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Quantum Chromo-Dynamics

QCD Lagrangian depends on a few parameters: one coupling, αs , and quark masses (mu, md ,
ms , mc , mb and mt).

LQCD = −1

4
Fµνa F a

µν +
∑

f =u,··· ,t

ψ̄f

(
i /D −mf

)
ψf

αs acquires a renormalization scheme dependent
running with the momentum.

The running of αs(µ2) = g2(µ2)
4π is controlled by its

RGE, dαs

d lnµ2 = β(αs) QCD αs(Mz) = 0.1181 ± 0.0011
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QCD Lagrangian depends on a few parameters: one coupling, αs , and quark masses (mu, md ,
ms , mc , mb and mt).

LQCD = −1

4
Fµνa F a

µν +
∑

f =u,··· ,t

ψ̄f

(
i /D −mf

)
ψf

Emergent phenomena:

Confinement (Hadron
masses).

Dynamically generated
gluon-mass.

Spontaneous chiral
symmetry breaking.

NP approaches:

Lattice-QCD.

FUNctional methods.

QCD vacuum, sum
rules,. . .
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Gluon self-coupling

LYM = −1

4
Fµνa F a

µν ; F a
µν = ∂µA

a
ν − ∂νAa

µ − g f abcAb
µA

c
ν

Three-gluon coupling responsible for the main differences between
gluon and photon dynamics.

It is itself a non-perturbative object which can be computed from the
lattice or SDE.

Key ingredient for sensible truncations in SDE of quark-gluon or
ghost-gluon vertices, for example.
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Lattice formulation

Path integral in imaginary time:

〈O〉 =
1

Z

∫
[dUdψdψ̄]O(U, ψ, ψ̄)e−S(U,ψ,ψ̄) → 1

N

N∑
i=1

Oi

dimensionless; lattice spacing a fixed a posteriori.

Pros

Just QCD.

Regularized per se (Λ ∼ a−1).

Cons

Finite volume and discretization errors.

Broken rotational symmetry!

Expensive chiral fermions.
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Quenched approximation

The role of fermion loops in the path
integral appears as the determinant of
Dirac operator D:

〈O〉 =
1

Z

∫
[dU]O(U, ψ, ψ̄)e−S(U)det(D)

Yang-Mills theory already has a rich IR
phenomenology!
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Lattice setups

Exploited quenched gauge field configurations with:

β L4/a4 a (fm) confs
5.6 324 0.236 2000

484 0.236 2000
5.7 324 0.182 2000
5.8 324 0.144 2000

484 0.144 500
6.0 324 0.096 2000
6.2 324 0.070 2000
6.4 324 0.054 2000

Absolute calibration for β = 5.8 taken
from [S. Necco and R. Sommer, Nucl. Phys.

B622, 328 (2002)].

Relative calibrations based in gluon
propagator scaling [Phys. Rev. D 98,

114515 (2018)]
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Computing three-gluon vertex in Landau gauge

Landau gauge

Landau gauge ∂µA
a
µ = 0 fixed numerically, allowing to compute gauge dependent quantities.

Gluon propagator:

∆ab
µν(q2) = 〈Aa

µ(q)Ab
ν(−q)〉 = δab∆(q2)Pµν(q)

Three-gluon vertex:

f abcGαµν(q, r , p) = 〈Aa
α(q)Ab

µ(r)Ac
ν(p)〉 , q + r + p = 0
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Extracting the transversely projected vertex

From the lattice data, we compute the transversely projected vertex, Γ
αµν

(q, r , p):

Gαµν(q, r , p) = gΓ
αµν

(q, r , p) ∆(q2) ∆(r2) ∆(p2)

which corresponds to the transverse projection of the 1PI vertex:

Γ
αµν

(q, r , p) = Γα
′µ′ν′(q, r , p)Pαα′(q)Pµµ′(r)Pνν′(p)

