Proton GPDs from lattice QCD

Martha Constantinou

TiT Temple University

Collaborators

M. Constantinou, ECT* May 2023

Collaborators

Twist-2 PDFs and GPDs

C. Alexandrou

Univ. of Cyprus/Cyprus Institute
BK. Cichy
Adam Mickiewicz University
\$K. Hadjiyiannakou
Cyprus Institute
B. Jansen

DESY, Zeuthen
A. Scapellato Temple University
FF. Steffens

University of Bonn

ETMC Meeting 2008

Constantia Alexandrou, ${ }^{1.2}$ Krysstof Cichy.3 ${ }^{3}$ Martha Constantinou,4 Kyriakos Hadjiyiannakou, ${ }^{1}$ Karl Jansen, Aurora Scapellato, and Fernanda Steffens ${ }^{5}$

PHYSICAL REVIEW D 105, 034501 (2022)
Transversity GPDs of the proton from lattice QCD

Collaborators

Twist-2 PDFs and GPDs

C. Alexandrou

Univ. of Cyprus/Cyprus Institute
K. Cichy

Adam Mickiewicz University
©K. Hadjiyiannakou
Cyprus Institute
K. Jansen

DESY, Zeuthen
A. Scapellato Temple University
F. Steffens

University of Bonn

ETMC Meeting 2008

Constantia Alexandrou, ${ }^{1,2}$ Krysstof Cichy, ${ }^{3}$ Martha Constantinou $\odot,^{4}$ Kyriakos Hadijiainnakou, ${ }^{1}$

PHYSICAL REVIEW D 105, 034501 (2022)

[^0]

Twist-3 PDFs and GPDs

\$S. Bhattacharya
Brookhaven National Lab
K. Cichy

Adam Mickiewicz University
B J. Dodson
Temple University
A. Metz

Temple University
B. Scapellato

Temple University
*F. Steffens
University of Bonn

TMD Meeting 2016

M. Constantinou, ECT* May 2023

Collaborators

Twist-2 PDFs and GPDs

C. Alexandrou

Univ. of Cyprus/Cyprus Institute
BK. Cichy
Adam Mickiewicz University
\$K. Hadjiyiannakou
Cyprus Institute
K. Jansen

DESY, Zeuthen

* A. Scapellato Temple University
F. Steffens

University of Bonn

ETMC Meeting 2008

Twist-3 PDFs and GPDs

\$S. Bhattacharya
Brookhaven National Lab
K. Cichy

Adam Mickiewicz University

* J. Dodson

Temple University

* A. Metz

Temple University
B A. Scapellato
Temple University
*F. Steffens
University of Bonn

TMD Meeting 2016

Novel approach on GPDs

BS. Bhattacharya
Brookhaven National Lab
B. Cichy

Adam Mickiewicz University
B J. Dodson
Temple University
8 X. Gao

Argonne National Lab

A. Metz

Temple University
© J. Miller
Temple University
S. Mukherjee

Brookhaven National Lab
*F. Steffens
University of Bonn
Y. Zhao

Argonne National Lab

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD w asymmetric
momentum transfer: Unpolarized quarks

Motivation for GPDs studies

* Crucial in understanding hadron tomography

$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
Provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
[M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]

GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Motivation for GPDs studies

* Crucial in understanding hadron tomography

$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
Provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
[M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]

GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Twist-classification of PDFs, GPDs, TMDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-classification of PDFs, GPDs, TMDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

Quark	$\mathrm{U}\left(\gamma^{+}\right)$	$\mathrm{L}\left(\gamma^{+} \gamma^{5}\right)$	$\mathrm{T}\left(\sigma^{+j}\right)$
Nucleon	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
\mathbf{U}		$\widetilde{H}(x, \xi, t)$ $\widetilde{E}(x, \xi, t)$ helicity	
\mathbf{T}			H_{T}, E_{T} $\widetilde{H}_{T}, \widetilde{E}_{T}$ transversity

