Challenges in QCD matter physics

The scientific programme of the Compressed Baryonic Matter experiments at FAIR

Claudia Höhne, University Giessen & GSI HADES & CBM collaboration

JUSTUS-LIEBIG-

VFRSITÄT

Bundesministerium für Bildung und Forschung

Introduction & Outline

Open QCD questions

.... See e.g. workshop program, white paper(s),

- Phase structure of QCD at finite density
 - EOS at high densities
 - Connection to neutron stars
- Formation of hadrons, hadron spectra
 - Chiral symmetry
 - Hadron masses in vacuum/ dense matter
 - Confinement
- Formation of nuclei
 - Light nuclei in HIC
 - Hypernuclei

QCD phase diagram

High T, low μ_B

- Crossover
- → Consistent in theory & Experiment!

Lower T, high μ_B

- CEP?
- 1st order phase transition?
- EOS?
- Properties of hadrons/ limits of existence?

Borsanyi *et al.* [Wuppertal-Budapest Collab.], JHEP 1009 (2010) 073 Isserstedt, Buballa, Fischer, Gunkel, PRD 100 (2019) 074011 Gao, Pawlowski, PLB 820 (2021) 136584 Cuteri, Philipsen, Sciarra, JHEP 11 (2021) 141

QCD phase diagram

C.B.M. = HADES & CBM

 Experimental investigation of region with 500 MeV < μ_B < 850 MeV

Observables?

- Fluctuations
- Dileptons
- Strangeness
- Hypernuclei
-?

	$\sqrt{s_{NN}}$ [GeV]	μ _B [MeV]
SIS 18	2 – 2.5	830 - 760
SIS 100	2.3 – 5.3	785 – 520
STAR Collider	7.7 – 200	400 – 22
STAR FXT	3 – 13.7	700 – 265

 $\mu_B(\sqrt{s_{NN}})$ from A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, no. 7723, 321 (2018)

Borsanyi *et al.* [Wuppertal-Budapest Collab.], JHEP 1009 (2010) 073 Isserstedt, Buballa, Fischer, Gunkel, PRD 100 (2019) 074011 Gao, Pawlowski, PLB 820 (2021) 136584 Cuteri, Philipsen, Sciarra, JHEP 11 (2021) 141

Beethoven, 5. Sinfonie

Neutron stars/ Neutron star mergers

With (not any more so new ;-)) observation of neutron star mergers revival of combined analysis and cross-disciplinary discussions

Neutron stars/ Neutron star mergers

With (not any more so new ;-)) observation of neutron star mergers revival of combined analysis and cross-disciplinary discussions

T < 70 MeV, ρ ≈3 ρ_0 in both cases

Central Au+Au collisions,

 $\sqrt{S_{NN}} = 2.4 \; GeV$

Neutron Star Merger

M. Hanauske, J.Phys.: Conf. Series878 012031 (2017) L. Rezzolla et. al. PRL 122, n0.6, 061101 (2019)h ⁻¹⁰ Au+Au simulation UrQMD: S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998). -20 Fig. credit T. Galatyuk & Florian Seck

Neutron stars/ Neutron star mergers

Example:

Inclusion of HIC shifts NS radii to larger values, consistent with recent results from NICER

Constraining Neutron-Star Matter with Microscopic and Macroscopic collisions S. Huth, P.T.H. Pang et al., Nature 606 (2022) 276-280

Observables

What to measure?

Challenges/ difficulties/ opportunities for high- μ_B facilities?

→ Program needs ever more precise data (statistics!) and sensitivity for rarest signals

Critical phenomena 1st oder PT, CEP

EOS

Flow, bulk phenomena

Emissivity

Em probes

Characterization of matter

Hadrons, strangeness, Hypernuclei, light nuclei Correlations, vorticity,

Observables

What to measure?

Challenges/ difficulties/ opportunities for high- μ_B facilities?

→ Program needs ever more precise data (statistics!) and sensitivity for rarest signals

HADES

well established exp. Recent upgrades

STAR

Energy scans completed Lots of data to come

CBM

Dedicated setup to come

HADES & CBM

HADES

- 18°-85° polar angle coverage, symmetric in azimuth
- Electron detection in front of magnetic field and most of the material

CBM

- 2.5° 25° polar angle coverage, azimuthal symmetry broken by dipole
- Electron detection behind STS and magnetic field

Fluctuations

When crossing a 1st order phase transition: jump in density

- → Measure derivatives!
- \rightarrow Cumulants of baryon number measure derivatives of μ_B

Net-proton distributions

Measure event-by-event net-proton number (protons – antiprotons) \rightarrow Distribution \rightarrow calculate the moments \rightarrow higher moments probe the tails!

