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Giovanni Salmè (INFN-Rome) Insights into the pion dynamics in Minkowski space 1 / 29



Outline

1 Overview

2 The Nakanishi-Integral-Representation way

3 Pion as a quark-antiquark bound-system

4 Pion on the light-cone

5 Pion Transverse Momentum-Dependent Distributions (TMDs)

6 What next?

7 Fermion-scalar bound-system in the chiral limit

8 Summary
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Overview

The elective space where QCD is investigated is the Euclidean one, not the physical
space, since the indefinite metric of the Minkowski space generates many problems,
which could be avoided by replacing the time t by it or the energy E by iE .

The complete equivalence of the quantum field theories played in the two spaces is
rooted in the Osterwalder and Schrader theorems, stating necessary and sufficient
conditions to be fulfilled by correlation functions in 4D Euclidean space (Schwinger
functions) for univocally defining the Wightman correlation functions in Minkowski
spacetime.

Shortly, the O-S theorems show under which conditions the Wick rotation is a well
defined isomorphism relating quantum field theories in Euclidean space and in
Minkowski one.

The primary tool for investigating QCD in Euclidean space is the lattice, but relevant
advancements have been achieved with a continuum approach, also through a
complexification of the Euclidean space.
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The continuum approach is based on the combination of the Bethe-Salpeter equation
(BSE) for two and three-body systems (Faddeev-BSE), and the set of Dyson-Schwinger
equations (DSEs).

This approach should be considered a phenomenological one, since a truncation of the
infinite tower of DSEs has to be introduced, carefully preserving the symmetries of QCD,
as well as a confining interaction suitable for numerical calculations has to be used.
Results of the hadron spectra and dynamical observables have been favorably compared
with available experimental results and lattice calculations.

Summarizing: most of the rigorous results in quantum field theory have been elaborated
in the Euclidean space, as well as actual calculations, with unavoidable approximations,
which are analyzed and taken under control.

BUT the physical observations are obtained in Minkowski space, and therefore, to
improve our confidence in the approximations applied in the Euclidean space, it could be
helpful to attempt to replicate in Minkowski space a program analog to the cQCD,
already played in the Euclidean space: i.e. combining BSE and a truncated tower of
DSEs.

⇒ The approach we are pursuing is based on in-depth analysis of the N-leg amplitudes
carried out in the 60’ by Noburo Nakanishi, within the Feynman-diagrams framework.
One can get rid of the perturbation stigma by using unknown real weight functions,
depending upon both compact and non compact variables, on place of distributions.
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The Nakanishi-Integral-Representation way

Nakanishi proposal for a compact and elegant expression of the full
N-leg amplitude, written by means of the Feynman parametrization
(→ ~α), fN(s) =

∑
G fG(s) (G ≡ infinite graphs contributing to fN):

Introducing the identity

1
.

=
∏
h

∫ 1

0

dzhδ

(
zh −

ηh
β

)∫ ∞
0

dγ δ

(
γ −

∑
l

αlm
2
l

β

)
with β =

∑
ηi (~α) and integrating by parts n − 2k − 1 times (n propagators and k

integration loops; ~α = Feynman parms)), a graph contribution is

fG(s̃) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φ̃G(~z , γ)

(γ −
∑

h zhsh)

φ̃G(~z , γ) ≡ proper combination of distributions (in the initial analysis), with
~z ≡ {z1, z2, . . . , zN}, compact real variables
s̃ ≡ {s1, s2, . . . , sN} ⇒ N independent scalar products, from external momenta

The dependence upon the details of the diagram, {n, k}, moves from the denominator
→ the numerator!!
The SAME formal expression for the denominator of ANY diagram G appears
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NIR - II
The full N-leg transition amplitude is the sum of infinite diagrams G(n, k) and it can be
formally written as

fN(s̃) =
∑
G

fG(s̃) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φN(~z , γ)

(γ −
∑

h zhsh)

where
φN(~z , γ) =

∑
G

φ̃G(~z , γ)

is called a Nakanishi weight function and it is REAL (γ is non compact, while ~z is
compact).

