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Experiments:

heavy-ion collisions

e.g. gravitational waves

early universe & LHC

RHIC

FAIR & others

neutron stars

QCD PHASE DIAGRAM
in nature/experiment:



MOAT REGIMES



A MOAT

[Caerlaverock Castle, Scotland (source: Wikipedia)]
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A MOAT
energy dispersion of particle :ϕ

E(p2) = Z(p2) p2 + m2 = z p2 + wp4 + 𝒪(p6) + m2

particles are favored to have nonzero momentum
"gain energy by going faster"

moat regime



WHAT DOES THE MOAT MEAN?

particle distribution for a deep moat:
nB(E(p2)) ∼ δ(p− k0 )

pk0

spatial oscillation in position space
FT[nB(E(p2))] ∼ sin(2π k0 x)

x
1/k0

moat energy dispersion
(minimal energy at )k0

• typical for inhomogeneous/crystalline phases or a quantum pion liquid (Q L)π

heuristic picture:

spatial modulations
(with wavenumber )k0



WHERE CAN MOAT REGIMES APPEAR?

[Fu, Pawlowski, FR, PRD 101 (2020)]

indication for extended region with  in QCD:  moat regimez < 0

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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not computed

z < 0

μB

T
≳ 4 : systematic error 

potentially large

• many examples in low-energy models at large 

• first indications also in QCD:
μ
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FIG. 9. The bosonic wave-function renormalization
Z(⌃̄(µ, T ), µ, T ) (heat map), line of vanishing wave-function
renormalization Z(⌃̄(µ, T ), µ, T ) = 0 (thick black dashed
line), and the line of vanishing bosonic two-point function
�(2)(⌃̄(µ, T ), µ, T,Q) = 0 (thick, black solid line) in the µ-
T -plane. In region marked by the diagonal hatching us-
ing thin black solid lines (bottom-right corner) we find
�(2)(⌃̄(µ, T ), µ, T,Q) < 0, i.e., the homogeneous minimum
is unstable with respect to an inhomogeneous perturbation.

In summary, an inhomogeneous field configuration
with momentum q that lowers the e↵ective action can
only be guaranteed to exist through our analysis, when
�(2)(⌃̄(µ, T ), µ, T, q) < 0 and ⌃̄(µ, T ) = 0, which corre-
sponds to the hatched region (bottom, right) in Fig. 9.

C. The wave vector of the inhomogeneous
perturbation and the wave vector of the true

inhomogeneous condensate

Even though the stability analysis is expected to work
only for very small perturbations about a vanishing ho-
mogeneous condensate, we found that it even correctly
predicts inhomogeneous condensation at points to the
right of the homogeneous first-order phase transition at
extremely small temperatures which are far away from
the second-order SP$ IP phase transition line. At these
points one still uses the appropriate expansion point
⌃̄(µ, T ) = 0, but the perturbations are no longer small
and the true condensate has a spectrum of wave vectors
instead of a single frequency/wave vector, cf. Fig. 2.

One might thus wonder, if the single wave vector Q
at the phase transition line actually matches the wave-
vector of the true solution, i.e., the dominating wave vec-
tor of the Jacobi elliptic functions.

Therefore, this section is used to compare the dominat-
ing wave vector of the correct inhomogeneous condensate
minimizing the e↵ective action

q⌃ ⌘ argmaxq ⌃̃(µ, T, q) (44)

FIG. 10. The minimum of the bosonic two-point func-
tion Q(µ) and the dominating wave vector of the true in-
homogeneous condensate q⌃(µ) as a function of the chemi-
cal potential at constant temperatures T/⌃̄0 2 {0.0, 0.15}.
The colored regions mark the range of momenta q, where
�(2)(⌃̄(µ, T ), µ, T, q) < 0.

with the wave vector that minimizes the two-point func-
tion Q as defined in Eq. (43). While Q is the direction
of the largest curvature of the action at the saddle point,
it does not necessarily coincide with q⌃.

