can include higher order interactions:

• But what cost do we pay in simulating this?



Better Trotter Bounds

• Childs et al. (2019)1: improve error bounds to account for 
commutators:

• Combine this with physical constraints on the systems (e.g. 
preserved particle number as per Su, Huang & Campbell (2020)2):

• Yi & Crosson(2021)3: improve error for quantum phase estimation 
   by considering the effective Trotterised Hamiltonian.

•

(we use similar 
bounds for p=2)

1: 1912.08854
2: 2012.09194
3: 2102.12655



Previous Work in EFTs and Quantum Computing

• Pionless EFT is the simplest Hamiltonian that recreates basic 
properties of the nucleus.

The Fermi-Hubbard model is similar and well studied – can we apply 
techniques from its analysis + improved Trotter analysis to get bounds?

1: 1911.06368