No access to longitudinally coupled terms V αµν(q, r , p) = qα (· · · ) + rµ (· · · ) + pν (· · · )
If the 1PI vertex, Γαµν(q, r , p) has longitudinally coupled term V αµν(q, r , p):

Γαµν(q, r , p) = Γαµν(q, r , p) + V αµν(q, r , p)

we will only access the transverse projection of Γαµν(q, r , p)!
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Tensorial structure of Γαµν(q, r , p)

The Ball-Chiu decomposition of the 1PI three-gluon vertex has 14 tensors:

`1, `2 , · · · `10, t1, · · · t4 ,

with 10 partially longitudinal and 4 transverse tensors.

[Phys. Rev. D22 (1980) 2550]

The transversely projected tensor Γ
αµν

(q, r , p) will have at most the contribution of four
independent tensors:

Γ
αµν

(q, r , p) = Γ1λ
αµν
1 + Γ2λ

αµν
2 + Γ3λ

αµν
3 + Γ4λ

αµν
4
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Kinematics of the three-gluon vertex

Γ
αµν

(q, r , p) depends on three momenta, with q + r + p = 0. The scalar form factors can be
cast in terms of the three squared momenta.

We will write them in terms of q2, r2, p2, with the angles given by:

cos θqr =
p2 − q2 − r2

2
√

q2r2
, · · ·

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.



16/39

Introduction
Three-gluon vertex

Phenomenology
Conclusions

Evaluating 3g vertex
Kinematics and tensorial structure of Γαµν (q, r, p)
Results

Kinematics of the three-gluon vertex

Γ
αµν

(q, r , p) depends on three momenta, with q + r + p = 0. The scalar form factors can be
cast in terms of the three squared momenta.

p2

q2

r2

r2q2

p2

S

p2 = 0

q2 = 0r2 = 0
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r2q2

p2

S

p2 = 0

q2 = 0r2 = 0

Particular cases:

Case Def. q̂r Tensors

Soft gluon p = 0 π λsg3
Sym. q2 = r2 = p2 2π

3 λsym1,2

Bisectoral q2 = r2 (0, π) 3
General – 4

Symmetric and soft-gluon cases already studied in [Phys.Lett.B 818 (2021) 136352]
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Tensor basis

We chose the following basis:

λαµν1 = Γ
αµν

0 =
(
gα
′µ′(q − r)ν

′
+ gµ

′ν′(r − p)α
′

+ gα
′ν′(p − q)µ

′
)
Pαα′(q)Pµµ′(r)Pνν′(p)

=
(
`α
′µ′ν′

1 + `α
′µ′ν′

4 + `α
′µ′ν′

7

)
Pαα′(q)Pµµ′(r)Pνν′(p) → λsym1 , λs.g .3

λαµν2 = 3
(r − p)α

′
(p − q)µ

′
(q − r)ν

′

q2 + r2 + p2
Pαα′(q)Pµµ′(r)Pνν′(p) → λsym.2

λαµν3 =
3

q2 + r2 + p2

(
`α
′µ′ν′

3 + `α
′µ′ν′

6 + `α
′µ′ν′

9

)
Pαα′(q)Pµµ′(r)Pνν′(p)

λαµν4 =

(
3

q2 + r2 + p2

)2

(tαµν1 + tαµν2 + tαµν3 )

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Tensor basis

We have chosen the tensor basis antisymmetric under two-gluon permutation, i.e.
{q, α} ↔ {r , µ}:

λi → −λi

Recall
〈Aa
α(q)Ab

µ(r)Ac
ν(p)〉 = f abcgΓαµν(q, r , p) ∆(q2) ∆(r2) ∆(p2)

and
gΓ

αµν
(q, r , p) =

∑
i

Γi (q
2, r2, p2)λαµνi (q, r , p)

Bose symmetry

The form-factors Γi (q
2, r2, p2) can only depend on symmetric combination of the momenta.
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Extraction of form factors