Challenges:

- Large acceptance in proper (y-pt) bin
- Experimental effects from

 e-b-e changes of efficiency
 Baryon contributions in n,d,...
 Volume fluctuations
 Conservation laws...
- Higher moments are in the tails!
 → statistics hungry!

$$K_2 = \langle N - \langle N \rangle \rangle^2$$
 etc.

Possible solution to settle volume fluctuations: A. Rustamov et al., nucl-th 2211.14849

CBM simulations Au + Au, $E_{lab} = 10 \text{ AGeV}$ ☆ (0-5) % 10⁶ UrQMD + CBM GEANT3 o (5-10) % × (10-20) % $0.2 < p_{-} < 2.0 (GeV/c)$ 10⁵ (20-30) % 1.08 < y < 2.08(30-40) % 10^{4} (40-50) % 🗐 (50-60) % 10^{3} (60-70) % (70-80) % 10^{2} 10

30

20

10

50

60

70

ΔΝ(Ν

40

80

90

Net-proton distributions

- CBM: Proton acceptance for low p_t and midrapidity for wide range of energies
- Crucial: independent centrality determination with separated detector (PSD → FWD)

Critical fluctuations

HADES 🗸

... understand volume fluctuations/ acceptance effects of different experiments!

CBM after 3 years – (improve STAR stat. errors by factor of 10):

- measure excitation function (p) for $k\sigma^2 = \frac{\kappa_4}{\kappa_2}$
- First results on $\kappa_6(p)$
- Extension to strangeness?

We hope to see:

Discontinuity?!

... that extends to even higher moments?

Understand influence of baryon number conservation at high μ_{B}

C. Höhne, ECT* Trento, From first-princi,

What about further conserved number fluctuations?

Challenge:

CBM acceptance increasingly more forward for lighter particles

CBM simulations

Em probes are sensitive to the full duration/evolution of the collision

- Emission of virtual photons from all stages
- Unique probe of temperature, duration, density, ... of the fireball
- Baryon effects are crucial
 - → dedicated program in HADES!

[J. Otto for the HADES collaboration, EPJ Web Conf. 274 (2022), 05002]

Two key measurements to be made (\rightarrow first year of CBM*, HADES \checkmark

- Excess yield in LMR → fireball lifetime: extra radiation due to latent heat aroung PT (& CEP?)?
- Invariant mass slope (LMR & IMR) → flattening of caloric curve due to PT ?

* one year 5 days beam on target, 6 energies Au+Au, 2·10¹⁰ ev. each, 100kHz

Tripolt *et al.*, NPA 982 (2019) 775 Li and Ko, PRC 95 (2017) no.5, 055203 Seck *et al.*, PRC (2022), arXiv:2010.04614 [nucl-th]

HADES

- New data from Ag+Ag collisions at slightly higher $\sqrt{s_{NN}} \rightarrow$ slightly higher T
- p_t dependence accessible with high statistics
 - \rightarrow change in ω/ρ contributions!
- Au+Au energy scan towards lower $\sqrt{s_{NN}}$ to come!

Challenge ?

• Background!!!

HADES

Low conversion probability Conversion rejection \rightarrow S/B ~ 1

HADES & CBM

Study dileptons in one common system:

e.g. Ag+Ag collisions at 4.5 GeV beam energy (midrapidity 1.1)

- reconstruction efficiency of ω -meson HADES vs CBM (60% field)
- \rightarrow Compare spectra in same phase space region!

CBM

Expected **CBM** dielectron performance (first year, 5 days/ energy, 2x10¹⁰ events each)

- LMR (M_{\parallel} < 1 GeV/c²) well measured, need to determine background with 0.1% precision for 10% signal precision: excess ratio, T_{LMR}
- IMR ($M_{\parallel} > 1 \text{ GeV/c}^2$) acessible, needs dedicated high statistics runs, measure $\mu^+\mu^-$ channel in addition \rightarrow year "2"

CBM

Expected **CBM** dielectron performance (first year, 5 days/ energy, 2x10¹⁰ events each)

- LMR (M_{\parallel} < 1 GeV/c²) well measured, need to determine background with 0.1% precision for 10% signal precision: excess ratio, T_{LMR}
- IMR (M_{II} > 1 GeV/c²) acessible, needs dedicated high statistics runs, measure µ⁺µ⁻ channel in addition → year "2"

FAIR Review, June 2022, T. Galatyuk for CBM

C. Höhne, ECT* Trento, From first-principles

.... more than excess yield and T if you cope with the challenge:

Prediction:

see sign of chiral symmetry restoration in dilepton spectra M > 1 GeV/c² \rightarrow Mixing of ρ and a_1 due to restoration of chiral symmetry

Freeze-out conditions

Dileptons offer access to fireball contributions before freeze-out

Conditions at freeze-out? Pressure during evolution?

Measure yields and phase space distributions of "all" particles \rightarrow Extract T, μ_B with thermal model \rightarrow System in equilibrium? \rightarrow including multi-s?

