Lattice computation of the Kugo-Ojima function

Nuno Brito¹, Orlando Oliveira ¹, Paulo Silva ¹, Joannis Papavassiliou ², Maurício Ferreira ², Arlene C. Aguilar ³

¹ CFisUC, Department of Physics, University of Coimbra, Portugal ² University of Valencia and IFIC, Spain ³ University of Campinas, Brazil

May 24, 2023

1 2 9 0 UNIVERSIDADE D COIMBRA

FPQCDE

• • • • • • • • •

Outline

Introduction and Motivation

ъ

イロト イボト イヨト イヨト

Faddeev-Popov quantization procedure

• effective Lagrangian

$$\mathcal{L}_{\textit{eff}} = \mathcal{L}_{\textit{QCD}} + \mathcal{L}_{\textit{GF}}^{\xi} + \mathcal{L}_{\textit{FP}}$$

- not gauge invariant anymore!
- however, invariant under BRST transformations
- BRST charge

$$Q_B = \int d^3x J^0(x)$$

FPQCDE

< < >> < </p>

• J^{μ} is the BRST Noether current

Kugo-Ojima confinement mechanism

- assumes a unbroken BRST charge Q_B
 - allows to define the subspace of the physical states $|\textit{phys}\rangle$:

$$\mathcal{V}_{phys} = \{|phys
angle: Q_{B}|phys
angle = 0\}$$

- total space V has indefinite metric and contains physical states (like baryons and mesons) as well as non-physical states (e.g. free gluons and ghosts)
- V_{phys} only contains color singlet states, if the charge Q^a of global gauge symmetry is unbroken and BRST-exact

$$\langle \Phi | Q^a | \Phi'
angle = 0$$

for any physical states $|\Phi\rangle$ in \mathcal{V}_{phys} .

Kugo-Ojima confinement mechanism

 in such scenario, the Kugo-Ojima confinement parameter u^{ab} should satisfy

$$u^{ab} = -\delta^{ab}.$$

• infrared limit of the function $u^{ab}(p^2)$:

$$u^{ab} = \lim_{p^2 \longrightarrow 0} u^{ab}(p^2)$$

• $u^{ab}(p^2)$ defined from $\int d^4 x e^{ip(x-y)} \left\langle D^{ae}_{\mu} c^e(x) g_0 f^{bcd} A^d_{\nu}(y) \bar{c}^c(y) \right\rangle = \left(\delta^{\mu\nu} - \frac{p_{\mu} p_{\nu}}{p^2} \right) u^{ab} \left(p^2 \right).$

T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl 66 (1979) 1; T. Kugo, arXiv:hep-th/9511033.

FPQCDE

1 2 0 9 0 UNIVERSIDADE D

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Lattice calculation of the Kugo-Ojima function

$$\mathcal{U}_{\mu\nu}^{ab}(k) = \left\langle \sum_{x,y} \sum_{c,d,e} e^{-ik \cdot (x-y)} D_{\mu}^{ae} \left(M^{-1} \right)_{xy}^{ec} f^{bcd} A_{\nu}^{d}(y) \right\rangle_{U}$$
$$u(k) = \frac{1}{(N_d - 1)(N_c^2 - 1)} \sum_{\mu,a} \mathcal{U}_{\mu\mu}^{aa}(k)$$

for practical reasons, we use a point source in the inversion

$$\mathcal{U}_{\mu\nu}^{ab}(k) = \left\langle \sum_{x} \sum_{c,d,e} e^{-ik \cdot (x-y_0)} D_{\mu}^{ae} \left(M^{-1} \right)_{xy}^{ec} f^{bcd} A_{\nu}^{d}(y_0) \right\rangle_{U}$$

Lattice Kugo-Ojima cooking recipe

prepare the source

$$f_{abc}\mathcal{A}_{\mu}^{c}(x) = -\frac{1}{2}\text{Tr}\left[\left\{\left(U_{x,-\mu}^{\dagger}+U_{x,\mu}\right)-\left(U_{x,-\mu}^{\dagger}+U_{x,\mu}\right)^{\dagger}\right\}\left[t^{a},t^{b}\right]\right]$$

