

Fernando Romero-López

from first-principles QCD to experiment @ ECT* May 24th

MIT

fernando@mit.edu

1 /32

Lattice QCD offers a systematically improvable approach to investigate the hadron spectrum

Lattice QCD offers a systematically improvable approach to investigate the hadron spectrum

Beyond QCD, understanding resonance properties is important for new physics searches

Tests of the Standard Model in meson weak decays

CP violation in $K \to \pi\pi$ weak decays $\left(arepsilon'/arepsilon
ight)_{
m exp} = \left(16.6\pm2.3
ight) imes10^{-4}$ [NA48 & KTeV, 2002 & 2009]

 σ resonance

 ${
m CP} ext{ violation in } D^0 o K^+K^-/\pi^+\pi^- ext{ decays}$ $\Delta a_{CP}^{
m dir} = (-15.7 \pm 2.9) imes 10^{-4}$ [LHCb, 2019]

$$f_0(1710)$$

Fernando Romero-López, MIT

Beyond QCD, understanding resonance properties is important for new physics searches

Beyond QCD, understanding resonance properties is important for new physics searches

Tests of the Standard Model in meson weak decays

CP violation in $K \to \pi\pi$ weak decays $\left(\varepsilon'/\varepsilon \right)_{
m exp} = (16.6 \pm 2.3) imes 10^{-4}$ [NA48 & KTeV, 2002 & 2009]

 σ resonance

 $ext{CP} ext{ violation in } D^0 o K^+ K^- / \pi^+ \pi^- ext{ decays} \ \Delta a_{CP}^{ ext{dir}} = (-15.7 \pm 2.9) imes 10^{-4} \ ext{[LHCb, 2019]}$

$$f_0(1710)$$

Fernando Romero-López, MIT

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$\left< \mathcal{O}(t) \mathcal{O}(0) \right> = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \mathcal{O}(t) \mathcal{O$$

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$\langle \mathcal{O}(t)\mathcal{O}(0) \rangle = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t)$$

Can we obtain resonance properties from Euclidean correlation functions?

O Lattice QCD is a first-principles numerical approach to the strong interaction

$$\langle \mathcal{O}(t)\mathcal{O}(0) \rangle = \frac{1}{\mathcal{Z}} \int D\psi D\bar{\psi} DA \mathcal{O}(t) \mathcal{O}(t) \mathcal{O}(t)$$

Can we obtain resonance properties from Euclidean correlation functions?

Fernando Romero-López, MIT

-> Yes, but not that simple!

Experiments

Asymptotic states

Direct access to scattering amplitudes

Experiments

Asymptotic states

Direct access to scattering amplitudes

Fernando Romero-López, MIT

Lattice QCD

- **Euclidean time**
- Stationary states in a box

Experiments

Asymptotic states

Direct access to scattering amplitudes

Fernando Romero-López, MIT

Lattice QCD

- Euclidean time
- Stationary states in a box

Finite-volume formalism

[Lüscher, 89']

The S-Matrix contains the physical information of the theory:

$S_{ab}(E) \equiv \langle \text{out} | \mathcal{S} | \text{in} \rangle$

Lattice QCD — QCD S-matrix

$$rac{g}{E^2-E_R^2}_{_{6\,/32}} E_R = M_R - i\,\Gamma/2$$

1. Scattering amplitudes from Lattice QCD

2. Meson-Baryon scattering: $\Delta(1232)$ and $\Lambda(1405)$

3. Three-particle systems

Fernando Romero-López, MIT

7 /32

O The energy levels of the theory are measured from Euclidean correlation functions

$$C(t) = \left\langle \mathcal{O}(t)\mathcal{O}(0) \right\rangle = \sum_{n} \left| \left\langle 0 \left| \mathcal{O}(0) \right| n \right\rangle \right|^{2} e^{-E}$$

Fernando Romero-López, MIT

 $E_n t$

9 /32

O The energy levels of the theory are measured from Euclidean correlation functions

$$C(t) = \left\langle \mathcal{O}(t)\mathcal{O}(0) \right\rangle = \sum_{n} \left| \left\langle 0 \left| \mathcal{O}(0) \right| n \right\rangle \right|^{2} e^{-E}$$

 $E_n t \longrightarrow A_0 e^{-E_0 t}$ (ground state)