In Fig. 10 these two quantities are plotted for two
di↵erent temperatures. At T = 0, Q approaches q⌃ for
increasing chemical potential22 and at T/⌃̄0 = 0.15 the
two momenta match at the phase boundary. This is ex-
pected as the amplitude of the inhomogeneous conden-
sate ⌃(µ, T, x) at this point is infinitesimal and therefore
the stability analysis becomes exact. At small chemi-
cal potential – as already discussed before – the stability
analysis does not detect an inhomogeneous phase unless
⌃̄(µ, T ) = 0, right of the homogeneous first-order phase
transition. At intermediate chemical potential, Q and q⌃
do not agree. However, q⌃ is within the interval where
�(2) < 0 is predicted by the stability analysis, which
means that the latter at least captures the dominating
wave vectors.

In Fig. 11 we again compare Q and q⌃. This time we
plot Q, Q � q⌃, and q⌃ in the µ-T -plane in using di↵er-
ent color maps. The previously discussed trend extends
to the whole temperature range. The di↵erence Q � q⌃
approaches zero close to the IP$ SP boundary and its
magnitude is the largest close to the HBP$ IP bound-
ary, where Q is zero (because the stability analysis is
ill-conditioned) and q⌃ is maximal. On the other hand,
Q is also non-zero in the region of Z < 0 above the phase
transition line, but does not correspond to an inhomo-

22 Plots similar to Fig. 10 of the wave vector of some inhomogeneous
condensate plotted over baryon density (chemical potential), can
be found in, e.g., Fig. 2 of Ref. [30], Fig. 2 of Ref. [31], Figs. 6 &
7 of Ref. [33].

z

IMPLICATIONS OF THE MOAT
The energy gap might close at lower T and larger  :μB

instability towards formation of an 
inhomogeneous condensate

Zero energy cost to "condense" particles with 
nonzero momentum k0

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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 for all E > 0 p2

 at :E = 0 p2 > 0

E

p20
k2

0

• Example: Gross-Neveu Model 
in 1+1 dim. at large Nf

moat regime

[Koenigstein et al. (2021)]



IMPLICATIONS OF THE MOAT
BUT: formation of inhomogeneous phases depends on dynamics of soft (massless) modes.

other types of phases possible (possibly without long-range order!)

either way...
the moat is a common feature of regimes with spatial modulations

fluctuation-induced instabilities of inhomogeneous phases

inhom. phase
no instability

(typical in mean-field)

⟨ϕ(x)ϕ(0)⟩ ∼ sin(k0 x)

liquid crystal
Landau-Peierls instability

(Goldstones from spatial SB) 

⟨ϕ(x)ϕ(0)⟩ ∼ sin(k0x) x−α

quantum pion liquid
PTV instability

(Goldstones from flavor SB) 

⟨ϕ(x)ϕ(0)⟩ ∼ sin(k0x) e−mx

[Pisarski, Tsvelik, Valgushev, PRD 102 (2020)]
[Pisarski, PRD 103 (2021)]
[Schindler, Schindler, Ogilvie (2021)]

[Landau, Lifshitz, Stat. Phys. I, §137]
[Lee et al., PRD 92 (2015)]
[Hidaka et al., PRD 92 (2015)]

[Fukushima, Hatsuda, RPP 74 (2010)]
[Buballa, Carignano, PPNP 81 (2014)]
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THE MOAT REGIME

These phases are expected in the "unknown" region of the phase diagram

search for moats in heavy-ion collisions!