Once we have evaluated Γ
αµν

(q, r , p) from the lattice, we have to solve:∑
i

Γi (q
2, r2, p2) λαµνi (q, r , p)λj αµν(q, r , p) = Γ

αµν
(q, r , p) λαµνj (q, r , p)

For the symmetric and soft-gluon cases we obtained a projector λ̃j(q, r , p) that allowed the
extraction of the form factors as:

Γi (q
2, r2, p2) =

Γ
αµν

(q, r , p)λ̃j αµν(q, r , p)

λ̃αµνj (q, r , p)λ̃j αµν(q, r , p)

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Renormalization

Once the bare form-factors have been obtained, we implement multiplicative renormalization
for the vertex via the renormalization constant Z3(µ2), defined as:

Γi,R(q2, r2, p2) = Z3(µ)Γi (q
2, r2, p2) .

We define it from the soft-gluon case by imposing:

Γ1,R(µ2, µ2, 0) = 1 ↔ Z3(µ) = Γ1(µ2, µ2, 0)−1

at µ = 4.3 GeV. For the rest of form-factors, it implies:

Γi,R(q2, r2, p2) =
Γi (q

2, r2, p2)

Γ1(µ2, µ2, 0)

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Results for the bisectoral case q2 = r 2.

p2

q2

r2

r2q2

p2

The scalar form factors can only depend on symmetric momentum
variables [G. Eichmann et al, PRD89 (2014) 105014]:

s2 = q2+r2+p2

2 (plane)

(q2 − r2)2 + (r2 − p2)2 + (p2 − q2)2 (radius)

(q2 + r2 − 2p2)(r2 + p2 − 2q2)(p2 + q2 − 2r2) (phase)

Alternatively, we will use s and θqr for the bisectoral case.

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Results for the bisectoral case q2 = r 2: Γ1

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

Γ- A

[(q2+r2+p2)/2]1/2 (GeV)

5.6
5.8
6.0
6.2

Γ1,sym
Γ3,sg

[F. Pinto-Gómez, FS, et al PLB838 (2023) 137737]

Represented in terms of s, there is a nice
overlap between the already published
symmetric and soft-gluon cases, but also
with the bisectoral one.
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Results for the bisectoral case q2 = r 2: Γ1

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Γ 1
(s

)

s (GeV)

bi (θ<π/2)
sy
sg

There is an excellent overlap for the deep
IR (below s ∼ 1.5− 2 GeV).

The bisectoral case separates from the
soft-gluon one at s ∼ 3 GeV.
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Results for the bisectoral case q2 = r 2: Γ1
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Results for the bisectoral case q2 = r 2: Γ1

s = 1 GeV

For small momenta,
there is a negligible
effect of the angle θqr

r2q2

p2
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Results for the bisectoral case q2 = r 2: Γ1

s = 2 GeV

For small momenta,
there is a negligible
effect of the angle θqr

r2q2

p2
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Results for the bisectoral case q2 = r 2: Γ1

s = 3 GeV

For larger momenta, it
gets smaller values for
θqr → π

r2q2

p2
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Results for the bisectoral case q2 = r 2: Γ1

s = 4 GeV

For larger momenta, it
gets smaller values for
θqr → π

r2q2

p2

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.



26/39

Introduction
Three-gluon vertex

Phenomenology
Conclusions

Evaluating 3g vertex
Kinematics and tensorial structure of Γαµν (q, r, p)
Results

Results for the bisectoral case q2 = r 2: Γ2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Γ 2
(s

)

s (GeV)

bi
sy

s = 4 GeV

Qualitatively compatible with recent SDE results [2305.05704]
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Results for the bisectoral case q2 = r 2: Γ3
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Qualitatively compatible with recent SDE results [2305.05704]
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Results for the general case q2 6= r 2 6= p2.
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The tree-level form-factor for general
kinematics, q2 6= r2 6= p2, overlaps with
the rest of cases for the deep IR (below
s ∼ 1.5− 2 GeV).

