Proton GPDs from lattice QCD

Martha Constantinou

Temple University

From first-principles QCD to experiments

May 23, 2023

Twist-2 PDFs and GPDs

C. Alexandrou

Univ. of Cyprus/Cyprus Institute

K. Cichy

Adam Mickiewicz University

K. Hadjiyiannakou

Cyprus Institute

K. Jansen DESY, Zeuthen

A. Scapellato

F. Steffens

ETMC Meeting 2008

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou^{0,4} Kyriakos Hadjiyiannakou,¹ Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou, ^{1,2} Krzysztof Cichy,³ Martha Constantinou⁹,⁴ Kyriakos Hadjiyiannakou, ^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

Twist-2 PDFs and GPDs

C. Alexandrou

Univ. of Cyprus/Cyprus Institute

K. Cichy Adam Mickiewicz University

K. Hadjiyiannakou

Cyprus Institute

K. Jansen DESY, Zeuthen

A. Scapellato

F. Steffens University of Bonn

·o//aboratio

ETMC Meeting 2008

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou[●],⁴ Kyriakos Hadjiyiannakou, Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou®,⁴ Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

Twist-3 PDFs and GPDs ▶S. Bhattacharya

Brookhaven National Lab

K. Cichy Adam Mickiewicz University

J. Dodson Temple University

A. Metz Temple University

A. Scapellato

F. Steffens

TMD Meeting 2016

Twist-2 PDFs and GPDs

C. Alexandrou

Univ. of Cyprus/Cyprus Institute

K. Cichy Adam Mickiewicz University

K. Hadjiyiannakou

Cyprus Institute

K. Jansen DESY, Zeuthen

A. Scapellato

F. Steffens University of Bonn

o//aboratio

ETMC Meeting 2008

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou^{0,4} Kyriakos Hadjiyiannakou, Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou^{6,4} Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

Twist-3 PDFs and GPDs ▶S. Bhattacharya

Brookhaven National Lab

K. Cichy Adam Mickiewicz University

J. Dodson Temple University

A. Metz Temple University

A. Scapellato

F. Steffens University of Bonn

TMD Meeting 2016

Novel approach on GPDs

S. Bhattacharya

Brookhaven National Lab

K. Cichy Adam Mickiewicz University

J. Dodson Temple University

X. Gao Argonne National Lab

A. Metz Temple University

J. Miller Temple University

S. Mukherjee Brookhaven National Lab

F. Steffens University of Bonn

Y. Zhao Argonne National Lab

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya⁰,^{1,*} Krzysztof Cichy,² Martha Constantinou⁰,^{3,†} Jack Dodson,³ Xiang Gao,⁴ Andreas Metz,³ Swagato Mukherjee⁰,¹ Aurora Scapellato,³ Fernanda Steffens,³ and Yong Zhao⁴

Motivation for GPDs studies

★ Crucial in understanding hadron tomography

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

 $\mathscr{H} = \int_{-1}^{+1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

- Provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
 [M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]
- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
 - independent measurements to disentangle GPDs
 - GPDs phenomenology more complicated than PDFs (multi-dimensionality)
 - and more challenges ...

Motivation for GPDs studies

★ Crucial in understanding hadron tomography

 $1_{mom} + 2_{coord}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

- Provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
 [M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]
- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

$$\mathscr{H} = \int_{-1}^{+1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$$

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Twist-classification of PDFs, GPDs, TMDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-classification of PDFs, GPDs, TMDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-2 $(f_i^{(0)})$											
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	T (σ^{+j})								
U	$\begin{array}{c} H(x,\xi,t)\\ E(x,\xi,t)\\ \text{unpolarized} \end{array}$										
L		$ \widetilde{H}(x,\xi,t) \\ \widetilde{E}(x,\xi,t) \\ \text{helicity} $									
т			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \ \widetilde{E}_T\\ \text{transversity} \end{array}$								
Prob	abilistic	interpret	ation								
U	0		Nucleon spin	pin n							
L –		- (+)									

