CORRELATIONS IN A MOAT REGIME

Fabian Rennecke

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]

FROM FIRST-PRINCIPLES QCD TO EXPERIMENTS ECT* TRENTO - 22/05/2023

in theory:

in theory:

in theory:

in nature/experiment:

Experiments:

heavy-ion collisions

e.g. gravitational waves

MOAT REGIMES

[Caerlaverock Castle, Scotland (source: Wikipedia)]

Α ΜΟΑΤ

energy dispersion of particle ϕ :

WHAT DOES THE MOAT MEAN?

heuristic picture:

moat energy dispersion (minimal energy at k_0) spatial modulations (with wavenumber k_0)

• typical for inhomogeneous/crystalline phases or a quantum pion liquid ($Q\pi L$)

WHERE CAN MOAT REGIMES APPEAR?

- many examples in low-energy models at large μ
- first indications also in QCD:

• indication for extended region with z < 0 in QCD: moat regime

IMPLICATIONS OF THE MOAT

The energy gap might close at lower T and larger μ_B :

 μ

IMPLICATIONS OF THE MOAT

BUT: formation of inhomogeneous phases depends on dynamics of soft (massless) modes.

fluctuation-induced instabilities of inhomogeneous phases

other types of phases possible (possibly without long-range order!)

[Fukushima, Hatsuda, RPP 74 (2010)] [Buballa, Carignano, PPNP 81 (2014)]

liquid crystal

Landau-Peierls instability (Goldstones from spatial SB)

$$\langle \phi(x)\phi(0)\rangle \sim \sin(k_0 x) x^{-\alpha}$$

[Landau, Lifshitz, Stat. Phys. I, §137] [Lee et al., PRD 92 (2015)] [Hidaka et al., PRD 92 (2015)]

[Pisarski, Tsvelik, Valgushev, PRD 102 (2020)] [Pisarski, PRD 103 (2021)] [Schindler, Schindler, Ogilvie (2021)]

either way ...

the moat is a **common feature** of regimes with spatial modulations

THE MOAT REGIME

These phases are expected in the "unknown" region of the phase diagram

search for moats in heavy-ion collisions!

SIGNATURES OF MOATS IN HEAVY-ION COLLISIONS

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]

PROBING THE PHASE DIAGRAM

Vary the beam energy to study the phase diagram different densities (smaller energy \leftrightarrow lager μ)

PROBING THE PHASE DIAGRAM

Vary the beam energy to study the phase diagram different densities (smaller energy \leftrightarrow lager μ)

What are the signatures of the the moat regime in heavy-ion collisions?

SEARCH FOR MOAT REGIMES

intuitive idea:

Moats arise in regimes with spatial modulations

Characteristic feature: minimal energy at nonzero momentum

 \Rightarrow enhanced particle production at nonzero momentum

Iook for signatures in the momentum dependence of particle correlations (first proposed in [Pisraski, FR, PRL 127 (2021)])

To do:

develop new formalism to study particle correlations in moat regime
consider two-particle correlations: interferometry

HYPERSURFACES IN HEAVY-ION COLLISIONS

- fixed thermodynamic conditions on 3d hypersurfaces $\Sigma \neq \mathbb{R}^3$
- freeze-out typically on fixed T (or ϵ) hypersurface

HIC: evolution of nontrivial hypersurfaces

A HYPERSURFACE

• hypersurface Σ defined through parametric equations:

coordinates of ambient spacetime

intrinsic coordinates of Σ (i = 1, 2, 3) e.g., angles φ , ϑ on a 3-sphere

• define tangent and normal vectors of Σ :

$$e^{\mu}_{i} = \frac{\partial x^{\mu}}{\partial w^{i}}$$
, $\hat{v}^{\mu} \sim \bar{\epsilon}^{\mu\alpha\beta\gamma} e_{1\alpha} e_{2\beta} e_{3\gamma}$

decompose spacetime metric as

$$g^{\mu\nu} = \hat{v}^{\mu}\hat{v}^{\nu} - G^{ij}e^{\mu}_{i}e^{\nu}_{j}$$

$$f$$
induced metric on Σ : $G_{ij} = -g_{\mu\nu}e^{\mu}_{i}e^{\nu}_{j}$

• define 'time' and 'space': $x_{\parallel} = \hat{v}^{\mu} x_{\mu}$ and $\mathbf{x}_{\perp} = \mathbf{e}^{\mu} x_{\mu}$

