

Riffing on the QCD thermal transition in the chiral limit

Francesca Cuteri

May 25th, 2023 - ECT*

HOT DENSE & MAGNETIZED STATES OF QCD MATTER

Hot/dense/magnetized states of QCD matter - The sketch

Major experimental and observational campaigns

Heavy ion collisions

Major experimental and observational campaigns

Major experimental and observational campaigns

STRONGLY INTERACTING MATTER ON THE LATTICE AT NONZERO TEMPERATURE/DENSITY

QCD matter under extreme conditions on the lattice

QCD matter under extreme conditions on the lattice

Thermal lattice QCD

Quantum mechanical statistical system in heatbath

$$Z(T) = \operatorname{Tr}\left[e^{-\hat{H}/T}
ight]$$

Euclidean quantum field theory $Z(T) = \int \mathcal{D}A \, \mathcal{D}\psi \, \mathcal{D}\bar{\psi} \, e^{-S_E[A,\psi,\bar{\psi}]}$ $S_E[A,\psi,\bar{\psi}] = \int_{0}^{\frac{1}{T}} dx_4 \int_{V} d^3 x \mathcal{L}_E[A,\psi,\bar{\psi}]$

- Bosonic (fermionic) fields periodic (anti-periodic) in the finite time direction to ensure Bose-Einstein (Fermi-Dirac) statistics
- Continuum limit at fixed $T: a \rightarrow 0 \iff N_{\tau} \rightarrow \infty$

QCD matter under extreme conditions on the lattice

Then $T - n_B$ phase diagram via Lattice QCD? Not really...

Then $T - n_B$ phase diagram via Lattice QCD? Not really...

Then $T - n_B$ phase diagram via Lattice QCD? Not really...

- Constrain sign-problem-affected regions in the phase diagram on the basis of results obtained in calculable domains
- 1. Depart from point/region where QCD matter undergoes smooth crossover

• Taylor expansion or analytic continuation & Borsanyi et al. (2020)

- 2. Locate and follow critical boundaries bending into tricritical points in the QCD phase diagram in the chiral limit
 - Extrapolating according to known critical exponents

THE QCD PHASE DIAGRAM IN THE CHIRAL LIMIT AT ZERO DENSITY

The order of the QCD thermal phase transition depends on the quark masses

- State of system is defined by the set of parameters $(m_s, m_{u,d}, \beta, N_{\tau})$
- β tuned at $\beta_c \forall (m_s, m_{u,d}, N_{\tau})$, and the order of the transition is plotted

The order of the QCD thermal phase transition depends on the quark masses $m_{u,d}, m_s \to \infty$ Breaking of global Z(3), order parameter |L| $m_{u,d}, m_s \to 0$ Restoration of global $SU_L(N_f) \times SU_R(N_f)$, order parameter $\langle \bar{\psi}\psi \rangle$

,d

The order of the QCD thermal phase transition depends on the quark masses $m_{u,d}, m_s \to \infty$ Breaking of global Z(3), order parameter |L| $m_{u,d}, m_s \to 0$ Restoration of global $SU_L(N_f) \times SU_R(N_f)$, order parameter $\langle \bar{\psi}\psi \rangle$

• Chiral 1^{st} order region wider for larger N_{f} , until $N_{f} = 4$ \mathscr{P} de Forcrand, D'Elia (2017)

The order of the QCD thermal phase transition depends on the quark masses $m_{u,d}, m_s \to \infty$ Breaking of global Z(3), order parameter |L| $m_{u,d}, m_s \to 0$ Restoration of global $SU_L(N_f) \times SU_R(N_f)$, order parameter $\langle \bar{\psi}\psi \rangle$

- Chiral 1^{st} order region wider for larger N_{f} , until $N_{f} = 4$ \mathscr{P} de Forcrand, D'Elia (2017)
- Continuum extrapolated results @mphys

The order of the QCD thermal phase transition depends on the quark masses $m_{u,d}, m_s \to \infty$ Breaking of global Z(3), order parameter |L| $m_{u,d}, m_s \to 0$ Restoration of global $SU_L(N_f) \times SU_R(N_f)$, order parameter $\langle \bar{\psi}\psi \rangle$

- Chiral 1^{st} order region wider for larger N_{f} , until $N_{f} = 4$ \mathscr{P} de Forcrand, D'Elia (2017)
- Continuum extrapolated results $@m_{
 m phys}$
- *m*_{*u,d*} very small. Transition affected by remnants of the chiral universality class?