Т

T

Twist-classification of PDFs, GPDs, TMDs

$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{\Omega} + \frac{f_i^{(2)}}{\Omega^2} \cdots$									
	Twist-2 $(f_i^{(0)})$ W $Q Q^2$ Twist-3 $(f_i^{(1)})$								
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	T (σ^{+j})		() Nucleon	γ^j	$\gamma^j \gamma^5$	σ^{jk}	Selected
U	$\begin{array}{l} H(x,\xi,t)\\ E(x,\xi,t)\\ \text{unpolarized} \end{array}$				U	G_1, G_2 G_3, G_4			
L		$\widetilde{H}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity			L		$\widetilde{G}_1, \widetilde{G}_2 \\ \widetilde{G}_3, \widetilde{G}_4$		
т			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \ \widetilde{E}_T\\ \text{transversity} \end{array}$		т			$H'_{2}(x,\xi,t)$ $E'_{2}(x,\xi,t)$	
Prob	abilistic	interpret	ation						
U	0		Nucleon s	pin	Lack dKinema	lensity in atically s	iterpretat	tion, but o ed	can be <mark>sizable</mark>

- Difficult to isolate experimentally
- **★** Theoretically: contain $\delta(x)$ singularities
- ★ Contain info on quark-gluon-quark correlators

L

Т

'ת'

local operators

 $\left\langle N(P') | \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} | N(P) \right\rangle \sim \sum_{\substack{i=0 \\ \text{even}}}^{n-1} \left\{ \gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\}$

★ Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

 $\langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z,0) \Psi(0) \, | \, N(P_i) \rangle_{\mu}$

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

★ Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N} E(x,\xi,t) \right\} U(P) + \text{ht} ,$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N} \widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht} ,$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N} E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2} \widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N} \widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht} ,$$

'ת'

 $\langle N(P')|\overline{q}(0)\gamma^{\mu}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}F_{1}(t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_{N}}F_{2}(t)\right\}U(P),$ $\forall \mathbf{Ultra-local operators (FFS)}_{\langle N(P')|\overline{q}(0)\gamma^{\mu}\gamma_{5}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}\gamma_{5}G_{A}(t) + \frac{\gamma_{5}\Delta^{\mu}}{2m_{N}}G_{P}(t)\right\}U(P)$

ר'

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

 $\star \quad 1 \text{-derivative operators (GFFs)} \langle N(p',s') | \mathcal{O}_{V}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{1}{2} \Big[A_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2}) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2}) \frac{1}{m_{N}} q^{\{\mu}q^{\nu\}} \Big] u_{N}(p,s) \\ \langle N(p',s') | \mathcal{O}_{A}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{i}{2} \Big[\tilde{A}_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2}) \frac{q^{\{\mu}P^{\nu\}}}{2m_{N}} \gamma^{5} \Big] u_{N}(p,s),$

'זנ'

 $\star \quad 1 \text{-derivative operators (GFFs)} \langle N(p',s') | \mathcal{O}_{V}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{1}{2} \Big[A_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2}) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2}) \frac{1}{m_{N}} q^{\{\mu}q^{\nu\}} \Big] u_{N}(p,s) \\ \langle N(p',s') | \mathcal{O}_{A}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{i}{2} \Big[\tilde{A}_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2}) \frac{q^{\{\mu}P^{\nu\}}}{2m_{N}} \gamma^{5} \Big] u_{N}(p,s),$

 $\star \quad 1 \text{-derivative operators (GFFs)} \langle N(p',s') | \mathcal{O}_{V}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{1}{2} \Big[A_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2}) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2}) \frac{1}{m_{N}} q^{\{\mu}q^{\nu\}} \Big] u_{N}(p,s) \\ \langle N(p',s') | \mathcal{O}_{A}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{i}{2} \Big[\tilde{A}_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2}) \frac{q^{\{\mu}P^{\nu\}}}{2m_{N}} \gamma^{5} \Big] u_{N}(p,s),$