→ foliation of spacetime: $\{x_{\parallel}\} \times \Sigma$ instead of $\{t\} \times \mathbb{R}^3$

SPECTRA ON A HYPERSURFACE

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]

experiments count particles \longrightarrow particle number correlations

• compute **particle spectra**, e.g.,

$$n_{1}(\mathbf{p}_{\perp}) = \omega_{\mathbf{p}_{\perp}} \langle \hat{N}_{1} \rangle = \omega_{\mathbf{p}_{\perp}} \langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{p}_{\perp}} \rangle$$
$$n_{2}(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}) = \omega_{\mathbf{p}_{\perp}} \omega_{\mathbf{q}_{\perp}} \langle \hat{N}_{1} \hat{N}_{2} \rangle = \omega_{\mathbf{p}_{\perp}} \omega_{\mathbf{q}_{\perp}} \langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{p}_{\perp}} a_{\mathbf{q}_{\perp}}^{\dagger} a_{\mathbf{q}_{\perp}} \rangle$$

 use ladder operators in foliated spacetime (canonical quantization)

$$a_{\mathbf{p}_{\perp}} = i \int d\Sigma^{\mu} e^{i\bar{p}\cdot x} \frac{1}{\sqrt{2\omega_{\mathbf{p}_{\perp}}}} \left(\partial_{\mu} - i\bar{p}_{\mu}\right) \phi(x)$$
$$d\Sigma^{\mu} = \sqrt{|\det G|} d^{3}w \,\hat{v}^{\mu} \qquad \text{on-shell momentum } \bar{p}_{\parallel} = \omega_{\mathbf{p}_{\perp}}$$

• energy of an on-shell particle:

$$\omega_{\mathbf{p}_{\perp}} = \sqrt{Z(\mathbf{p}_{\perp}^2) \, \mathbf{p}_{\perp}^2 + m^2}$$

Insert expressions for ladder operators in terms of fields:

$$\left\langle a_{\mathbf{p}_{\perp}}^{\dagger}a_{\mathbf{p}_{\perp}}a_{\mathbf{q}_{\perp}}^{\dagger}a_{\mathbf{q}_{\perp}}\right\rangle \longrightarrow \left\langle \phi(x_{1})\phi(y_{1})\phi(x_{2})\phi(y_{2})\right\rangle$$

 \rightarrow express *n*-particle spectra in terms of real-time correlations of 2n fields

Similar to LSZ reduction, but on Σ at (potentially) any time x_{\parallel} and for general dispersion $\omega_{\mathbf{p}_{\perp}}$

TWO-PARTICLE SPECTRUM

• interference from two-particle scattering: need $n_2(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}) = \omega_{\mathbf{p}_{\perp}} \omega_{\mathbf{q}_{\perp}} \langle \hat{N}_1 \hat{N}_2 \rangle$

• Gaussian approximation encodes relevant effects:

$$\begin{array}{l} \left(n_{2}(\mathbf{p}_{\perp},\mathbf{q}_{\perp}) \sim \langle a_{\mathbf{p}_{\perp}}^{\dagger}a_{\mathbf{p}_{\perp}} \rangle \langle a_{\mathbf{q}_{\perp}}^{\dagger}a_{\mathbf{q}_{\perp}} \rangle + \left| \langle a_{\mathbf{p}_{\perp}}^{\dagger}a_{\mathbf{q}_{\perp}} \rangle \right|^{2} + \left| \langle a_{\mathbf{p}_{\perp}}a_{\mathbf{q}_{\perp}} \rangle \right|^{2} \\ = n_{1}(\mathbf{p}_{\perp}) n_{1}(\mathbf{q}_{\perp}) + \left| n_{1}(\mathbf{p}_{\perp},\mathbf{q}_{\perp}) \right|^{2} + \left| \bar{n}_{1}(\mathbf{p}_{\perp},\mathbf{q}_{\perp}) \right|^{2} \\ \begin{array}{l} \text{particle-particle interference} \\ \text{(Hanbury-Brown Twiss correlation)} \end{array} \quad \text{particle-antiparticle interference} \\ \end{array}$$