Solve the system, taking care of zero modes

$$MY = M\phi_{b,
u}$$
 ; $M\psi_{b,
u} = Y$

apply the covariant derivative

$$(D_{\mu}[U])_{xy}^{ab} = 2 \operatorname{Re} \operatorname{Tr} \left[t^{b} t^{a} U_{x,\mu} \right] \delta_{x+\hat{\mu},y} - 2 \operatorname{Re} \operatorname{Tr} \left[t^{a} t^{b} U_{x,\mu} \right] \delta_{x,y}$$

apply FFT, including correction due to point source 200 *** COMBR

< ロ > < 同 > < 回 > < 回 > :

Lattice setup

- Wilson gauge action, $\beta = 6.0$ ($a \sim 0.1$ fm)
- 32^4 , 48^4 , 64^4 , and 80^4 ($(3 fm)^4 < V < (8 fm)^4$)
- 100 configurations, 1 point source
 - 50 configurations for the largest volume
 - several point sources for the smallest volume
- Chroma and PFFT libraries
- simulations performed on Navigator supercomputer Coimbra
- single configuration, point source: 32 (double) inversions

FPQCDE

Introduction and Motivation

Results

Conclusions and outlook

Results

UNIVERSIDADE D COIMBRA

FPQCDE

Results Conclusions and outlook

Results

Low momenta

High momenta

(日)

UNIVERSIDADE D 1 2 æ

э

FPQCDE

Introduction and Motivation

Results

Conclusions and outlook

Checking consistency

Longitudinal component

Imaginary part

A D > A P

Introduction and Motivation Results

Resul

Conclusions and outlook

Statistics issues, Lattice artifacts

Adding more point sources

Without momentum cuts

Lattice artifacts

Without momentum cuts ("dressing function") 32⁴

Without momentum cuts ("dressing function") 64⁴

(口)

1 2 0 9 0 UNIVERSIDADE B COIMBRA

Results — H(4) extrapolation

 lattice scalar quantity F function of H(4) invariants

$$p^{[n]} = \sum_{\mu} p^n_{\mu}, \ n = 2, 4, 6, 8$$

small lattice corrections:

$$\begin{array}{rcl} {\it F}_{Lat} & = & {\it F}({\it p}^{[2]}, {\it p}^{[4]}, {\it p}^{[6]}, {\it p}^{[8]}) \\ & \sim & {\it F}({\it p}^{[2]}, 0, 0, 0) + \dots \end{array}$$

FPQCDE

Introduction and Motivation

Results

Conclusions and outlook

Comparison with SDE and perturbative results

- Renormalized at μ =4.3 GeV $(u(\mu) = 0)$
- good agreement with 1-loop for high q
- non-perturbative effects below 3GeV

Conclusions and outlook

- Lattice computation of the Kugo-Ojima function
- several lattice volumes up to (8fm)⁴
- checked tensor structure, lattice artifacfs
- good agreement with outcome from SDE
- does not seem to be compatible with Kugo-Ojima scenario (u(0) = -1)

FPOCDE

- Outlook:
 - increase statistics
 - larger lattice volumes

Acknowledgements

REPÚBLICA PORTUGUESA Portugal, within projects UIDB/04564/2020, UIDP/04564/2020 and CERN/FIS-PAR/0023/2021. P. J. S. acknowledges financial support from FCT (Portugal) under contract CEECIND/00488/2017. Simulations performed in supercomputers Navigator, managed by LCA – University of Coimbra [url: www.uc.pt/lca], Lindgren, Sisu (through PRACE projects COIMBRALATT [DECI-9] and COIMBRALATT2 [DECI-12]) and Bob through FCT project CPCA/A2/6816/2020.

FPQCDE

Work supported by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P.

< □ > < 同 > < 三