CBM at FAIR will cover this region

neutron stars



SIGNATURES OF MOATS
IN HEAVY-ION COLLISIONS

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]



PROBING THE PHASE DIAGRAM
Vary the beam energy to study the phase diagram different densities (smaller energy  lager )↔ μ

not computed

moat regime

FRG: crossover
STAR: freeze-out
SPS & AGS: freeze-out
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STAR @ RHIC

s = 7.7 − 200 GeV
μB ≈ 400 − 30 MeV

CBM @ FAIR

s = 2.7 − 4.9 GeV
μB ≈ 730 − 540 MeV

[Fu, Pawlowski, FR, PRD 101 (2020)]
[STAR '17, Andronic et al. '18]

future experiments, e.g.,

also: J-PARC, NICA, HIAF

HADES @ GSI

s ≈ 2.4 GeV
μB ≈ 770 MeV
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STAR @ RHIC

s = 7.7 − 200 GeV
μB ≈ 400 − 30 MeV

CBM @ FAIR

s = 2.7 − 4.9 GeV
μB ≈ 730 − 540 MeV

[Fu, Pawlowski, FR, PRD 101 (2020)]
[STAR '17, Andronic et al. '18]

future experiments, e.g.,

also: J-PARC, NICA, HIAF

HADES @ GSI

s ≈ 2.4 GeV
μB ≈ 770 MeV

What are the signatures of the the moat regime in heavy-ion collisions?



SEARCH FOR MOAT REGIMES

Moats arise in regimes with spatial modulations

Characteristic feature: minimal energy at nonzero momentum 

 enhanced particle production at nonzero momentum⇒

look for signatures in the momentum dependence of particle correlations 

intuitive idea:

• develop new formalism to study particle correlations in moat regime

• consider two-particle correlations: interferometry
To do:

(first proposed in [Pisraski, FR, PRL 127 (2021)])



HYPERSURFACES IN HEAVY-ION COLLISIONS

• fixed thermodynamic conditions on 
3d hypersurfaces Σ ≠ ℝ3

instead of correlations on ℝ3 consider appropriate foliation of spacetime

t t

[Schenke, Jeon, Gale, PRL 106 (2010)] 

• freeze-out typically on fixed  (or ) 
hypersurface

T ϵ

HIC: evolution of nontrivial hypersurfaces



A HYPERSURFACE
• hypersurface  defined through parametric equations:Σ

xμ = xμ(wi)

coordinates of ambient spacetime intrinsic coordinates of  ( )
e.g., angles  on a 3-sphere

Σ i = 1, 2, 3
φ, ϑ

• define tangent and normal vectors of :Σ

 ,     eμ
i =

∂xμ

∂wi
̂vμ ∼ ϵ̄μαβγ e1αe2βe3γ

induced metric on :  Σ Gij = − gμν eμ
i eν

j

foliation of spacetime:  instead of {x∥} × Σ {t} × ℝ3

• decompose spacetime metric as 

• define 'time' and 'space' :    and  x∥ = ̂vμxμ x⊥ = eμxμ

gμν = ̂vμ ̂vν − Gijeμ
i eν

j

t

x

x⊥
x∥



SPECTRA ON A HYPERSURFACE

experiments count particles particle number correlations

n1(p⊥) = ωp⊥⟨N̂1⟩ = ωp⊥⟨a†
p⊥

ap⊥⟩
n2(p⊥, q⊥) = ωp⊥

ωq⊥⟨N̂1 N̂2⟩ = ωp⊥
ωq⊥⟨a†

p⊥
ap⊥

a†
q⊥

aq⊥⟩• compute particle spectra, e.g.,

• use ladder operators in foliated 
spacetime (canonical quantization)

ap⊥
= i∫dΣμ eip̄⋅x 1

2ωp⊥

(∂μ − ip̄μ)ϕ(x)

on-shell momentum p̄∥ = ωp⊥
dΣμ = | det G | d3w ̂vμ

• energy of an on-shell particle: ωp⊥
= Z(p2

⊥) p2
⊥ + m2

Insert expressions for ladder operators in terms of fields:

⟨a†
p⊥

ap⊥
a†

q⊥
aq⊥⟩ ⟶ ⟨ϕ(x1)ϕ(y1)ϕ(x2)ϕ(y2)⟩

express -particle spectra in terms of real-time correlations of  fieldsn 2n

Similar to LSZ reduction, but on  at (potentially) any time  and for general dispersion Σ x∥ ωp⊥