The different kinematics separate from the
soft-gluon one at s ∼ 3 GeV.
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Summary of results for 3g-vertex.

Γ1 dominates.

Quantitative agreement among
different kinematics for
s2 = q2+r2+p2

2 . 3 GeV

For q2 = r2 (bisectoral) Γ1 depends
on θqr for large s2.

Preliminary data for the general case
q2 6= r2 6= p2 confirm the latter
results.

r2q2

p2

S

s.g .

The full vertex seems to be well described by:

Γ
αµν

(q, r , p) ≈ Γ
sg

(s2)
∣∣∣
s2= q2+r2+p2

2

Γ
αµν

0 (q, r , p)

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Schwinger mechanism

Lattice data unequivocally establish the existence of a gluon mass:
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∆−1(q2) = q2
[
1 + Π(q2)

] q→0−−−→ m2
gluon

Schwinger mechanism:

If limq→0 Π(q2) = c
q2 , a gluon mass m2

gluon = c
emerges.

Linked to the three-gluon vertex through the
gluon propagator SDE:

J. Papavassiliou, Chin.Phys.C 46 (2022) 11, 112001
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Schwinger mechanism:

mass generated through longitudinally coupled massless color excitation:

introduces a displacement in Ward-Takahashi identity C(r2):

C(r2) =
∂C1(q, r , p)

∂p2

∣∣∣∣
q=0

= Lsg (r2)− F (0)

[
W(r2)

r2
∆−1(r2) +

∂∆−1(r2)

∂r2

]

[A.C. Aguilar, FS, et al, PLB841 (2023) 137906]
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Schwinger mechanism:

mass generated through longitudinally coupled massless color excitation:

Γabc
αµν(q, r , p)

q→0−−−→ Γabc
αµν(q, r , p)︸ ︷︷ ︸

pole-free

+ f abc
qα
q2

gµνC1(q, r , p) + · · ·︸ ︷︷ ︸
longitudinally coupled

introduces a displacement in Ward-Takahashi identity C(r2):

C(r2) =
∂C1(q, r , p)

∂p2

∣∣∣∣
q=0

= Lsg (r2)− F (0)

[
W(r2)

r2
∆−1(r2) +

∂∆−1(r2)

∂r2

]

[A.C. Aguilar, FS, et al, PLB841 (2023) 137906]
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Schwinger mechanism

All the ingredients in the displacement function can be evaluated from lattice-QCD:

C(r2) =
∂C1(q, r , p)

∂p2

∣∣∣∣
q=0

= Lsg (r2)− F (0)

[
W(r2)

r2
∆−1(r2) +

∂∆−1(r2)

∂r2

]

∆(r2), gluon propagator.

Lsg (r2), soft-gluon
three-gluon vertex.

F (0) bare ghost dressing
function.
W(r2)

r2 rρδµν =
∂Hµν
∂qρ

∣∣∣
q=0

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Schwinger mechanism

All the ingredients in the displacement function can be evaluated from lattice-QCD:

C(r2) =
∂C1(q, r , p)

∂p2

∣∣∣∣
q=0

= Lsg (r2)− F (0)

[
W(r2)

r2
∆−1(r2) +

∂∆−1(r2)

∂r2

]

∆(r2), gluon propagator.

Lsg (r2), soft-gluon
three-gluon vertex.

F (0) bare ghost dressing
function.
W(r2)

r2 rρδµν =
∂Hµν
∂qρ

∣∣∣
q=0

The ghost-gluon scattering kernel Hµν can be evaluated
through the solution of its SDE equation:

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Schwinger mechanism

Lattice-evaluated Ward identity displacement
function:

C(r2) = Lsg (r2)− F (0)

[
W(r2)

r2
∆−1(r2) +

∂∆−1(r2)

∂r2

]

signals the presence of massless, longitudinally
coupled gluon correlations.