Measure correlations
→ size at freeze out!
→ Signs of longer lifetime due to PT?

Measure flow \rightarrow EOS

Weak decays in CBM

event wise reconstruction by KFParticle package

Thermal model – low µ_B

 $\pi^+\pi$

Data, ALICE

Statistical Hadronization

"Any" model at "any" low μ_B collision system results in very good description of particle yields in a thermal model

rield dN/dy

10³

 10^{2}

10

10⁻¹

10⁻²

10⁻³

 10^{-4}

 10^{-5}

10⁻⁶

1.5

0.5

Lower energies/ high μ_B : production cross-sections for strangeness decrease rapidly (below unity)

Implement strangeness conservation! Strong effect on multi-s hadrons!

"Equilibrium"?

26

Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV, 0-10% centrality

Ω

Thermal model

- **HADES**, Au+Au collisions @ $\sqrt{s_{NN}}$ =2.4 GeV
- Tensions in description of all hadron yields with thermal model
- All strangeness production below free NN production threshold!

Σ⁰ measurement

HADES

- Measurement of Σ⁰ → Λγ decay in Ag+Ag collisionen at √s_{NN} = 2.55 GeV (corresponds to Λ threshold)
- Result of analysis: $(\Lambda + \Sigma^0) / \Sigma^0 = 4.2 \pm 0.9$
- In agreement with expectation from isospin considerations (4)
- No influence of NN threshold

Σ prospects with CBM

• Identification of Σ^+ and Σ^- via their decay topology

$\Sigma^+ \rightarrow p \pi^0$	$\overline{\Sigma}^+ \longrightarrow \overline{p} \pi^0$	BR = 51.6%
$\Sigma^+ \rightarrow n\pi^+$	$\overline{\Sigma}^+ \longrightarrow \overline{n} \pi^-$	BR = 48.3%
$\Sigma^{-} \rightarrow n\pi^{-}$	$\overline{\Sigma} \rightarrow \overline{n}\pi$	BR = 99.8%

• Method:

- Find all primary and secondary tracks, use TOF PID for sec. track
- Search whether two would fit together with a kink
- From momentum conservation get momentum of neutral particle
- Assume e.g. Σ^- decay, calculate (missing) mass of neutral particle
- Select neutron candidates, recalculate Σ mass

Reconstruct a neutral daughter from the mother and the charged daughter

Reconstruct Σ mass spectrum from the charged and obtained neutral daughters

Σ prospects with CBM

- Simulations: UrQMD, 5M central collisions Au+Au, 10 AGeV beam energy
- \rightarrow (p/n) like ratios! \rightarrow access to isospin dependence?
- → Σ^{-}/Σ^{+} ratio is expected to carry $E_{sym}(\rho)$ information (stiff/soft)

Hypernuclei

- Hypernuclei interesting/ important objects for neutron star descriptions
- Formation? YN and YY interactions? Influence on EOS for high densities?
- CBM energies optimum for production
- Reconstruction routines tested with STAR FXT data

Hypernuclei

- Hypernuclei interesting/ important objects for neutron star descriptions
- Formation? YN and YY interactions? Influence on EOS for high densities?
- CBM energies optimum for production
- Reconstruction routines tested with STAR FXT data

HADES

HADES prepared a list of proposals for FAIR phase-0

- Proposed program will take at least until 2026 (one 4-weeks run per year), but likely longer
- Transferring HADES to the new cave is expected to take two years

Status of FAIR & CBM

FAIR (still) under construction CBM (still) plans for first beams in 2028/2029

After 3 years of running:

 (First) energy scan completed, improved statistical errors of factor 10 with respect to STAR

Status of FAIR & CBM

- FAIR construction progressing
 - ✓ SIS 100 tunnel ready
 - ✓ CBM cave ready
 - ✓ In CBM cave first user installations of FAIR ongoing (upstream platform

Status of FAIR & CBM

CBM cave

Start of installation of upstream platform!

. .

3 :

mCBM @ SIS18 (FAIR phase 0)

One of the CBM challenges are the high rates:

• Free streaming readout

C. Höhne, ECT

• Online reconstruction & trigger

Important milestone: mCBM @ SIS 18!

- Full system test, verification of triggerless-free-streaming readout, data transport to CBM, online reconstruction
- High rate detector tests up to 10 MHz collision rates

mCBM @ SIS18 (FAIR phase 0)

Benchmark run: Ni+Ni collisions at 1.93 AGeV

Summary & Outlook

Future is bright!

- Lots of interesting results from HADES more to come
- Work for timely construction of CBM
- \rightarrow Experimental data to contribute to open QCD questions:
- Phase structure of QCD at finite density
- Formation of hadrons, hadron spectra
- Formation of nuclei

HADES; Nature Physics 15 (2019) 10, 1040-1045

That's us