Probabilistic interpretation

L

Twist-classification of PDFs, GPDs, TMDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

	$\mathrm{U}\left(\gamma^{+}\right)$	L ($\left.\gamma^{+} \gamma^{5}\right)$	T $\left(\sigma^{+j}\right)$
U	$\begin{gathered} \begin{array}{c} H(x, \xi, t) \\ E(x, \xi, t) \\ \text { unpolarized } \end{array} \end{gathered}$		
L		$\begin{gathered} \widetilde{H}(x, \xi, t) \\ \begin{array}{c} \widetilde{E}(x, \xi, t) \\ \text { helicity } \end{array} \end{gathered}$	
T			$\begin{aligned} & H_{T}, E_{T} \\ & \begin{array}{l} H_{T} \\ \text { transversity } \end{array} \stackrel{E}{E}^{\text {trans }} \end{aligned}$

Twist-3 $\left(f_{i}^{(1)}\right)$

	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$	Selected
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$			
L		$\begin{aligned} & \widetilde{G}_{1}, \widetilde{G}_{2} \\ & \widetilde{G}_{3}, \widetilde{G}_{4} \end{aligned}$		
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$	

Probabilistic interpretation

L

太 Lack density interpretation, but can be sizable
Kinematically suppressed Difficult to isolate experimentally

* Theoretically: contain $\delta(x)$ singularities
* Contain info on quark-gluon-quark correlators

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2}, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{\bar{n}!} z_{\alpha_{1}} \ldots z_{\alpha_{n}}\left[\bar{q}^{\circ} \widetilde{D}^{\alpha_{1}} \ldots \stackrel{\rightharpoonup}{D}^{\alpha_{n}} q\right]
$$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D}^{\alpha_{1}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu \mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \sigma^{\circlearrowleft} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \frac{\Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\downarrow}
$$

Wilson line

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \frac{\Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\downarrow}
$$

Local vs nonlocal operators

Wilson line

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Form Factors \& Generalizations

* Ultra-local operators (FFS)

Form Factors \& Generalizations

* Ultra-local operators (FFS)

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

Form Factors \& Generalizations

* Ultra-local operators (FFS)

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

Form Factors \& Generalizations

* Ultra-local operators (FFS)

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

Lesser studied compared to FFs at physical point

Decay of signal-to-noise ratio
[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P)
$$

$\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)$

 comes at the cost of

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

Lesser studied compared to FFs at physical point

Decay of signal-to-noise ratio
[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

GPDs

Through non-local matrix elements of fast-moving hadrons

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Access of GPDs on a Euclidean Lattice

$$
\text { [X. Ji, Phys. Rev. Lett. } 110 \text { (2013) 262002] }
$$

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k z z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \Delta \quad=P_{f}-P_{i}, ~ \begin{aligned}
& =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k z z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

\star Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& \\
& \begin{array}{ll}
& t=\Delta^{2}=-Q^{2} \\
\xi=P_{3} /\left(2 P_{3}\right)
\end{array}
\end{aligned}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{array}{l}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=Q_{3} /\left(2 P_{3}\right)
\end{array}}
$$

* Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, z_{\perp}=\overline{0}_{\perp}}
$$

太 Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& t=\Delta^{2}=-Q^{2} \\
& \xi=Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

太 Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& t=\Delta^{2}=-Q^{2} \\
& \xi=Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
finite mixing with scalar [Constantinou \& Panagopoulos (2017)]

Symmetric frame ($\vec{p}_{f}^{s}=\vec{P}+\vec{Q} / 2, \vec{p}_{i}^{s}=\vec{P}-\vec{Q} / 2$): separate calculations at each t

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover term

```
Pion mass: 260 MeV
Lattice spacing: 0.093 fm
Volume: }32\mp@subsup{2}{}{3}\times6
Spatial extent: }3\textrm{fm
```

Proton Momentum:

