CORRELATIONS IN A MOAT REGIME

JUSTUS-LIEBIG-

5 UNIVERSITAT GIESSEN

Fabian Rennecke

[FR, Pisarski, Rischke, arXiv:230I.II484 (2023)]

CRC-TR 211 Strong-interaction matter
under extreme conditions
HFHF

FROM FIRST-PRINCIPLES QCD TO EXPERIMENTS ECT*TRENTO - 22/05/2023

QCD PHASE DIAGRAM

in theory:

QCD PHASE DIAGRAM

in theory:

QCD PHASE DIAGRAM

in theory:

QCD PHASE DIAGRAM

in nature/experiment:

Experiments:
heavy-ion collisions

e.g. gravitational waves

MOAT REGIMES

A MOAT

[Caerlaverock Castle, Scotland (source:Wikipedia)]

A MOAT

energy dispersion of particle ϕ :

\longrightarrow particles are favored to have nonzero momentum
"gain energy by going faster"

WHAT DOES THE MOAT MEAN?

heuristic picture:

particle distribution for a deep moat:

$$
n_{B}\left(E\left(\mathbf{p}^{2}\right)\right) \sim \delta\left(p-k_{0}\right)
$$

moat energy dispersion (minimal energy at k_{0})
spatial oscillation in position space

$$
\operatorname{FT}\left[n_{B}\left(E\left(\mathbf{p}^{2}\right)\right)\right] \sim \sin \left(2 \pi k_{0} x\right)
$$

spatial modulations
(with wavenumber k_{0})

- typical for inhomogeneous/crystalline phases or a quantum pion liquid ($\mathrm{Q} \pi \mathrm{L}$)

WHERE CAN MOAT REGIMES APPEAR?

- many examples in low-energy models at large μ
- first indications also in QCD:
[Fu, Pawlowski, FR, PRD IOI (2020)]

\longrightarrow indication for extended region with $z<0$ in QCD: moat regime

IMPLICATIONS OF THE MOAT

The energy gap might close at lower T and larger μ_{B} :

$E=0$ at $\mathbf{p}^{2}>0:$

Zero energy cost to "condense" particles with nonzero momentum k_{0}

instability towards formation of an inhomogeneous condensate

- Example: Gross-Neveu Model in I+I dim. at large N_{f}

IMPLICATIONS OF THE MOAT

BUT: formation of inhomogeneous phases depends on dynamics of soft (massless) modes.
\longrightarrow fluctuation-induced instabilities of inhomogeneous phases
\longrightarrow other types of phases possible (possibly without long-range order!)

[Fukushima, Hatsuda, RPP 74 (2010)] [Buballa, Carignano, PPNP 8I (2014)]
liquid crystal
Landau-Peierls instability (Goldstones from spatial SB)

$$
\langle\phi(x) \phi(0)\rangle \sim \sin \left(k_{0} x\right) x^{-\alpha}
$$

[Landau, Lifshitz, Stat. Phys. I, §I37] [Lee et al., PRD 92 (2015)]
[Hidaka et al., PRD 92 (2015)]

quantum pion liquid

PTV instability (Goldstones from flavor SB)
$\langle\phi(x) \phi(0)\rangle \sim \sin \left(k_{0} x\right) e^{-m x}$

[Pisarski, Tsvelik,Valgushev, PRD 102 (2020)]
[Pisarski, PRD I03 (202I)]
[Schindler, Schindler, Ogilvie (202I)]
either way...

THE MOAT REGIME

These phases are expected in the "unknown" region of the phase diagram

CBM at FAIR will cover this region
\longrightarrow search for moats in heavy-ion collisions!