Application: 3-leg transition amplitude → vertex function for a scalar theory (N.B. for
fermions → spinor indexes)

☛
p1

−p2

−p3

Γ

f3(s̃) =

∫ 1

0

dz

∫ ∞
0

dγ
φ3(z , γ)

γ − p2

4
− k2 − zk · p − iε

with p = p1 + p2 and k = (p1 − p2)/2

Valid at any order in perturbation-theory !
Natural choice as a general trial function for solv-
ing the Bethe-Salpeter Eq , BUT transition from
a distribution φ3(z , γ) to a function g(z , γ)
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In spite of its apparent simplicity, to determine the Nakanishi weight functions, gi (z , γ),
becomes highly non trivial, when the fermionic dof are taken into account in the BSE.

To anticipate: all the scalar functions entering the relevant vertex function describing a
bound-system and dependent upon the four-momenta at disposal, are expressed through
the Nakanishi Integral Representation.

In the Pion, our bed-test, we will have

φi (k;P) =

∫ 1

−1

dz ′
∫ ∞

0

dγ′
gi (γ

′, z ′;κ2)

[k2 + z ′(P · k)− γ′ − κ2 + iε]3

P ≡ pion 4-momentum (P2 = M2
π)

k ≡ relative 4-momentum
κ2 ≡ m2 −M2

π/4 and m is a fermionic effective mass (to be defined in what follows...)

N.B. The power of the denominator depends on the smoothness we need to implement.
This freedom is already in the original Nakanishi analysis: the trade-off was between
derivatives of the distributions in the numerator and the power in the denominator.
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Pion as a quark-antiquark bound-system

The Bethe-Salpeter Equation for a 0− system

Φ(k;P) = S
(
k + P

2

) ∫ d4k ′

(2π)4
Sµν(q)Γµ(q)Φ(k ′;P)Γ̂ν(q)S

(
k − P

2

)
Γ̂ν(q) = C Γν(q) C−1

where we use (in the first step): i) bare propagators for quarks and gluons; ii) ladder
approximation with massive gluons, iii) an extended quark-gluon vertex

S(P) =
i

/P −m + iε
, Sµν(q) = −i gµν

q2 − µ2 + iε
, Γµ = ig

µ2 − Λ2

q2 − Λ2 + iε
γµ ,

We set the value of the scale parameter (300 MeV) from the combined analysis of
Lattice simulations, the Quark-Gap Equation and Slanov-Taylor identity.
[ Oliveira, WP, Frederico, de Melo EPJC 78(7), 553 (2018) & EPJC 79 (2019) 116 &
EPJC 80 (2020) 484]
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NIR for fermion-antifermion 0− Bound State

BSA for a quark-antiquark 0− bound state:

Φ(k;P) =
4∑

i=1

Si (k;P)φi (k;P)

Dirac structures for a pseudoscalar system is given by

S1(k;P) = γ5, S2(k;P) =
/P

M
γ5, S3(k;P) =

k · P
M3

/Pγ5−
/k

M
γ5, S4(k;P) =

i

M2
σµνPµkνγ5

Using the NIR for each scalar functions ⇒ System of coupled integral equations
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Projecting BSE onto the LF hyper-plane x+ = 0

Light-Front variables: xµ = (x+, x−, ~x⊥)
x0

x3

x2
hyperplane

x +
=
0

LF-time x+ = x0 + x3

x− = x0 − x3

~x⊥ = (x1, x2)

Within the LF framework, one introduces LF-projected amplitudes for each φi (k,P)
through their integral on k− (⇒ s.t. x+ = 0, with x+ relative LF-time)). One gets

ψi (γ, ξ) =

∫
dk−

2π
φi (k, p) = − i

M

∫ ∞
0

dγ′
gi (γ

′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2]2

By LF-projecting both sides of BSE (after applying the suitable traces on Dirac indexes)
one gets a coupled integral-equation system.
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The coupled integral-equation system (see also NIR+covariant LF, Carbonell and
Karmanov JPA 2010) in ladder approximation, reads (cf. de Paula,et al, PRD 94,
071901 (2016) & EPJC 77, 764 (2017))

∫ ∞
0

dγ′ gi (γ
′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2]2 = iMg 2
∑
j

∫ ∞
0

dγ′
∫ 1

−1

dz ′Lij(γ, z ; γ′, z ′) gj(γ
′, z ′;κ2)

In ladder approximation, the Nakanishi Kernel, Lij , has an analytical expression and
contains singular contributions that can be regularized ’a la Yan (Chang and Yan,
Quantum field theories in the infinite momentum frame. II. PRD 7, 1147 (1973)).