• interference in local thermal equilibrium (fluctuation-dissipation relation + sufficiently isotropic system)

average and relative pair momentum

$$\begin{aligned}
& \text{single-particle distribution,} \\
& \text{e.g., Bose-Einstein} \\
& \text{f}(X; P_{\parallel}, \mathbf{P}_{\perp}) \rho(X; P_{\parallel}, \mathbf{P}_{\perp}) \\
& \text{in-medium effects enter through } P\text{-dependence} \\
& \text{of the spectral function } \rho(x, y) = \langle [\phi(x), \phi(y)] \rangle
\end{aligned}$$

- not most general expression: involves statistical function and gradients in X
- single particle spectrum for p = q

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]

INTERFEROMETRY

Compute two-particle spectrum in illustrative model

- moat quasi-particle with $k_0 = 100 \,\mathrm{MeV}$
- hypersurface at fixed proper time

100300

0.0010

Dour Mey

n2 [MeV⁻⁴] 0.0000⁺

(side- and long-correlations qualitatively the same)

100300

INTERFEROMETRY

Compute two-particle spectrum in illustrative model

- moat quasi-particle with $k_0 = 100 \,\mathrm{MeV}$
- hypersurface at fixed proper time

fixed **P** direction

beam direction

 ΔP_{out}

NORMALIZED TV_{1.2}

Usually measured in experiments:

We propose to look at ratios: C_{out} , C_{out} , C

100

 $-\frac{1}{2}\Delta \mathbf{P}$

100

200

[´]50

HANBURY-BROWN TWISS RADII

Original idea: use intensity interferometry to measure size of astronomical objects

Figure 2. Picture of the two telescopes used in the HBT experiments. The figure was extracted from Ref.[1]. [Goldhaber (1991)]

• interference term (approximately) the Fourier trafo of the emission function $S(x, \mathbf{P}_{\perp})$

$$n_1(\mathbf{P}, \mathbf{\Delta P}) \approx \int d^4 x \, e^{-i\overline{\mathbf{\Delta P}} \cdot x} S(x, \mathbf{P})$$

• emission function: distribution of spacetime position x and momentum \mathbf{P}_{\perp} of particles

 \longrightarrow range of correlation in ΔP related to inverse size of the source

HBT RADII IN A MOAT REGIME

• define HBT radius R through range of correlation in $\Delta \mathbf{P}$

correlation is max. at $\Delta P = 0$

$$R = \frac{1}{|\boldsymbol{\Delta P}^*|}, \text{ with } C(\mathbf{P}, \boldsymbol{\Delta P}^*) = \frac{1}{2} C(\mathbf{P}, \mathbf{0})$$

• yields $R(|\mathbf{P}|)$:

-----> HBT radii modified in moat regime

Moats arise in regimes with spatial modulations

- expected to occur at $\mu_B \gtrsim 400 \text{ MeV}$
- precursors for inhomogeneous-, liquid-crystal-like or quantum pion liquid phases

Signatures of a moat regime in particle interferometry

- developed new formalism that relates particle spectra to real-time correlation functions
- characteristic peaks at nonzero pair momentum in two-particle correlations
- also seen if thermodynamic fluctuations are taken into account [Pisraski, FR, PRL 127 (2021)]
- propose to measure ratios of normalized correlations to detect a moat regime
- in FAIR range!