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]



TWO-PARTICLE SPECTRUM

• Gaussian approximation encodes relevant effects:

n2(p⊥, q⊥) ∼ ⟨a†
p⊥

ap⊥
⟩⟨a†

q⊥
aq⊥

⟩ + ⟨a†
p⊥

aq⊥
⟩

2
+ ⟨ap⊥

aq⊥
⟩

2

= n1(p⊥) n1(q⊥) + n1(p⊥, q⊥)
2

+ n̄1(p⊥, q⊥)
2

particle-particle interference

(Hanbury-Brown Twiss correlation)

particle-antiparticle interference
(negligible here)

• interference from two-particle scattering:  need  n2(p⊥, q⊥) = ωp⊥
ωq⊥⟨N̂1 N̂2⟩

• interference in local thermal equilibrium (fluctuation-dissipation relation + sufficiently isotropic system)

in-medium effects enter through -dependence 
of the spectral function 

P
ρ(x, y) = ⟨[ϕ(x), ϕ(y)]⟩

n1(P, ΔP) =
1
2 ∫dΣX e−iΔP⋅X ∫

dP∥

2π [(P∥ + P∥)2 −
1
4

ΔP2
∥] f(X; P∥, P⊥) ρ(X; P∥, P⊥)

[FR, Pisarski, Rischke, arXiv:2301.11484 (2023)]

single-particle distribution,
e.g., Bose-Einsteinaverage and relative pair momentum

• not most general expression: involves statistical function and gradients in X

• single particle spectrum for p = q

average position
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beam direction

fixed  directionP

ΔPout

ΔPside

ΔPlong

normal phase:  ωP⊥
= P2 + m2

(side- and long-correlations qualitatively the same)

[Pratt, PRL 53 (1984), PRD 33 (1986)]

INTERFEROMETRY
Compute two-particle spectrum in illustrative model  

• moat quasi-particle with 

• hypersurface at fixed proper time

k0 = 100 MeV

correlation peaks at |P | = 0

Remember: in-medium effects in -dependence!P
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INTERFEROMETRY

beam direction

fixed  directionP

ΔPout

ΔPside

ΔPlong

[Pratt, PRL 53 (1984), PRD 33 (1986)]

moat regime:  

(side- and long-correlations qualitatively the same)

ωP⊥
∼ z P2 + w P4 + m2 , z < 0

correlation peaks at 
|P | = k0 > 0

signature of a 
moat regime

(related to the wave number of 
underlying spatial modulation)

Compute two-particle spectrum in illustrative model  

Remember: in-medium effects in -dependence!P

• moat quasi-particle with 

• hypersurface at fixed proper time

k0 = 100 MeV



NORMALIZED TWO-PARTICLE CORRELATION
Usually measured in experiments: C(P, ΔP) =

n2(P, ΔP)

n1(P + 1
2 ΔP) n1(P − 1

2 ΔP)
We propose to look at ratios:  ,   and Cout /Clong Cout /Cside Cside /Clong
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• normal phase:

• moat regime:

P
ΔP



HANBURY-BROWN TWISS RADII
Original idea: use intensity interferometry to measure size of astronomical objects

original experiment in Narrabri, Australia

[Goldhaber (1991)]

A

B

1
2

• interference term (approximately) the Fourier trafo of the emission function S(x, P⊥)

n1(P, ΔP) ≈ ∫ d4x e−iΔP⋅x S(x, P)

• emission function: distribution of spacetime position  and momentum  of particlesx P⊥

range of correlation in  related to inverse size of the sourceΔP
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HBT RADII IN A MOAT REGIME

• define HBT radius  through range of correlation in R ΔP

 ,  with   R =
1

|ΔP* |
C(P, ΔP*) =

1
2

C(P, 0)

correlation is max. at ΔP = 0

out side long

moat

normal

HBT radii modified in moat regime

• yields :R( |P | )