Numerical solutions are obtained by discretizing the system using a polynomial basis,
given by the Cartesian product of Laguerre(γ) × Gegenbauer(z). One remains with a
Generalized eigenvalue problem, where a non-symmetric matrix and a symmetric one are
present

A ~c = λ B ~c

N.B. the eigenvector ~c contains the coefficients of the expansion of the Nakanishi weight
functions gi (z , γ;κ2).

If one gets real solutions of the GEVP , then one can validate the NIR approach.
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Pion em form factor in ladder approximation
From E. Ydrefors et al., PLB 820 (2021) 136494.
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Black solid curve: pion FF, obtained from the solution of the BSE in ladder
approximation, with mq = 255 MeV, mg = 637.5 MeV and Λ = 306 MeV, that controls
the extended quark-gluon vertex. With those values, inspired by LQCD calculations, the
experimental value of the decay constant f PDG

π = 130.50(1)(3)(13) MeV is reproduced.

Dashed line: LF-valence contribution (LF-valence probability = 0.70, self-consistently
obtained)

Right Panel: Dash-dotted line; asymptotic expression from Brodsky-Lepage PRD 22
(1980): Q2Fasy(Q2) = 8παs(Q

2)f 2
π .
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Parton distribution function
W. de Paula et al., PRD 105, L071505 (2022).
From the charge-symmetric (anti-symmetric) expression for the leading-twist TMD

f
S(AS)

1 (γ, ξ), one gets the PDF at the initial scale u(ξ)

f
S(AS)

1 (γ, ξ) =
f q1 (γ, ξ)± f q̄1 (γ, 1− ξ)

2
⇒ u(ξ) =

∫ ∞
0

dγ f S1 (γ, ξ).
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 ξ
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 ξ

)

Solid line: full calculation of the BSE at
the model scale (norm =1)
Dashed line: The LF valence contribution
(norm =0.7, once the Fock expansion for
the pion state is assumed) .
At the initial scale, for ξ → 1, the expo-
nent of (1 − ξ)η0 is η0 = 1.4. N.B JAM
collaboration (PRL 121 (2018)) found a
preferential exponent ηJAM ∼ 1. What
about LQCD prediction?
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Parton distribution function II
Low order Mellin moments at scales Q = 2.0 GeV and Q = 5.2 GeV.

LQCD, Q = 2.0 GeV: 〈x〉 - Alexandrou et al PRD 103, 014508 (2021)
〈x2〉 and 〈x3〉 - Alexandrou et al PRD 104, 054504 (2021)

LQCD, Q = 5.0 GeV: 〈x〉 - Alexandrou et al PRD 103, 014508 (2021)

N.B. following Cui et al EPJC 2020 80 1064, lowest order DGLAP equations used for
evolution. One needs:

Hadronic scale and effective charge for dealing with DGLAP
Q0 = 0.330± 0.030 GeV

Within the error, we choose Q0 = 0.360 GeV to fit the first Mellin moment.
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Parton distribution function III

Comparison with the data at 5.2 GeV scale
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 ξ
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Solid line: full calculation of the BSE
evolved from the initial scale Q0 =
0.360 GeV to Q = 5.2 GeV
Dashed line: The evolved LF valence
contribution
Full dots: experimental data from E615
Full squares: reanalyzed experimental
data from Aicher et al PRL 105, 252003
(2010). evolved to Q = 5.2 GeV
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Parton distribution function IV
Comparison with other theoretical calculations
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 ξ
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Solid line: full calculation of the BSE
evolved from the initial scale Q0 =
0.360 GeV to Q = 5.2 GeV
Dashed line: DSE calculation from Cui
et al, Eur. Phys. J. A 58, 10 (2022)
Dash-dotted line: DSE calculation with
dressed quark-photon vertex from Bed-
nar et al PRL 124, 042002 (2020)
Dotted line: BLFQ collaboration, PLB
825, 136890 (2022)
Gray area: LQCD results from C.
Alexandrou et al (2021)
Black and Orange vertical lines from
JAM collaboration, private communica-
tion.