SIGNATURES OF MOATS IN HEAVY-ION COLLISIONS

[FR, Pisarski, Rischke, arXiv:230 I. I I 484 (2023)]

PROBING THE PHASE DIAGRAM

Vary the beam energy to study the phase diagram different densities (smaller energy \leftrightarrow lager μ)

$$
\begin{gathered}
\text { STAR@ RHIC } \\
\sqrt{s}=7.7-200 \mathrm{GeV} \\
\mu_{B} \approx 400-30 \mathrm{MeV}
\end{gathered}
$$

HADES @ GSI

$$
\begin{aligned}
\sqrt{s} & \approx 2.4 \mathrm{GeV} \\
\mu_{B} & \approx 770 \mathrm{MeV}
\end{aligned}
$$

future experiments, e.g.,
CBM @ FAIR
$\sqrt{s}=2.7-4.9 \mathrm{GeV}$

$$
\mu_{B} \approx 730-540 \mathrm{MeV}
$$

also:J-PARC, NICA, HIAF

PROBING THE PHASE DIAGRAM

Vary the beam energy to study the phase diagram different densities (smaller energy \leftrightarrow lager μ)

$$
\begin{gathered}
\text { STAR @ RHIC } \\
\sqrt{s}=7.7-200 \mathrm{GeV} \\
\mu_{B} \approx 400-30 \mathrm{MeV}
\end{gathered}
$$

HADES @ GSI

$$
\begin{aligned}
\sqrt{s} & \approx 2.4 \mathrm{GeV} \\
\mu_{B} & \approx 770 \mathrm{MeV}
\end{aligned}
$$

future experiments, e.g.,
CBM @ FAIR
$\sqrt{s}=2.7-4.9 \mathrm{GeV}$
$\mu_{B} \approx 730-540 \mathrm{MeV}$
also:J-PARC, NICA, HIAF

What are the signatures of the the moat regime in heavy-ion collisions?

SEARCH FOR MOAT REGIMES

intuitive idea:

Moats arise in regimes with spatial modulations
Characteristic feature: minimal energy at nonzero momentum
\Rightarrow enhanced particle production at nonzero momentum
\rightarrow look for signatures in the momentum dependence of particle correlations (first proposed in [Pisraski, FR, PRL I27 (202I)])

To do:

- develop new formalism to study particle correlations in moat regime
- consider two-particle correlations: interferometry

HYPERSURFACES IN HEAVY-ION COLLISIONS

$\tau=6.0 \mathrm{fm} / \mathrm{c}$, ideal

- fixed thermodynamic conditions on 3d hypersurfaces $\Sigma \neq \mathbb{R}^{3}$
- freeze-out typically on fixed T (or ϵ) hypersurface
\longrightarrow HIC: evolution of nontrivial hypersurfaces

instead of correlations on \mathbb{R}^{3}

consider appropriate foliation of spacetime

A HYPERSURFACE

- hypersurface Σ defined through parametric equations:

- define tangent and normal vectors of Σ :

$$
e_{i}^{\mu}=\frac{\partial x^{\mu}}{\partial w^{i}}, \quad \hat{v}^{\mu} \sim \bar{\epsilon}^{\mu \alpha \beta \gamma} e_{1 \alpha} e_{2 \beta} e_{3 \gamma}
$$

- decompose spacetime metric as

$$
\begin{gathered}
g^{\mu \nu}=\hat{v}^{\mu} \hat{v}^{\nu}-G^{i j} e_{i}^{\mu} e_{j}^{\nu} \\
\text { induced metric on } \Sigma: G_{i j}=-g_{\mu \nu} e_{i}^{\mu} e_{j}^{\nu}
\end{gathered}
$$

- define 'time' and 'space' : $x_{\|}=\hat{v}^{\mu} x_{\mu}$ and $\mathbf{x}_{\perp}=\mathbf{e}^{\mu} x_{\mu}$
\longrightarrow foliation of spacetime: $\left\{x_{\|}\right\} \times \Sigma$ instead of $\{t\} \times \mathbb{R}^{3}$

SPECTRA ON A HYPERSURFACE

experiments count particles \longrightarrow particle number correlations

- compute particle spectra, e.g.,

$$
\begin{aligned}
n_{1}\left(\mathbf{p}_{\perp}\right) & =\omega_{\mathbf{p}_{\perp}}\left\langle\hat{N}_{1}\right\rangle=\omega_{\mathbf{p}_{\perp}}\left\langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{p}_{\perp}}\right\rangle \\
n_{2}\left(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}\right) & =\omega_{\mathbf{p}_{\perp}} \omega_{\mathbf{q}_{\perp}}\left\langle\hat{N}_{1} \hat{N}_{2}\right\rangle=\omega_{\mathbf{p}_{\perp}} \omega_{\mathbf{q}_{\perp}}\left\langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{p}_{\perp}} a_{\mathbf{q}_{\perp}}^{\dagger} a_{\mathbf{q}_{\perp}}\right\rangle
\end{aligned}
$$