SUMMARY

• developed new formalism that relates particle spectra to real-time correlation functions

Signatures of a moat regime in particle interferometry

Opportunity to discover novel phases with heavy-ion collisions 
through measurement of particle correlations

• So far: basic description of qualitative effects at intermediate stage of collision

• To do: quantitative description of moat regimes & propagation of signal to the detector

• propose to measure ratios of normalized correlations to detect a moat regime

• characteristic peaks at nonzero pair momentum in two-particle correlations

• also seen if thermodynamic fluctuations are taken into account           [Pisraski, FR, PRL 127 (2021)]

Moats arise in regimes with spatial modulations

• expected to occur at  MeV

• precursors for inhomogeneous-, liquid-crystal-like 
or quantum pion liquid phases

μB ≳ 400

• in FAIR range!



BACKUP



INTERFERENCE IN FULL GLORY

• introduce average and relative coordinates
X =

1
2

(x + y) , ΔX = x − y

P =
1
2

(p + q) , ΔP = p − q

• spectral and statistical function as Wigner transformed two-point functions

ρ(X, P) = ∫ dΔX∥ ∫dΣΔX eiP⋅ΔX ⟨[ϕ(X +
1
2

ΔX), ϕ(X −
1
2

ΔX)]⟩
F(X, P) =

1
2 ∫dΔX∥ ∫ dΣΔX eiP⋅ΔX ⟨{ϕ(X +

1
2

ΔX), ϕ(X −
1
2

ΔX)}⟩

The particle-particle interference term then is general:

n1(p⊥, q⊥) =
1
2 ∫dΣX e−iΔP⋅X ∫

dP∥

2π [ 1
4

∂2
X∥

+
i
2

ΔP∥∂X∥
+ (P∥ + P∥)2 −

1
4

ΔP2
∥] [F(X, P) −

1
2

ρ(X, P)]



AN ILLUSTRATIVE MODEL 1

• bosonic quasi-particle:

highlight qualitative effects

• moat spectrum, but well-defined large 
momentum limit (free relativistic dispersion at large )p2

Particle in a moat regime:

Wave function renormalization:

ρ(P) = 2 ImDR(P) =
π

ωP⊥

[δ(P∥ − ωP⊥
) − δ(P∥ + ωP⊥

)] with  ωP⊥
= Z(P2

⊥) P2
⊥ + m2

puts the average pair momentum on-shell

Z(P2) = 1 −
λ2

P2 + M2

≈ 1 −
λ2

M2
+

λ2

M4
P2 + 𝒪(P4)

z = 1
z = 0.5
z = -0.6
z = -2.1
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⏟-coefficient  in dispersionp2 z

• single-particle distribution: f(X; P∥, P⊥) = nB(P∥) =
1

eP∥/T − 1



AN ILLUSTRATIVE MODEL 2
highlight qualitative effects

Parameters:

• interferometry measurements typically use pions:  m = mπ = 140 MeV

• pions show indications for a moat dispersion in QCD for μB ≳ 450 MeV
[Fu, Pawlowski, FR, PRD 101 (2020)] 

• choose wavenumber (min. of the energy) :  𝒪(mπ) |Pmin | = 100 MeV

Hypersurface:

• fixed  hypersurfaces in high-energy HICs approx. at fixed proper timeT τ = X2
0 − X2

3

3
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FIG. 2: (Color online) Freeze-out surfaces for two different
events (red and yellow) compared to that for the averaged
initial condition (gray).
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FIG. 3: (Color online) Charged hadron v2 for different cen-
tralities as a function of transverse momentum for averaged
initial conditions (avg) and event-by-event simulations (e-b-e)
using different viscosity to entropy density ratios compared to
STAR [33] and PHENIX [34] data.