For the evolved ξ u(ξ), the exponent of (1− ξ)η5 is η5 = 2.94, when ξ → 1,

LQCD: Alexandrou et al PRD 104, 054504 (2021) obtained 2.20± 0.64

Cui et al EPJA 58, 10 (2022) obtained 2.81± 0.08
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Pion Transverse Momentum-Dependent Distributions

One can define the T-even subleading quark uTMDs, starting from the decomposition of
the pion correlator (Mulders and Tangerman, Nucl. Phys. B 461, 197 (1996).

twist -2 uTMD:

f q1 (γ, ξ) =
Nc

4

∫
dφk̂⊥

∫ ∞
−∞

dy−dy⊥
2(2π)3

e i [k̃·ỹ ] 〈P|ψ̄q(−y

2
) 1̂ ψq(

y

2
)|P〉

∣∣
y+=0

twist-3 uTMD (in LC gauge, A+ = 0):

M

P+
eq(γ, ξ) =

Nc

4

∫
dφk̂⊥

∫ ∞
−∞

dy−dy⊥
2(2π)3

e i [k̃·ỹ ] 〈P|ψ̄q(−y

2
) γ+ ψq(

y

2
)|P〉

∣∣
y+=0

and

M

P+
f ⊥q(γ, ξ) =

NcM

4|k⊥|2

∫
dφk̂⊥

∫ ∞
−∞

dy−dy⊥
2(2π)3

e i [k̃·ỹ ] 〈P|ψ̄q(−y

2
) k⊥ · γ⊥ ψq(

y

2
)|P〉

∣∣
y+=0

with k̃ · ỹ = ξP+y−/2− k⊥ · y⊥.

The corresponding symmetric and antisymmetric collinear PDFs are:

eS(AS)(ξ) =

∫ ∞
0

dγ eS(AS)(γ, ξ) , f ⊥S(AS)(ξ) =

∫ ∞
0

dγ f ⊥S(AS)(γ, ξ)

For the quark ones: eq(ξ) = eS(ξ) + eAS(ξ) and f ⊥q(ξ) = f ⊥ S(ξ) + f ⊥ AS(ξ)
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Transverse Momentum-Dependent Distributions II
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Solid line: quark twist-3 uTMD e(ξ)
Dashed line: Symmetric twist-3 uTMD
eS(ξ)
Dotted: Anti-symmetric twist-3 uTMD
eAS(ξ)

Solid line: quark twist-3 uTMD f ⊥(ξ)
Dashed line: Symmetric twist-3 uTMD
f ⊥S(ξ)
Dotted: Anti-symmetric twist-3 uTMD
f ⊥AS(ξ)
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Transverse Momentum-Dependent Distributions II
Comparison with a LF Constituent QM
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Quark unpolarized collinear PDF, ξ eq(ξ).
Solid line: full calculation.
Dashed line: m/M uq(ξ), as suggested by
Lorcé et al, EPJC 76, 415 (2016, but with
our PDF.
Double-dot-dashed line: the same as the
dashed line, but using the valence approx-
imation of uq(ξ) with norm = 1 and not
0.7.

Quark unpolarized collinear PDF, ξ f q⊥(ξ).
Solid line: full calculation.
Dashed line: ξ f q⊥(ξ) = uq(ξ), as suggested
by Lorcé et al, EPJC 76, 415 (2016), but
with our PDF.
Double-dot-dashed line: the same as the
dashed line, but using the valence approxi-
mation of uq(ξ) with norm= 1 and not 0.7
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Twist-2 uTMD f S1 (γ, ξ) Twist-3 uTMD eS(γ, ξ)
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Twist-3 uTMD f ⊥S(γ, ξ)

Giovanni Salmè (INFN-Rome) Insights into the pion dynamics in Minkowski space 21 / 29



An iconic view of the pion from the light-cone
W. de Paula,et al, PRD 103, 014002 (2021) The probability distribution of the quarks

inside the pion, sitting on the the hyperplane x+ = 0, tangent to the light-cone, is
evaluated in the space given by the Cartesian product of the Ioffe-time and the plane
spanned by the transverse coordinates b⊥.