$P_{3}[\mathrm{GeV}]$	$\vec{Q} \times \frac{L}{2 \pi}$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {confs }}$	$N_{\text {meas }}$
0.83	$(0,2,0)$	0.69	0	519	4152
1.25	$(0,2,0)$	0.69	0	1315	42080
1.67	$(0,2,0)$	0.69	0	1753	112192
1.25	$(0,2,2)$	1.39	$1 / 3$	417	40032
1.25	$(0,2,-2)$	1.39	$-1 / 3$	417	40032

Excited states:
$T_{\text {sink }}=1,1.12 \mathrm{fm}$

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$
Spatial extent:	3 fm

Proton Momentum:	$P_{3}[\mathrm{GeV}]$	$\vec{Q} \times \frac{L}{2 \pi}$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {confs }}$	$N_{\text {meas }}$
zero skewness	0.83	$(0,2,0)$	0.69	0	519	4152
	1.25	$(0,2,0)$	0.69	0	1315	42080
	1.67	$(0,2,0)$	0.69	0	1753	112192
	1.25	$(0,2,2)$	1.39	$1 / 3$	417	40032
	1.25	(0,2,-2)	1.39	-1/3	417	40032

Excited states: $\quad T_{\text {sink }}=1,1.12 \mathrm{fm}$

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$
Spatial extent:	3 fm

Proton Momentum:	$P_{3}[\mathrm{GeV}]$	$\vec{Q} \times \frac{L}{2 \pi}$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {confs }}$	$N_{\text {meas }}$
zero skewness	0.83	$(0,2,0)$	0.69	0	519	4152
	1.25	$(0,2,0)$	0.69	0	1315	42080
	1.67	$(0,2,0)$	0.69	0	1753	112192
	1.25	$(0,2,2)$	1.39	$1 / 3$	417	40032
	1.25	(0,2,-2)	1.39	-1/3	417	40032

Excited states: $\quad T_{\text {sink }}=1,1.12 \mathrm{fm}$

Parameters of calculation

Nf=2+1+1 twisted mass (TM) fermions \& clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$
Spatial extent:	3 fm

Proton Momentum:	$P_{3}[\mathrm{GeV}]$	$\vec{Q} \times \frac{L}{2 \pi}$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {confs }}$	$N_{\text {meas }}$
zero skewness	0.83	$(0,2,0)$	0.69	0	519	4152
	1.25	$(0,2,0)$	0.69	0	1315	42080
	< 1.67	$(0,2,0)$	0.69	0	1753	112192
nonzero skewness	1.25	$(0,2,2)$	1.39	$1 / 3$	417	40032
	$\{1.25$	(0,2,-2)	1.39	-1/3	417	40032

Excited states: $\quad T_{\text {sink }}=1,1.12 \mathrm{fm}$

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$
Spatial extent:	3 fm

Proton Momentum:	$P_{3}[\mathrm{GeV}]$	$\vec{Q} \times \frac{L}{2 \pi}$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {confs }}$	$N_{\text {meas }}$
zero skewness	0.83	$(0,2,0)$	0.69	0	519	4152
	1.25	$(0,2,0)$	0.69	0	1315	42080
	1.67	$(0,2,0)$	0.69	0	1753	112192
nonzero skewness	1.25	$(0,2,2)$	1.39	$1 / 3$	417	40032
	1.25	(0,2,-2)	1.39	-1/3	417	40032

Excited states: $\quad T_{\text {sink }}=1,1.12 \mathrm{fm}$

First lattice calculation of x-dependent GPDs

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
$\downarrow t$-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] $\downarrow t$-dependence vanishes at large- x
- $H(x, 0)$ asymptotically equal to $f_{1}(x)$

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] - t-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$
 important contribution in the proton spin

$$
\int_{-1}^{+1} d x x^{2} H^{q}(x, \xi, t)=A_{20}^{q}(t)+4 \xi^{2} C_{20}^{q}(t), \quad \int_{-1}^{+1} d x x^{2} E^{q}(x, \xi, t)=B_{20}^{q}(t)-4 \xi^{2} C_{20}^{q}(t)
$$

What can we currently check using lattice results?