Opportunity to discover novel phases with heavy-ion collisions through measurement of particle correlations

- So far: basic description of qualitative effects at intermediate stage of collision
- To do: quantitative description of moat regimes & propagation of signal to the detector

INTERFERENCE IN FULL GLORY

• introduce average and relative coordinates

$$X = \frac{1}{2}(x+y), \qquad \Delta X = x-y$$
$$P = \frac{1}{2}(p+q), \qquad \Delta P = p-q$$

• spectral and statistical function as Wigner transformed two-point functions

$$\rho(X,P) = \int d\Delta X_{\parallel} \int d\Sigma_{\Delta X} e^{iP \cdot \Delta X} \left\langle \left[\phi \left(X + \frac{1}{2} \Delta X \right), \phi \left(X - \frac{1}{2} \Delta X \right) \right] \right\rangle$$
$$F(X,P) = \frac{1}{2} \int d\Delta X_{\parallel} \int d\Sigma_{\Delta X} e^{iP \cdot \Delta X} \left\langle \left\{ \phi \left(X + \frac{1}{2} \Delta X \right), \phi \left(X - \frac{1}{2} \Delta X \right) \right\} \right\rangle$$

The particle-particle interference term then is general:

$$n_{1}(\mathbf{p}_{\perp},\mathbf{q}_{\perp}) = \frac{1}{2} \int d\Sigma_{X} e^{-i\overline{\Delta P} \cdot X} \int \frac{dP_{\parallel}}{2\pi} \left[\frac{1}{4} \partial_{X_{\parallel}}^{2} + \frac{i}{2} \overline{\Delta P}_{\parallel} \partial_{X_{\parallel}} + \left(P_{\parallel} + \overline{P}_{\parallel}\right)^{2} - \frac{1}{4} \overline{\Delta P}_{\parallel}^{2} \right] \left[F(X,P) - \frac{1}{2} \rho(X,P) \right]$$

AN ILLUSTRATIVE MODEL

highlight qualitative effects

Particle in a moat regime:

• bosonic quasi-particle:

$$\rho(P) = 2 \operatorname{Im} D_R(P) = \frac{\pi}{\omega_{\mathbf{P}_{\perp}}} \left[\delta(P_{\parallel} - \omega_{\mathbf{P}_{\perp}}) - \delta(P_{\parallel} + \omega_{\mathbf{P}_{\perp}}) \right] \quad \text{with} \ \ \omega_{\mathbf{P}_{\perp}} = \sqrt{Z(\mathbf{P}_{\perp}^2) \, \mathbf{P}_{\perp}^2 + m^2}$$

puts the average pair momentum on-shell

single-particle distribution:

$$f(X; P_{\parallel}, \mathbf{P}_{\perp}) = n_B(P_{\parallel}) = \frac{1}{e^{P_{\parallel}/T} - 1}$$

Wave function renormalization:

AN ILLUSTRATIVE MODEL 2

highlight qualitative effects

Parameters:

16

14

12

10

8

6

4

2

0

-10

-5

0

x [fm]

τ [fm]

- interferometry measurements typically use pions: $m = m_{\pi} = 140 \,\mathrm{MeV}$
- pions show indications for a moat dispersion in QCD for $\mu_B \gtrsim 450 \,\mathrm{MeV}$
 - [Fu, Pawlowski, FR, PRD 101 (2020)]
- choose wavenumber (min. of the energy) $\mathcal{O}(m_{\pi})$: $|\mathbf{P}_{\min}| = 100 \,\mathrm{MeV}$

Hypersurface: • fixed *T* hypersurfaces in high-energy HICs approx. at fixed proper time $\tau = \sqrt{X_0^2 - X_3^2}$

5

10

very successful in describing transverse momentum spectra

and the metric

$$G^{ij} = \begin{pmatrix} \tau^{-2} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & r^{-2} \end{pmatrix}$$

 $r = \sqrt{X_1^2 + X_2^2}$

THERMODYNAMIC FLUCTUATIONS

n-particle correlation: $\left\langle \prod_{i=1}^{n} n_1(\mathbf{p}_i) \right\rangle \sim \left| \prod_{i=1}^{n} \int d\Sigma_i^{\mu} \int \frac{dp_i^0}{2\pi} (p_i)_{\mu} \Theta(\breve{p}_i^0) \right| \left\langle \prod_{i=1}^{n} f(\breve{p}_i) \rho(x,\breve{p}_i) \right\rangle$ [Pisraski, FR, PRL 127 (2021)] thermodynamic average

- fluctuations, e.g., of thermodynamic quantities lead to fluctuations of F_{ϕ}
- consider small fluctuations in T, μ_B, u
- normalized two-particle correlation (without interference):