Compatible with the solution of the gluon BSE for a massless bound
state.

[A.C. Aguilar, et al, PRD105 (2022) 014030]

[A.C. Aguilar, FS, et al, PLB841 (2023) 137906]

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.



35/39

Introduction
Three-gluon vertex

Phenomenology
Conclusions

Schwinger mechanism
Zero crossing

Outline

1 Introduction
QCD
Lattice QCD

2 Three-gluon vertex
Evaluating 3g vertex
Kinematics and tensorial structure of Γαµν(q, r , p)
Results

3 Phenomenology
Schwinger mechanism
Zero crossing

4 Conclusions

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.



36/39

Introduction
Three-gluon vertex

Phenomenology
Conclusions

Schwinger mechanism
Zero crossing

Gluon propagator

Lattice data unequivocally establish the existence of a gluon mass:
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Gluon propagator:

∆−1(q2) = q2J(q2) + m2(q2)

PT-BFM [D. Binosi, et al. PRD86 (2012) 085033]

mass: mgluon = limq→0 m(q2)

kinetic term presents a logarithmic
divergence:

J(q2)
∣∣
q→0
∼a log

(
q2

µ2

)
+ b

related to the masslessness of the ghost
[A.C. Aguilar, et al, PRD89 (2014) 085008].
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Gluon propagator

Lattice data unequivocally establish the existence of a gluon mass:

[A.C. Aguilar, FS, et al, PLB818 (2021) 136352]

Gluon propagator:

∆−1(q2) = q2J(q2) + m2(q2)

PT-BFM [D. Binosi, et al. PRD86 (2012) 085033]

mass: mgluon = limq→0 m(q2)

kinetic term presents a logarithmic
divergence:

J(q2)
∣∣
q→0
∼a log

(
q2

µ2

)
+ b

related to the masslessness of the ghost
[A.C. Aguilar, et al, PRD89 (2014) 085008].
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Zero crossing

With the three-gluon vertex written as:

Γabc
αµν(q, r , p)

q→0−−−→ Γabc
αµν(q, r , p)︸ ︷︷ ︸

pole-free

+ V abc
αµν(q, r , p)︸ ︷︷ ︸

longitudinally coupled

,

if we assume a separation of the STI satisfied by Γ into two partial STI’s matching Γ↔ J and
V ↔ m2, then:

Γ1(s2)
s→0−−−→ α log(s2/µ2) + β

Zero crossing

The form-factor Γ1(s2) is logarithmically divergent in the deep-IR.

[A.C. Aguilar, FS, et al, PLB818 (2021) 136352].
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Zero crossing
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Fitting all data with s ≤ 0.5 GeV to
Γ1(s2) = α ln(s2/µ2) + β

The logarithmic slope obtained is
α ≈ 0.107(16), while the SDE
prediction is 0.112(10)!

A zero crossing at appears at
s ∼ 130(20) MeV.
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Zero crossing

 0
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sym s.g. bi gen all

α

Lattice
DSE

Fitting all data with s ≤ 0.5 GeV to
Γ1(s2) = α ln(s2/µ2) + β

The logarithmic slope obtained is
α ≈ 0.107(16), while the SDE
prediction is 0.112(10)!

A zero crossing at appears at
s ∼ 130(20) MeV.

Lattice data suggest a deep-IR zero-crossing for the tree-level form factor.

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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Summary

The tree-level contribution Γ1 dominates the transversely projected 3g vertex.

Planar degeneracy up to ∼ 3 GeV for all kinematics.

Γαµν(q, r , p) ≈ Γ1(s)
∣∣
s2= q2+r2+p2

2

λt.l.
αµν(q, r , p)

Scwinger mechanism Zero-crossing

F. de Soto Phenomenology from the three-gluon vertex in general kinematics.
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