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

$$
\begin{array}{llrl}
\int_{-1}^{1} d x H_{T}(x, \xi, t) & =\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & & \int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t), \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & & \int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), & & \int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . & & \int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t) .
\end{array}
$$

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t)$,
$\int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t)$,
$\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0$.
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.
[S. Bhattacharya et al., PRD 102, 054021 (2020)]

What can we currently check using lattice results?

\star Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.

* Lattice data on transversity GPDs

$$
\begin{array}{cl}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5), \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4), \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) . \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

What can we currently check using lattice results?

\star Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t)$,
$\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0$.
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.

* Lattice data on transversity GPDs

$$
\begin{array}{cl}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5), \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4), \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) . \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

What can we currently check using lattice results?

$\star \begin{gathered}\text { Understanding of } \\ \text { systematic effects } \\ \text { through sum rules }\end{gathered}$

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
\star Lattice data on transversity GPDs

$$
\begin{array}{ll}
\int_{-1}^{1} d x H_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & \\
\int_{-1}^{1} d x x E_{T}(x, \xi, t)=A_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), & \\
\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . & \int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t) .
\end{array}
$$

Sum rules not imposed in calculation

$$
\begin{array}{cl}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5), \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4), \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) . \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

GPDs on the lattice

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

GPDs on the lattice

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}(x, \zeta) E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

GPDs on the lattice

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}(x, 6\right.
$$

Lorentz invariant parametrization

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

GPDs on the lattice

* γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \zeta, E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)\right.
$$

* Lorentz invariant parametrization

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

Light-cone GPDs using lattice correlators in non-symmetric frames

Theoretical setup

Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

Theoretical setup

Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg,s/a }} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Theoretical setup

Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a}} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a}} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Proof-of-concept calculation (zero quasi-skewness):

$$
\begin{array}{llll}
\text { - symmetric frame: } & \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, & \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} & t^{s}=-\vec{Q}^{2} \\
\text { - asymmetric frame: } & \vec{p}_{f}^{a}=\vec{P}, & \vec{p}_{i}^{a}=\vec{P}-\vec{Q} & t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}
\end{array}
$$

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

Pion mass: $\quad 260 \mathrm{MeV}$

Lattice spacing: 0.093 fm
Volume: $32^{3} \times 64$
Spatial extent:
3 fm

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

Small difference: $\quad t^{s}=-\vec{Q}^{2} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}$

$$
A\left(-0.64 \mathrm{GeV}^{2}\right) \sim A\left(-0.69 \mathrm{GeV}^{2}\right)
$$

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Results: matrix elements

Eight independent matrix elements needed to disentangle the A_{i} asymmetric frame

Results: matrix elements

Eight independent matrix elements needed to disentangle the A_{i}

asymmetric frame

Results: matrix elements

* Eight independent matrix elements needed to disentangle the A_{i}

Results: matrix elements

\star Eight independent matrix elements needed to disentangle the A_{i}

Results: matrix elements

\star Eight independent matrix elements needed to disentangle the A_{i}

* Asymmetric frame: ME do not have definite symmetries in $\pm P_{3}, \pm Q, \pm z$
* Noisy ME lead to challenges in extracting A_{i} of sub-leading magnitude

How do the A_{i} compare between frames?

How do the A_{i} compare between frames?

A_{1}, A_{5} dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
\star Remaining A_{i} suppressed (at least for this kinematic setup and $\xi=0$)
M. Constantinou, ECT* May 2023

quasi-GPDs in terms of A_{i}

The mapping of A_{i} to the quasi-GPDs is not unique
Construction of a Lorentz invariant definition may be beneficial

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

quasi-GPDs in terms of A_{i}

\star The mapping of A_{i} to the quasi-GPDs is not unique
\star Construction of a Lorentz invariant definition may be beneficial

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

\star All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

Agreement between frames for both quasi-GPDs (by definition)