- use ladder operators in foliated spacetime (canonical quantization)

$$
\begin{gathered}
a_{\mathbf{p}_{\perp}}=i \int_{\not} d \Sigma^{\mu} e^{i \bar{p} \cdot x} \frac{1}{\sqrt{2 \omega_{\mathbf{p}_{\perp}}}}\left(\partial_{\mu}-i \bar{p}_{\mu}\right) \phi(x) \\
d \Sigma^{\mu}=\sqrt{|\operatorname{det} G|} d^{3} w \hat{v}^{\mu}
\end{gathered} \text { on-shell momentum } \bar{p}_{\|}=\omega_{\mathbf{p}_{\perp}} .
$$

- energy of an on-shell particle:

$$
\omega_{\mathbf{p}_{\perp}}=\sqrt{Z\left(\mathbf{p}_{\perp}^{2}\right) \mathbf{p}_{\perp}^{2}+m^{2}}
$$

Insert expressions for ladder operators in terms of fields:

$$
\left\langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{p}_{\perp}} a_{\mathbf{q}_{\perp}}^{\dagger} a_{\mathbf{q}_{\perp}}\right\rangle\left\langle\phi\left(x_{1}\right) \phi\left(y_{1}\right) \phi\left(x_{2}\right) \phi\left(y_{2}\right)\right\rangle
$$

\longrightarrow express n-particle spectra in terms of real-time correlations of $2 n$ fields
Similar to LSZ reduction, but on Σ at (potentially) any time $x_{\|}$and for general dispersion $\omega_{\mathbf{p}_{\perp}}$

TWO-PARTICLE SPECTRUM

- interference from two-particle scattering: need $n_{2}\left(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}\right)=\omega_{\mathbf{p}_{\perp}} \omega_{\mathbf{q}_{\perp}}\left\langle\hat{N}_{1} \hat{N}_{2}\right\rangle$
- Gaussian approximation encodes relevant effects:

$$
\begin{aligned}
& \begin{aligned}
& \begin{array}{r}
n_{2}\left(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}\right)
\end{array} \sim\left\langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{p}_{\perp}}\right\rangle\left\langle a_{\mathbf{q}_{\perp}}^{\dagger} a_{\mathbf{q}_{\perp}}\right\rangle+\left|\left\langle a_{\mathbf{p}_{\perp}}^{\dagger} a_{\mathbf{q}_{\perp}}\right\rangle\right|^{2}+\left|\left\langle a_{\mathbf{p}_{\perp}} a_{\mathbf{q}_{\perp}}\right\rangle\right|^{2} \\
&=n_{1}\left(\mathbf{p}_{\perp}\right) n_{1}\left(\mathbf{q}_{\perp}\right)+\left|n_{1}\left(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}\right)\right|^{2}+\left|\bar{n}_{1}\left(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}\right)\right|^{2}
\end{aligned} \\
& \begin{array}{c}
\text { particle-particle interference } \\
\text { (Hanbury-Brown Twiss correlation) }
\end{array} \\
& \text { particle-antiparticle interference } \\
& \text { (negligible here) }
\end{aligned}
$$

- interference in local thermal equilibrium (fluctuation-dissipation relation + sufficiently isotropic system)

- not most general expression: involves statistical function and gradients in X
- single particle spectrum for $p=q$

INTERFEROMETRY

Compute two-particle spectrum in illustrative model

- moat quasi-particle with $k_{0}=100 \mathrm{MeV}$
- hypersurface at fixed proper time

Remember: in-medium effects in P-dependence!
 normal phase: $\quad \omega_{\mathbf{P}_{\perp}}=\sqrt{\mathbf{P}^{2}+m^{2}}$

\longrightarrow correlation peaks at $|\mathbf{P}|=0$

INTERFEROMETRY

Compute two-particle spectrum in illustrative model

- moat quasi-particle with $k_{0}=100 \mathrm{MeV}$
- hypersurface at fixed proper time

Remember: in-medium effects in P-dependence!
 moat regime: $\omega_{\mathbf{P}_{\perp}} \sim \sqrt{z \mathbf{P}^{2}+w \mathbf{P}^{4}+m^{2}}, \quad z<0$