O The energy levels of the theory are measured from Euclidean correlation functions

$$C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle = \sum_{n} \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^{2} e^{-E_{n}t} \xrightarrow{t \to \infty} A_{0}e^{-E_{0}t} \quad \text{(ground state)}$$

O Multiple operators with the same quantum names to obtain several energy levels

Variational techniques (Generalized EigenValue Problem, GEVP)

Free scalar particles in finite volume with periodic boundaries

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$=2\sqrt{m^2+\frac{4\pi^2}{L^2}\vec{n}^2}$$

Fernando Romero-López, MIT

10/32

Free scalar particles in finite volume with periodic boundaries

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$=2\sqrt{m^2+\frac{4\pi^2}{L^2}\vec{n}^2}$$

Fernando Romero-López, MIT

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $E_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\Delta E_2 = \frac{\mathscr{M}_2(E=2m)}{8m^2L^3} + O(L^{-4})$ [Huang, Yang, 1958]

Free scalar particles in finite volume with periodic boundaries

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$=2\sqrt{m^2+\frac{4\pi^2}{L^2}\vec{n}^2}$$

Fernando Romero-López, MIT

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $E_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\Delta E_2 = \frac{\mathscr{M}_2(E = 2m)}{8m^2L^3} + O(L^{-4})$ [Huang, Yang, 1958]

The energy shift of the two-particle ground state is related to the $2\to 2$ scattering amplitude

n he search a fair a

Free scalar particles in finite volume with periodic boundaries

Fernando Romero-López, MIT

Interactions change the spectrum: it can be treated as a perturbation

d state to leading order $2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$

$\Delta E_2 = \frac{\mathcal{M}_2(E=2m)}{0} + O(L^{-4})$

[Huang, Yang, 1958]

The energy shift of the two-particle ground state is related to the $2 \rightarrow 2$ scattering amplitude

Note: only valid for two particles below inelastic thresholds.

Fernando Romero-López, MIT

Indirect connection between the spectrum and the two-particle scattering amplitude [Lüscher 89']

Note: only valid for two particles below inelastic thresholds.

Fernando Romero-López, MIT

Indirect connection between the spectrum and the two-particle scattering amplitude [Lüscher 89']

Indirect connection between the spectrum and the two-particle scattering amplitude [Lüscher 89']

Note: only valid for two particles below inelastic thresholds.

Two-particle Quantization Condition "QC2" **Finite-volume information** $F_{00}(q^2) \sim \left| \frac{1}{r^2} \sum_{k=1}^{\infty} - \left[\frac{d^3 k}{r^2} \right] \right|_{r^2}$

Two pions in s-wave $\mathscr{K}_{2}^{s-wave}(E_{n}) = \frac{-1}{F_{00}(E_{n}, \overrightarrow{P}, L)}$

O Some systems already being studied at the physical point!

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC), EPJC 2021]

Fernando Romero-López, MIT

I=3/2 TK scattering

[Draper, Hanlon, Hörz, Morningstar, FRL, Sharpe (in preparation)]

Lattice QCD results are complementary to experiment! 0

Fernando Romero-López, MIT

14/32

• Lattice QCD results are complementary to experiment!

O Pion-nucleon scattering is an important process in QCD

• Key ingredient: reliable variational extractions of the lattice QCD energy levels: GEVP + stability

• Key ingredient: reliable variational extractions of the lattice QCD energy levels: GEVP + stability

Our results can be used to test the convergence of baryon ChPT

	$m_{\pi}~({ m MeV})$	$m_\pi a_0^{1/2}$	
This work	200	0.142(22)	_
LO χPT	200	0.321(04)(57)	_

[Oller, Meißner, 0011146], [Hemingway, NPB 1985]

Fernando Romero-López, MIT

O PDG (4 star resonance):

$$\Lambda(1405) 1/2^{-}$$
 $I(J^P) = O(\frac{1}{2}^{-})$

Mass $m = 1405.1^{+1.3}_{-1.0}$ MeV Full width $\Gamma = 50.5 \pm 2.0$ MeV Below $\overline{K}N$ threshold

A(1405) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma\pi$	100 %	155

Resonance appearing in multi-channel scattering:

$$egin{pmatrix} \pi\Sigma o \pi\Sigma & \pi\Sigma o Kp \ Kp o \pi\Sigma & \pi\Sigma o Kp \end{pmatrix}$$

22/32

0 Long-standing puzzle about its fundamental nature:

➡ One or two resonance poles?