Through non-local matrix elements of fast-moving hadrons

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$
$$t = \Delta^2 = -Q^2$$
$$\xi = \frac{Q_3}{2P_3}$$

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \langle N(P_{f}) | \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z,0) \Psi(0) | N(P_{i}) \rangle_{\mu} \qquad \Delta = P_{f} - P_{i}$$
$$t = \Delta^{2} = -Q^{2}$$
$$\xi = Q_{3}/(2P_{3})$$

★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right. \qquad \Delta = P_{f} - P_{i}$$

$$t = \Delta^{2} = -Q^{2}$$

$$\xi = Q_{3}/(2P_{3})$$

★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right. \qquad \Delta = P_{f} - P_{i}$$

$$t = \Delta^{2} = -Q^{2}$$

$$\xi = Q_{3}/(2P_{3})$$

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right\rangle \\ = \Delta^{2} = -Q^{2} \\ \xi = Q_{3}/(2P_{3})$$

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{\mathbb{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{\mathbb{Q}(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right. \qquad \Delta = P_{f} - P_{i}$$

$$t = \Delta^{2} = -Q^{2}$$

$$\xi = Q_{3}/(2P_{3})$$

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

finite mixing with scalar

[Constantinou & Panagopoulos (2017)]

Symmetric frame ($\vec{p}_f^s = \vec{P} + \vec{Q}/2, \vec{p}_i^s = \vec{P} - \vec{Q}/2$ **): separate calculations at each** *t*

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

Proton Momentum:

$P_3 [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
0.83	$(0,\!2,\!0)$	0.69	0	519	4152
1.25	$(0,\!2,\!0)$	0.69	0	1315	42080
1.67	$(0,\!2,\!0)$	0.69	0	1753	112192
1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
1.25	$(0,\!2,\!-2)$	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

\star	Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
		0.83	$(0,\!2,\!0)$	0.69	0	519	4152
	zero skewness	1.25	$(0,\!2,\!0)$	0.69	0	1315	42080
		1.67	$(0,\!2,\!0)$	0.69	0	1753	112192
		1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
		1.25	(0,2,-2)	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

\star	Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
		0.83	(0,2,0)	0.69	0	519	4152
	zero skewness	1.25	(0,2,0)	0.69	0	1315	42080
		1.67	(0,2,0)	0.69	0	1753	112192
		1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
		1.25	(0,2,-2)	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

★ Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
	0.83	(0,2,0)	0.69	0	519	4152
zero skewness	1.25	(0,2,0)	0.69	0	1315	42080
	1.67	(0,2,0)	0.69	0	1753	112192
nonzero	∫ 1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
skewness	1.25	(0,2,-2)	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:260 MeVLattice spacing:0.093 fmVolume: $32^3 \times 64$ Spatial extent:3 fm

★ Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
	0.83	(0,2,0)	0.69	0	519	4152
zero	1.25	(0,2,0)	0.69	0	1315	42080
	1.67	(0,2,0)	0.69	0	1753	112192
nonzero skewness	∫ 1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
	1.25	(0,2,-2)	1.39	-1/3	417	40032

★ Excited states:

T_{sink}=1, 1.12 fm

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-x
 - H(x,0) asymptotically equal to $f_1(x)$

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*
 - H(x,0) asymptotically equal to $f_1(x)$

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*

•
$$H(x,0)$$
 asymptotically equal to $f_1(x)$

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

 Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

Sum rules exist for quasi-GPDs [S. Bhattacharya et al., PRD 102, 054021 (2020)]

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t)$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0 \, .$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

,

Sum rules exist for quasi-GPDs [S. Bhattacharya et al., PRD 102, 054021 (2020)]

★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5),$$

$$\int_{-1}^{1} dx \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$

$$A_{T10}(-1.02\,\mathrm{GeV}^2) = 0.49(5)$$

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0 \, .$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

★ Sum rules exist for quasi-GPDs $\int_{-1}^{1} dx \hat{H}$ [S. Bhattacharya et al., PRD 102, 054021 (2020)]