Beyond exploration

11 values of $-t$ (3 in symm. frame and 8 in asymm. frame)
Separate calculation for each $-t$ value in symmetric frame
Two groups of $-t$ value in asymmetric frame: $\vec{Q}=\left(Q_{x}, 0,0\right),\left(Q_{x}, Q_{y}, 0\right)$

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {ME }}$	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Momentum transfer range is very optimistic (some values have enhanced systematic uncertainties)

Unpolarized quasi-GPDs

asymmetric frame

Impressive quality of signal quality
Behavior with increasing $-t$ as "expected" qualitatively

Unpolarized light-cone GPDs

quasi-GPDs transformed to momentum space

Matching formalism to 1 loop accuracy level
+/-x correspond to quark and anti-quark region
Anti-quark region susceptible to systematic uncertainties.

- $-t=0.17 \mathrm{GeV}^{2}$
$-t=0.33 \mathrm{GeV}^{2}$
$-t=0.64 \mathrm{GeV}^{2}$
$-t=0.80 \mathrm{GeV}^{2}$
$-t=1.16 \mathrm{GeV}^{2}$
$-t=1.37 \mathrm{GeV}^{2}$
$-t=1.50 \mathrm{GeV}^{2}$
- $-t=2.26 \mathrm{GeV}^{2}$

Unpolarized light-cone GPDs

quasi-GPDs transformed to momentum space

\star Matching formalism to 1 loop accuracy level

Several values of -t accessible at once +/-x correspond to quark and anti-quark region ${ }^{\text {Several values of }}$
Anti-quark region susceptible to systematic uncertainties.

Mellin moments from non-local operators

arXiv:2305.11117
\star Leading-twist factorization formula
$\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)$

* Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117
\star Leading-twist factorization formula
$\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)$

* Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117
\star Leading-twist factorization formula
$\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)$

* Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117

太 Leading-twist factorization formula

$$
\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)
$$

* Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117

\star Leading-twist factorization formula

$$
\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)
$$

* Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117

\star Leading-twist factorization formula

$$
\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)
$$

* Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Mellin moments from non-local operators

arXiv:2305.11117
太 Leading-twist factorization formula

$$
\mathscr{M}(z, P, \Delta) \equiv \frac{\mathscr{F}(z, P, \Delta)}{\mathscr{F}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{(-i z P)^{n}}{n!} \frac{C_{n}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\mathrm{MS}}}\left(\mu^{2} z^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} z^{2}\right)
$$

* Avoid power-divergent mixing of multi-derivative operators

Mellin moments
Wilson coefficients known to NLO (or NNLO)
Both isovector and isoscalar (ignores disconnected; found to be tiny)
[C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case
At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)
\star All values of t obtained at the cost of one
\star Preliminary analysis very encouraging!

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case

* At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

\star All values of t obtained at the cost of one
* Preliminary analysis very encouraging!

What possible extensions can we achieve?

What possible extensions can we achieve?

* Twist-3 GPDs

PRELIMINARY

[S. Bhattacharya et al., PoS LATTICE2021 (2022) 054 arXiv:2112.05538]

$g_{T}(x)$: dominant distribution
$\star \quad \widetilde{H}+\widetilde{G}_{2}$ similar in magnitude to \widetilde{H}
$\star \widetilde{G}_{2}$ is expected to be small

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography
Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints \& predictive power of lattice QCD

[JAM/HadStruc, PRD105 (2022) 114051]
proton \& neutron radius

[Atac et al., Nature Comm. 12, 1759 (2021)]

helicity PDF

[JAM \& ETMC, PRD 103 (2021) 016003]

Experiments, global analysis
transversity PDF

[JAM, PRD 106 (2022) 3, 034014]

And many more!

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

Mellin moments can be extracted utilizing quasi-GPDs data

Synergy with phenomenology is an exciting prospect!

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

Mellin moments can be extracted utilizing quasi-GPDs data

Synergy with phenomenology is an exciting prospect!

> Thank you

[^0]: Transversity GPDs of the proton from latice QCD