Chiral EFT analysis indicate two poles

Lattice QCD: essential non-perturbative verification

O Fit with ERE in 2x2 K matrix $(K_2)_{ij} = A_{ij} + B_{ij}E_{\mathrm{cm}}^2 + \dots$

4 parameters

 $\chi^2/{
m dof}=1.02$

finite-volume quantum numbers (irreps)

M First lattice QCD study of its analytic structure using multi-channel scattering

M First lattice QCD study of its analytic structure using multi-channel scattering

approach	pole 1 $[MeV]$	pole 2 $[MeV]$
Refs. $[14, 15]$, NLO	$1424^{+7}_{-23} - i \ 26^{+3}_{-14}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$
Ref. [17], Fit II	$1421^{+3}_{-2} - i \ 19^{+8}_{-5}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. [18], solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5}\ -i\ 56^{+17}_{-11}$
Ref. [18], solution $#4$	$1429^{+8}_{-7} - i 12^{+2}_{-3}$	$1325^{+15}_{-15}-i 90^{+12}_{-18}$

O The two-body formalism is restricted to few interestir

Exotics: $T_{cc} \rightarrow DD^*, DD\pi$

Roper: $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

Fernando Romero-López, MIT

Resonance	$I_{\pi\pi\pi}$	J^P
$\omega(782)$	0	1-
$h_1(1170)$	0	1^{+}
$\omega_3(1670)$	0	3-
$\pi(1300)$	1	0-
$a_1(1260)$	1	1^{+}
$\pi_1(1400)$	1	1-
$\pi_2(1670)$	1	2^{-}
$a_2(1320)$	1	2^{+}
$a_4(1970)$	1	4^{+}
	Resonance $\omega(782)$ $h_1(1170)$ $\omega_3(1670)$ $\pi(1300)$ $\pi_1(1260)$ $\pi_1(1400)$ $\pi_2(1670)$ $a_2(1320)$ $a_4(1970)$	Resonance $I_{\pi\pi\pi}$ $\omega(782)$ 0 $h_1(1170)$ 0 $\omega_3(1670)$ 0 $\pi(1300)$ 1 $a_1(1260)$ 1 $\pi_1(1400)$ 1 $\pi_2(1670)$ 1 $a_2(1320)$ 1 $a_4(1970)$ 1

(with $\geq 3\pi$ decay modes)

O The two-body formalism is restricted to few inter **Exotics:** $T_{cc} \rightarrow DD^*, DD\pi$ **Roper:** $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$ O Many-body nuclear physics: 3N force, tritium nuclear **O** CP violation: $K \to 3\pi$, $K^0 \leftrightarrow 3\pi \leftrightarrow$

	Resonance	$I_{\pi\pi\pi}$	J^P
resting resonances	$\omega(782)$	0	1-
	$h_1(1170)$	0	1+
cleus	$\omega_3(1670)$	0	3-
	$\pi(1300)$	1	0-
	$a_1(1260)$	1	1+
$\rightarrow \overline{K}^0$	$\pi_1(1400)$	1	1-
	$\pi_2(1670)$	1	2^{-}
	$a_2(1320)$	1	2^{+}
	$a_4(1970)$	1	4^{+}

(with $\geq 3\pi$ decay modes)

O The two-body formalism is restricted to few **Exotics:** $T_{cc} \rightarrow DD^*, DD\pi$

Roper: $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

O Many-body nuclear physics: 3N force, tritium

O CP violation: $K \to 3\pi$, $K^0 \leftrightarrow 3\pi$

Major developments in the three-particle finit

[Hansen, Sharpe, PRD 2014 & 2015], [Hammer, Pang, Rusetsky, JHE [Mai, Döring, EPJA 2017]

[...]