★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5)$$

$$\int_{-1}^{1} dx H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx x H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx x H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$

$$A_{T10}(-1.02 \,\mathrm{GeV}^2) = 0.49(5)$$

- lowest moments the same between quasi-GPDs and GPDs

- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

★ Understanding of systematic effects through sum rules

Sum rules exist

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t)$$

$$\int_{-1}^{1} dx \,\widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \,\widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

for quasi-GPDs
$$\int_{-1}^{-1} dx$$

Bhattacharya et al., PRD 102, 054021 (2020)

Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5)$$

$$\int_{-1}^{1} dx \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), \, 0.21(2), \, 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2)$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$

$$A_{T10}(-1.02\,\mathrm{GeV}^2) = 0.49(5)$$

Sum rules not imposed in calculation

lowest moments the same between quasi-GPDs and GPDs

 $\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$

 $\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$

 $\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$

 $\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \, .$

- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \bigg[\gamma^0 H_{\mathbb{Q}(0)}(x,\zeta,\xi,t;P^3) \bigg] u(p,\lambda)$$

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \bigg[\gamma^0 H_{\mathbb{Q}(0)}(x,\zeta) \bigg[\gamma^0 H_{\mathbb{Q}(0)}(x,\zeta) \bigg] u(p,\lambda) \bigg] u(p,\lambda)$$

★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

- A_i : Lorentz invariant amplitudes
 - have definite symmetries

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \bigg[\gamma^0 H_{\mathbb{Q}(0)}(x,\zeta) \bigg[\gamma^0 H_{\mathbb{Q}(0)}(x,\zeta) \bigg] u(p,\lambda) \bigg] u(p,\lambda)$$

★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

- A_i : Lorentz invariant amplitudes
 - have definite symmetries

Light-cone GPDs using lattice correlators in non-symmetric frames

Theoretical setup

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

Theoretical setup

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$
$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot z A_6 + 2\Delta_{s/a} \cdot z A_8$$

Theoretical setup

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$
$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot z A_6 + 2\Delta_{s/a} \cdot z A_8$$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:

- asymmetric frame:

 $\vec{p}_f^s = \vec{P} + \frac{\vec{Q}}{2}, \qquad \vec{p}_i^s = \vec{P} - \frac{\vec{Q}}{2} \qquad t^s = -\vec{Q}^2$

 $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} - \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f - E_i)^2$

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

- isovector combination
- zero skewness
- T_{sink}=1 fm

Pion mass:	260 MeV				
Lattice spacing:	0.093 fm				
Volume:	32³ x 64				
Spatial extent:	3 fm				

frame	$P_3 \; [{ m GeV}]$	$\mathbf{Q}\;[rac{2\pi}{L}]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216

★ Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each *t*)

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

	W(z)
ation	$N(\overrightarrow{P}_{f},0)$

Pion mass:	260 MeV				
Lattice spacing:	0.093 fm				
Volume:	32³ x 64				
Spatial extent:	3 fm				

Ca	Cu	lat	ion:	

- isovector combination
- zero skewness
- T_{sink}=1 fm

frame	$P_3 \; [{ m GeV}]$	$\mathbf{Q} \; \left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV^2}]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216
						\rightarrow		

 $N(\overrightarrow{P}_i, t_s)$

Small difference:

$$t^{s} = -\overrightarrow{Q}^{2} \qquad t^{a} = -\overrightarrow{Q}^{2} + (E_{f} - E_{i})^{2}$$

 $A(-0.64 \text{GeV}^2) \sim A(-0.69 \text{GeV}^2)$

★ Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each *t*)

\star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

 \star Eight independent matrix elements needed to disentangle the A_i

Eight independent matrix elements needed to disentangle the A_i

How do the A_i *compare between frames?*

How do the A_i *compare between frames?*

★ A_1, A_5 dominant contributions

'זנ'