Why? In addition to the usual the infinite-momentum frame one can study the
deep-inelastic scattering processes in the target frame, adopting the configuration space,
so that a more detailed investigation of the space-time structure of the hadrons can be
performed. The Ioffe-time is useful for studying the relative importance of short and
long light-like distances.

x0

x3

x2

hyperplane
x +

=
0

The covariant definition of the Ioffe-
time is z̃ = x ·Ptarget , and it becomes
z̃ = x−P+

target/2 on the hyper-
plane x+ = 0
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The pion on the light-cone

Density plot of |b⊥|2 |ψ(z̃ , bx , by )|2, with ψ(z̃ , bx , by ) obtained from our solutions of the
ladder Bethe-Salpeter equation [W. de Paula et al PRD 103, (2021) 014002]

z̃ ≡ Ioffe-time
{bx , by} ≡ transverse coordinates
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What next?
After completing the investigation of the pion BSE with fixed-mass quark, i.e. a qq̄
bound system, we are addressing the running-mass case, pointing to the other face of
the medal....DCSB
Wave-function renorm. constant Z(p2) = 1 and a
running-mass,M(p2

E ) = m0 −m3/(p2
E − λ2), with m0 = 0.008 GeV, m = 0.648 GeV and

λ = 0.9 GeV adjusted to LQCD calculations by O. Oliveira, et al, PRD 99 (2019)
094506. First results in A. Castro et al, arXiv:2305.12536

The quark running-mass, M(p2), as a
function of the Euclidean momentum
pE =

√
−p2, in units of the IR massM(0) =

0.344 GeV. Solid line: our model. Dashed
line: accurate fit of the LQCD calculations

Then, formal and numerical results of the fermion gap-equation in Minkowski space will
be exploited, following, e.g., i) D. Duarte, et al PRD 105, 114055 (2022), and ii) C.
Mezrag and GS, EPJC 81 (2021) 34.
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Fermion-scalar bound-system in the chiral limit

Aline Noronha et al, PRD 107, 096019 (2023)

The homogeneous BSE of a (1/2)+ bound-system, with both fermionic and bosonic
degrees of freedom (dubbed a mock nucleon), is studied in Minkowski space, in order to
analyze the chiral limit in covariant gauges.

The chiral limit induces a scale invariance of the model and consequently generates a
wealth of striking features:

it reduces the number of nontrivial Nakanishi weight functions, from two to only
one;

the form of the surviving weight function has a factorized dependence on the two
relevant variables, compact and non-compact;

the coupling constant becomes an explicit function of the real exponent governing
the power-law falloff of (the nontrivial Nakanishi weight function, and in turn) the
LF valence wave function.
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Summary

The near future will offer an innovative view of the dynamics inside the hadrons,
thanks to the experimental activity planned at the Electron-ion colliders, and plenty
of measurements pointing to the 3D tomography of hadrons will become available.

For the pion, many results, em form factor, PDF, TMDs, Ioffe-time× transverse
plane distribution, have been obtained by using the ladder-approximation of the
qq̄-BSE.

The pion has an important role, given its dual nature: qq̄ bound-system and
Goldstone boson, i.e. the golden gate to address the DCSB and the
emergent-mass phenomena. Our aim is to implement a framework analogous to
the one already developed in Euclidean space.

Minkowski space, phenomenological investigations, once the approach composed
by BSE and gap-equations will be fully available, could offer fresh insights in
hadron dynamics and possibly implement an interplay with well-established lattice
and continuous QCD communities.

Thank you for the attention!!!
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Back-up slides
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Fermion-scalar bound system in the chiral limit

Aline Noronha et al, PRD 107, 096019 (2023)
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Landau Coupling constant of the fermion-

boson system in the chiral limit vs.
the power r (gi (γ, z) = γr fi,r (z)).
Solid line: Feynman gauge (ζ = 1).
Dotted line: ζ = 0.5 gauge. Dashed
line: Landau gauge (ζ = 0).
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Fermion-scalar bound system in the chiral limit

Aline Noronha et al, PRD 107, 096019 (2023)
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The normalized LF amplitude N2(γ) = ψ2(γ, ξ0 = 0.5)/ψ2(0, ξ0 = 0.5) as a function of

the transverse momentum square γ = |~k⊥|2 in the Feynman gauge,with ms/mf = 2 and
binding energy ratio B/m̄ = 0.1 (i.e. M/m̄ = 1.9). Left panel: µ/m̄ = 0.15 and
α = 0.648. Solid line: N2(γ). Dashed line: N2(γ)× γ1.817. Right panel: µ/m̄ = 0.5 and
α = 0.898. Solid line: N2(γ). Dashed line: N2(γ)× γ1.718.
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