v2(pT ) at midrapidity is almost unaffected by the reso-
nances while v3(pT ) is reduced by approximately 20-30%.
Fig. 3 shows the elliptic flow v2 for charged hadrons as a

function of transverse momentum obtained from an aver-
aged initial condition in the ideal case and for an average
over 100 individual events for η/s ∈ {0, 0.08, 0.16}. We
compare to data from STAR [33] and PHENIX [34]. The
used minimal, maximal, and average impact parameter
for each centrality class are given in Table I . While in
the most central collisions fluctuations increase v2 com-

centrality [%] bmin [fm] bmax [fm] 〈b〉 [fm]

0-5 0 3.37 2.24

10-20 4.75 6.73 5.78

15-25 5.83 7.53 6.7

30-40 8.23 9.5 8.87

TABLE I: Used impact parameters.

pared to the case with averaged initial conditions, for 10-
20% central collisions the difference is negligible and for
30-40% central collisions fluctuations reduce the elliptic
flow. The increase for central collisions is easy to un-
derstand since we are now determining v2 in every event.
Single events have a larger anisotropy with respect to the
event-plane than the average with respect to the reaction
plane, hence increasing the obtained v2. This effect de-
creases with increasing centrality eventually making the
event-by-event v2 smaller compared to the averaged ini-
tial condition case. This can be understood by the fact
that for more peripheral collisions, lumps in the initial
condition tend not to align perfectly with the statisti-
cally determined event plane.
Viscosity reduces the elliptic flow for all centralities as

also found in (2+1)-dimensional simulations [35–38].
Triangular flow v3 as a function of transverse momen-

tum is shown in Fig. 4. v3 depends less strongly on
the centrality than v2 since it is completely fluctuation
driven. It is largest for an ideal fluid and reduces simi-
larly to v2 with increasing viscosity of the medium.
The upper panel of Fig. 5 shows the pseudo-rapidity de-

pendence of v2 for 15-25% central collisions compared to
PHOBOS data [39]. A reduction of elliptic flow with in-
creasing viscosity is visible, particularly for large pseudo-
rapidities |ηp|, which has been anticipated [16, 40]. In the
lower panel of Fig. 5 we present the ηp-dependence of v3.
Again, the decrease of v3 with increasing viscosity is vis-
ible, being strongest for large |ηp|.
We presented the elliptic and triangular flow coef-

ficients obtained with an event-by-event analysis us-
ing (3+1)-dimensional relativistic viscous hydrodynam-
ics. Charged hadron elliptic flow around midrapidity is
well described for a wide range of centralities when using
η/s = 0.08, the conjectured lower bound from AdS/CFT
[41]. A similarly small value was found in a parton cas-
cade model based on perturbative QCD [42]. Larger vis-
cosities underestimate elliptic flow. Shear viscosity re-
duces v2 especially for larger pseudo-rapidities, however,
the data is still overestimated away from midrapidity.
Triangular flow has a weaker dependence on centrality.
We determined its transverse momentum and pseudo-
rapidity dependence, as well as its dependence on η/s.
When triangular flow data becomes available, combined
analyses of both v2 and v3 can make an accurate deter-
mination of the shear-viscosity possible.
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ΣX

very successful in describing transverse momentum spectra

fixes temporal and spatial coordinates on ΣX

X∥ = τ , X⊥ = (
0

−r
0 )

and the metric

Gij =
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0 1 0
0 0 r−2

r = X2
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beam direction



THERMODYNAMIC FLUCTUATIONS

⟨
n

∏
i=1

n1(pi)⟩ ∼ [
n

∏
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∫ dΣμ
i ∫

dp0
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(pi)μ Θ( p̆0
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∏
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f( p̆i) ρ(x, p̆i)⟩

• fluctuations, e.g., of thermodynamic quantities lead to fluctuations of 

• consider small fluctuations in , ,  

• normalized two-particle correlation (without interference):

Fϕ

T μB u

thermodynamic average

-particle 
correlation:
n

moat regimenormal phase
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