Columbia plot from the "unimproved viewpoint", for $N_{
m f}=$ 2, $m_{u,d}
ightarrow 0,\infty$

• Light/heavy $1^{\rm st}$ order region does shrink/enlarge as $a \to 0$

Columbia plot from the "unimproved viewpoint", for $N_{
m f}=$ 2, $m_{u,d}
ightarrow 0,\infty$

• Light/heavy $1^{\rm st}$ order region does shrink/enlarge as $a \to 0$

Columbia plot from the "unimproved viewpoint", for $N_{
m f}=$ 2, $m_{u,d}
ightarrow$ 0, ∞

• Light/heavy $1^{\rm st}$ order region does shrink/enlarge as $a \to 0$

Possible scenarios for the nature of $N_{\rm f}$ = 2 chiral transition \mathscr{P} Pisarski, Wilczek (1984)

 Two scenarios ↔ renormalization group flow in 3D sigma models, augmented by 't Hooft term for the axial anomaly, using the epsilon expansion

- Transition in the chiral limit predicted to be of first order for $N_{\rm f} \geq 3$
- Relevance of the strength of the $U(1)_A$ anomaly at T_c for $N_f = 2$

Possible scenarios for the nature of $N_{\rm f}$ = 2 chiral transition \mathscr{P} Pisarski, Wilczek (1984)

- "Direct approach": $\mu = 0$, $N_{\rm f} = 2$ and $m_{u,d} \rightarrow 0$ proved to be too expensive
- "Indirect approaches": tricritical scaling laws for extrapolations to $m_{u,d} \rightarrow 0$

Is the first order chiral region only a lattice artifact?

- Tricritical points in the chiral limit useful targets for extrapolations...
- ... one important source of systematic uncertainty is eliminated if a tricritical point is guaranteed to exist!

Phenomenological motivation

☎ Constrain the sign-problem-affected regions in the QCD phase diagram

Columbia plot - Results for $\kappa_{heavy}^{Z_2}$

Columbia plot - Results for $m_{ m light}^{Z_2}$

Staggered fermion discretization										
$N_{\rm f}$	Action	N_{τ}	$m_{\pi}^{Z_2}$ [MeV] at $\mu = 0$							Ref.
	std	4							н	Karsch, Laermann, Schmidt (2001)
	std	4	÷							Christ, Liao (2003)
3	std	6	÷							de Forcrand, Kim, Philipsen (2007)
	p4	4	÷	Her						A Karsch et al. (2004)
	HISQ	6	÷	.⊢●						Bazavov et al. (2017)
2	std- μ_i	4	÷	Her						<i>P</i> Bonati et al. (2014)
				50	100	150	200	250	300	

.

Wilson fermion discretization $m_{\pi}^{Z_2}$ [MeV] at $\mu = 0$ Ref $N_{\rm f}$ Action N_{τ} 3 clover 6 - 8Jin et al. (2015) clover 8-10 Jin et al. (2017) clover 10 - 12Kuramashi et al. (2020) 2 std 4 Philipsen, Pinke (2016) tm12# tftM coll. (2013) 16 clover Brandt et al. (2017) 100 200300 400 500600 0

A Rather strong cutoff and discretization effects, but an alternative way to analyze cutoff effects suggests a unified description of all available results! 13

CONTROLLED EXTRAPOLATIONS TO THE CHIRAL LIMIT

🖋 Cuteri, Philipsen, Sciarra (2017) 🥒 Cuteri, Philipsen, Sciarra (2021)

$(m, N_{\rm f})$ Columbia plot for $N_{\rm f}$ degenerate quarks

Yet another "indirect approach": promoting $N_{\rm f}$ to continuous real parameter

14

A tricritical point is guaranteed to exist in this case

- No chiral phase transition for $N_{\rm f} = 1 \Longrightarrow 1^{\rm st}$ order for $N_{\rm f} > 1$ must weaken with decreasing $N_{\rm f}$ until vanishing in a tricritical point!
- Z_2 line bends into tricritical point with known critical exponents

 $N_{\rm f}^{\rm c}\big({\rm am}(N_{\tau}),N_{\tau}\big)=N_{\rm f}^{\rm tric}(N_{\tau})+\mathcal{B}_1(N_{\tau})({\rm am})^{2/5}+\mathcal{B}_2(N_{\tau})({\rm am})^{4/5}+\mathcal{O}\big(({\rm am})^{6/5}\big)$

To complete the picture, a lattice spacing axis should be added to all sketches!

- We vary it via $N_{ au}$, that like $N_{
 m f}$ we may promote to a real parameter
- Then all parameters in $\{\beta, am, N_f, N_\tau\}$ can be treated on equal footing

Useful subspaces and projections in the hyperspace

 $B_3 = 0$ phase boundary for chiral symmetry restoration: 3D subspace. $B_4 = 1.604$ critical surface separating crossovers from first order regions

> The critical surface can be projected on all possible planes & Ansätze based on tricritical scaling can be constructed for all those planes!