(related to the wave number of underlying spatial modulation)
signature of a moat regime

NORMALIZED TWO-PARTICLE CORRELATION

Usually measured in experiments: $\quad C(\mathbf{P}, \mathbf{\Delta} \mathbf{P})=\frac{n_{2}(\mathbf{P}, \mathbf{\Delta P})}{n_{1}\left(\mathbf{P}+\frac{1}{2} \mathbf{\Delta P}\right) n_{1}\left(\mathbf{P}-\frac{1}{2} \mathbf{\Delta P}\right)}$
We propose to look at ratios: $C_{\text {out }} / C_{\text {long }}, C_{\text {out }} / C_{\text {side }}$ and $C_{\text {side }} / C_{\text {long }}$

HANBURY-BROWN TWISS RADII

Original idea: use intensity interferometry to measure size of astronomical objects

Figure 2. Picture of the two telescopes used in the HBT experiments. The figure was extracted from Ref.[1].

- interference term (approximately) the Fourier trafo of the emission function $S\left(x, \mathbf{P}_{\perp}\right)$

$$
n_{1}(\mathbf{P}, \mathbf{\Delta} \mathbf{P}) \approx \int d^{4} x e^{-i \overline{\Delta P} \cdot x} S(x, \mathbf{P})
$$

- emission function: distribution of spacetime position x and momentum \mathbf{P}_{\perp} of particles
\longrightarrow range of correlation in $\Delta \mathbf{P}$ related to inverse size of the source

HBT RADII IN A MOAT REGIME

- define HBT radius R through range of correlation in $\mathbf{\Delta P}$

$$
R=\frac{1}{\left|\boldsymbol{\Delta} \mathbf{P}^{*}\right|}, \text { with } C\left(\mathbf{P}, \Delta \mathbf{P}^{*}\right)=\frac{1}{2} C(\mathbf{P}, \mathbf{0})
$$

- yields $R(|\mathbf{P}|)$:

$\longrightarrow \mathrm{HBT}$ radii modified in moat regime

SUMMARY

Moats arise in regimes with spatial modulations

- expected to occur at $\mu_{B} \gtrsim 400 \mathrm{MeV}$
- precursors for inhomogeneous-, liquid-crystal-like or quantum pion liquid phases

Signatures of a moat regime in particle interferometry

- developed new formalism that relates particle spectra to real-time correlation functions
- characteristic peaks at nonzero pair momentum in two-particle correlations
- also seen if thermodynamic fluctuations are taken into account [Pisraski, FR, PRL I27 (202I)]
- propose to measure ratios of normalized correlations to detect a moat regime
- in FAIR range!

Opportunity to discover novel phases with heavy-ion collisions through measurement of particle correlations

- So far: basic description of qualitative effects at intermediate stage of collision
- To do: quantitative description of moat regimes \& propagation of signal to the detector

BACKUP

INTERFERENCE IN FULL GLORY

- introduce average and relative coordinates

$$
\begin{array}{ll}
X=\frac{1}{2}(x+y), & \Delta X=x-y \\
P=\frac{1}{2}(p+q), & \Delta P=p-q
\end{array}
$$

- spectral and statistical function as Wigner transformed two-point functions

$$
\begin{aligned}
& \rho(X, P)=\int d \Delta X_{\|} \int d \Sigma_{\Delta X} e^{i P \cdot \Delta X}\left\langle\left[\phi\left(X+\frac{1}{2} \Delta X\right), \phi\left(X-\frac{1}{2} \Delta X\right)\right]\right\rangle \\
& F(X, P)=\frac{1}{2} \int d \Delta X_{\|} \int d \Sigma_{\Delta X} e^{i P \cdot \Delta X}\left\langle\left\{\phi\left(X+\frac{1}{2} \Delta X\right), \phi\left(X-\frac{1}{2} \Delta X\right)\right\}\right\rangle
\end{aligned}
$$