- **\star** Full agreement in two frames for both Re and Im parts of A_1, A_5
- **★** Remaining A_i suppressed (at least for this kinematic setup and $\xi = 0$)

quasi-GPDs in terms of A_i

- **The mapping of** A_i to the quasi-GPDs is not unique
- ★ Construction of a Lorentz invariant definition may be beneficial

$$\begin{array}{ll} (\xi = 0) & \Pi_{H}^{\rm impr} = A_{1} \\ & \Pi_{E}^{\rm impr} = -A_{1} + 2A_{5} + 2zP_{3}A_{6} \end{array}$$

 All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

quasi-GPDs in terms of A_i

- **\star** The mapping of A_i to the quasi-GPDs is not unique
- ★ Construction of a Lorentz invariant definition may be beneficial

$$(\xi = 0)$$
 $\Pi_{H}^{\text{impr}} = A_1$
 $\Pi_{E}^{\text{impr}} = -A_1 + 2A_5 + 2zP_3A_6$

 All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

Agreement between frames for both quasi-GPDs (by definition)

Beyond exploration

★ 11 values of -t (3 in symm. frame and 8 in asymm. frame)

★ Separate calculation for each -t value in symmetric frame

★ Two groups of -t value in asymmetric frame: $\vec{Q} = (Q_x, 0, 0), (Q_x, Q_y, 0)$

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta} \left[rac{2\pi}{L} ight]$	$-t~[{\rm GeV^2}]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	(0,0,0)	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3, 0), (\pm 3, \pm 1, 0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

Momentum transfer range is very optimistic (some values have enhanced systematic uncertainties)

T

Unpolarized quasi-GPDs

asymmetric frame

★ Impressive quality of signal quality

T

 \star Behavior with increasing -t as "expected" qualitatively

Unpolarized light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
- +/-x correspond to quark and anti-quark region
- ★ Anti-quark region susceptible to systematic uncertainties.

Unpolarized light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
 - +/-x correspond to quark and anti-quark region Several values of -t accessible at once

 \star Anti-quark region susceptible to systematic uncertainties.

Mellin moments from non-local operators

- ★ Leading-twist factorization formula $\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$
- **Avoid power-divergent mixing of multi-derivative operators**
- ★ Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

- $\bigstar \text{ Leading-twist factorization formula}$ $\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$
- Avoid power-divergent mixing of multi-derivative operators
- ★ Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)

Leading-twist factorization formula

Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

arXiv:2305.11117 ★ Leading-twist factorization formula

$$\mathcal{M}(z,P,\Delta) \equiv \frac{\mathcal{F}(z,P,\Delta)}{\mathcal{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\text{MS}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators X

Wilson coefficients known to NLO (or NNLO)

Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

arXiv:2305.11117 Leading-twist factorization formula $\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\mathrm{MS}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$ \star Avoid power-divergent mixing of multi-derivative operators

- Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

arXiv:2305.11117 ★ Leading-twist factorization formula $\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\mathrm{MS}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$

 \star Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)

Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

T

M. Constantinou, ECT* May 2023

Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- **At** $\xi = 0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the *t* dependence)

Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- **At** $\xi = 0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the *t* dependence)

- \star All values of t obtained at the cost of one
- **★** Preliminary analysis very encouraging!

Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- **At** $\xi = 0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the *t* dependence)

- \star All values of t obtained at the cost of one
- **★** Preliminary analysis very encouraging!

What possible extensions can we achieve?

What possible extensions can we achieve?

Twist-3 GPDs

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints & predictive power of lattice QCD

Summary

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

New proposal for Lorentz invariant decomposition has great advantages:
significant reduction of computational cost

- access to a broad range of t and ξ

Future calculations have the potential to transform the field of GPDs

- ★ Mellin moments can be extracted utilizing quasi-GPDs data
- **★** Synergy with phenomenology is an exciting prospect!

Summary

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

New proposal for Lorentz invariant decomposition has great advantages:
significant reduction of computational cost

- access to a broad range of t and ξ

★ Future calculations have the potential to transform the field of GPDs

- ★ Mellin moments can be extracted utilizing quasi-GPDs data
- ★ Synergy with phenomenology is an exciting prospect!

ENERG

Office of

Science

DOE Early Career Award (NP) Grant No. DE-SC0020405