Plane of quark mass and number of flavors (β implicit)

- Strengthening of transitions with increasing $N_{\rm f}$, weakening with increasing $N_{ au}$
 - No sign of convergence towards a continuum limit
- Monitoring the intercepts $N_{\rm f}^{\rm tric}(N_{\tau})$, with fits of the form

$$\begin{split} am_c \big(N_{\rm f}(N_{\tau}),N_{\tau}\big) &= \mathcal{D}_1(N_{\tau}) \big(N_{\rm f} - N_{\rm f}^{\rm tric}(N_{\tau})\big)^{5/2} \\ &+ \mathcal{D}_2(N_{\tau}) \big(N_{\rm f} - N_{\rm f}^{\rm tric}(N_{\tau})\big)^{7/2} + \mathcal{O}\Big(\big(N_{\rm f} - N_{\rm f}^{\rm tric}(N_{\tau})\big)^{9/2}\Big) \end{split}$$

Plane of quark mass and number of flavors (β implicit)

- Strengthening of transitions with increasing $N_{\rm f}$, weakening with increasing $N_{ au}$
 - No sign of convergence towards a continuum limit
- Monitoring the intercepts $N_{\rm f}^{\rm tric}(N_{\tau})$, with fits of the form
 - Very narrow scaling region even for next-to-leading order fits
 - Difficult to determine $N_{\rm f}^{\rm tric}(N_{\tau})$ reliably
 - Further sliding to the right of $N_{\rm f} = 3$?

Plane of gauge coupling and quark mass (N_f implicit)

- Lower β axis is a triple line of first order transitions up until $\beta_{\text{tric}}(N_{\tau})$
- Here monitoring the intercepts $\beta_{\rm tric}(N_{\tau})$ obtained by fits to

 $\beta_{c}(am, N_{f}(N_{\tau}), N_{\tau}) = \beta_{tric}(N_{\tau}) + \mathcal{C}_{1}(N_{\tau})(am)^{2/5} + \mathcal{C}_{2}(N_{\tau})(am)^{4/5} + \mathcal{O}((am)^{6/5})$

Plane of gauge coupling and quark mass (N_f implicit)

- Lower β axis is a triple line of first order transitions up until $\beta_{\text{tric}}(N_{\tau})$
- Here monitoring the intercepts $\beta_{\rm tric}(N_{ au})$ obtained by fits to
 - Convincing picture of tricritical scaling!
 - Chiral critical surface terminating in a tricritical line in the chiral limit!

• Tricritical point not guaranteed for any $N_{\rm f}$: Need to test functional behavior!

• continuum 1st-order transitions $\forall N_f \ge 3$?! Then, polynomial cutoff effects

$$am_c(N_{\tau}, N_{\rm f}) = \tilde{\mathcal{F}}_1(N_{\rm f}) \ aT + \tilde{\mathcal{F}}_2(N_{\rm f}) \ (aT)^2 + \tilde{\mathcal{F}}_3(N_{\rm f}) \ (aT)^3 + \mathcal{O}\big((aT)^4\big)$$

 $N_{\rm f} = 5$ (and $N_{\rm f} = 6$ and $N_{\rm f} = 7$) data, inconsistent with this scenario!

- Tricritical point not guaranteed for any N_f: Need to test functional behavior!
- Or, critical lines might end on the aT axis in a tricritical point according to

$$aT_{c}(am, N_{\rm f}) = aT_{\rm tric}(N_{\rm f}) + \mathcal{E}_{1}(N_{\rm f})(am)^{2/5} + \mathcal{E}_{2}(N_{\rm f})(am)^{4/5} + \mathcal{O}\big((am)^{6/5}\big)$$

$$\left(am_{c}(N_{\tau}, N_{f})\right)^{2/5} = \mathcal{F}_{1}(N_{f})\left(aT - aT_{tric}(N_{f})\right) + \mathcal{F}_{2}(N_{f})\left(aT - aT_{tric}(N_{f})\right)^{2} + \mathcal{O}\left(\left(aT - aT_{tric}(N_{f})\right)^{3}\right)$$
¹⁹

- Tricritical point not guaranteed for any N_f: Need to test functional behavior!
- We only have three data points, but we observe...
 - only slight deviations from LO scaling,
 - compatibility with the existance of a $N_{ au}^{
 m tric}(N_{
 m f})$ we can bound, and
 - consistency with $N_{ au}^{
 m tric}(N_{
 m f}=5)pprox 12.5$ and a monotonically rising $N_{ au}^{
 m tric}(N_{
 m f})$

- Tricritical point not guaranteed for any N_f: Need to test functional behavior!
- We only have three data points, but we observe...
 - only slight deviations from LO scaling,
 - compatibility with the existance of a $N_{ au}^{
 m tric}(N_{
 m f})$ we can bound, and
 - consistency with $N_{ au}^{
 m tric}(N_{
 m f}=5)pprox$ 12.5 and a monotonically rising $N_{ au}^{
 m tric}(N_{
 m f})$
- We successfully reanalyzed (using $am_{PS}^2 \propto am_q$) published clover-improved Wilson data for the critical pseudo-scalar mass $\mathscr{P}_{\text{Kuramashi}\ et\ al.}$ '20

What do we conclude?

- We conclude that the first order chiral phase transitions observed for:
 - $N_{\rm f} = 3 \mathcal{O}(a)$ -improved Wilson fermions
 - $N_{\rm f} \leq 6$ standard staggered fermions

aren't connected to the continuum chiral limit, where transition is 2nd order

• We conjecture the transition in the chiral limit to stay 2nd order up to the conformal window