The particle-particle interference term then is general:
$n_{1}\left(\mathbf{p}_{\perp}, \mathbf{q}_{\perp}\right)=\frac{1}{2} \int d \Sigma_{X} e^{-i \overline{\Delta P} \cdot X} \int \frac{d P_{\|}}{2 \pi}\left[\frac{1}{4} \partial_{X_{\|}}^{2}+\frac{i}{2} \overline{\Delta P}_{\|} \partial_{X_{\|}}+\left(P_{\|}+\bar{P}_{\|}\right)^{2}-\frac{1}{4} \overline{\Delta P}_{\|}^{2}\right]\left[F(X, P)-\frac{1}{2} \rho(X, P)\right]$

AN ILLUSTRATIVE MODEL I

highlight qualitative effects

Particle in a moat regime:

- bosonic quasi-particle:

$$
\rho(P)=2 \operatorname{Im} D_{R}(P)=\frac{\pi}{\omega_{\mathbf{P}_{\perp}}}\left[\delta\left(P_{\|}-\omega_{\mathbf{P}_{\perp}}\right)-\delta\left(P_{\|}+\omega_{\mathbf{P}_{\perp}}\right)\right] \quad \text { with } \omega_{\mathbf{P}_{\perp}}=\sqrt{Z\left(\mathbf{P}_{\perp}^{2}\right) \mathbf{P}_{\perp}^{2}+m^{2}}
$$

\longrightarrow puts the average pair momentum on-shell

- single-particle distribution: $\quad f\left(X ; P_{\|}, \mathbf{P}_{\perp}\right)=n_{B}\left(P_{\|}\right)=\frac{1}{e^{P_{\|} / T}-1}$

Wave function renormalization:

- moat spectrum, but well-defined large momentum limit (free relativistic dispersion at large \mathbf{p}^{2})

$$
\begin{aligned}
Z\left(\mathbf{P}^{2}\right) & =1-\frac{\lambda^{2}}{\mathbf{P}^{2}+M^{2}} \\
& \approx 1-\frac{\lambda^{2}}{M^{2}}+\frac{\lambda^{2}}{M^{4}} \mathbf{P}^{2}+\mathcal{O}\left(\mathbf{P}^{4}\right)
\end{aligned}
$$

\mathbf{p}^{2}-coefficient z in dispersion

AN ILLUSTRATIVE MODEL 2

highlight qualitative effects

Parameters:

- interferometry measurements typically use pions: $m=m_{\pi}=140 \mathrm{MeV}$
- pions show indications for a moat dispersion in QCD for $\mu_{B} \gtrsim 450 \mathrm{MeV}$
[Fu, Pawlowski, FR, PRD IOI (2020)]
- choose wavenumber (min. of the energy) $\mathcal{O}\left(m_{\pi}\right):\left|\mathbf{P}_{\min }\right|=100 \mathrm{MeV}$

Hypersurface:

- fixed T hypersurfaces in high-energy HICs approx. at fixed proper time $\tau=\sqrt{X_{0}^{2}-X_{3}^{2}}$
\longrightarrow very successful in describing transverse momentum spectra

fixes temporal and spatial coordinates on Σ_{X}

$$
\begin{aligned}
X_{\|}= & \tau, \quad \mathbf{X}_{\perp}=\left(\begin{array}{c}
0 \\
-r \\
0
\end{array}\right) \\
& \text { and the metric } \quad r=\sqrt{X_{1}^{2}+X_{2}^{2}}
\end{aligned}
$$

$$
G^{i j}=\left(\begin{array}{ccc}
\tau^{-2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & r^{-2}
\end{array}\right)
$$

THERMODYNAMIC FLUCTUATIONS

n-particle correlation:

$$
\left\langle\prod_{i=1}^{n} n_{1}\left(\mathbf{p}_{i}\right)\right\rangle \sim\left[\prod_{i=1}^{n} \int d \Sigma_{i}^{\mu} \int \frac{d p_{i}^{0}}{2 \pi}\left(p_{i}\right)_{\mu} \Theta\left(\breve{p}_{i}^{0}\right)\right]\left\langle\prod_{i=1}^{n} f\left(\breve{p}_{i}\right) \rho\left(x, \breve{p}_{i}\right)\right\rangle
$$

- fluctuations, e.g., of thermodynamic quantities lead to fluctuations of F_{ϕ}
- consider small fluctuations in T, μ_{B}, u
- normalized two-particle correlation (without interference):
normal phase

moat regime