[Blanton, FRL, Sharpe, JHEP 2019], [Hansen, FRL, Sharpe, JHEP 2020] [Hansen, FRL, Sharpe, JHEP 2021], [Blanton, FRL, Sharpe, JHEP 2022] [Draper, Hansen, <u>FRL</u>, Sharpe, JHEP 2023]

Fernando Romero-López, MIT

	Resonance	$I_{\pi\pi\pi}$	J^P
interesting resonances	$\omega(782)$	0	1-
	$h_1(1170)$	0	1^{+}
	$\omega_3(1670)$	0	3-
The nucleus $\overline{K} \leftrightarrow \overline{K}^0$ te-volume formalism $\overline{K} 2017] \times 2$	$\pi(1300)$	1	0-
	$a_1(1260)$	1	1^{+}
	$\pi_1(1400)$	1	1-
	$\pi_2(1670)$	1	2^{-}
	$a_2(1320)$	1	2^+
	$a_4(1970)$	1	4^{+}

(with $\geq 3\pi$ decay modes)

26/32

Relativistic three-particle formalism for identical particles [Hansen, Sharpe, PRD 2014 & 2015]

Relativistic three-particle formalism for identical particles [Hansen, Sharpe, PRD 2014 & 2015] 217 Spectrum E_{Δ} Quantization conditions $\det\left[\mathscr{K}_2 + F_2^{-1}\right] = 0$ 3TT Spectrum $\det_{k\ell m} \left[\frac{\mathscr{K}_{df,3} + F_3^{-1}}{3} \right] = 0$ E_{3} **Matrix indices describe** E_0 three on-shell particles

Relativistic three-particle formalism for identical particles [Hansen, Sharpe, PRD 2014 & 2015] 217 Spectrum E_{Δ} K-matrices Quantization conditions Kr $\det_{\mathscr{C}m} \left[\mathscr{K}_2 + F_2^{-1} \right] = 0$ Fil 3TT Spectrum $\det_{k\ell m} \left[\frac{\mathscr{K}_{df,3} + F_3^{-1}}{\mathscr{K}_{df,3} + F_3^{-1}} \right] = 0$ \mathcal{X} df,3 E_{3} E_0 **Matrix indices describe** Parametrize: three on-shell particles \mathcal{K}_2 = $\mathcal{K}_{\mathrm{df},3}=\mathcal{K}_{d}^{1}$

Fernando Romero-López, MIT

$$= c_0 + c_1 k^2 + \ldots \ {}_{{
m df},3}^{
m iso,0} + {\cal K}_{{
m df},3}^{
m iso,1} \Big(rac{s-9m^2}{9m^2} \Big) + \ldots$$

[Blanton, FRL, Sharpe, JHEP 2019]

Relativistic three-particle formalism for identical particles [Hansen, Sharpe, PRD 2014 & 2015] 217 Spectrum Scattering K-matrices amplitudes Quantization conditions M_{γ} $\det_{\ell m} \left[\mathscr{K}_2 + F_2^{-1} \right] = 0$ Unitarity relations Fil ALTERNA MARCHER 37 Spectrum $\det_{k\ell m} \left[\frac{\mathscr{K}_{df,3} + F_3^{-1}}{3} \right] = 0$ Integral *df*,3 JUL 3 equations [Briceño et al., PRD 2018] [Hansen et al., PRL 2021] [Jackura et al., PRD 2021] [Dawid et al., 2303.04394] E_0 **Matrix indices describe** Parametrize: three on-shell particles \mathcal{K}_2 = $\mathcal{K}_{\mathrm{df},3}=\mathcal{K}_{\mathrm{df},3}^{\mathrm{I}}$

Fernando Romero-López, MIT

$$= c_0 + c_1 k^2 + \ldots
onumber \ {}_{{
m df},3}^{{
m iso},0} + \mathcal{K}_{{
m df},3}^{{
m iso},1} igg(rac{s-9m^2}{9m^2} igg) + \ldots$$

[Blanton, FRL, Sharpe, JHEP 2019]

Relativistic three-particle formalism for identical particles [Hansen, Sharpe, PRD 2014 & 2015] 217 Spectrum Scattering K-matrices amplitudes Quantization conditions M_{γ} Unitarity $\det\left[\mathscr{K}_2 + F_2^{-1}\right] = 0$ relations Fil 37 Spectrum $\det_{k\ell m} \left[\frac{\mathscr{K}_{df,3} + F_3^{-1}}{3} \right] = 0$ `*df*,3 Integral JIL 2 equations [Briceño et al., PRD 2018] [Hansen et al., PRL 2021] [Jackura et al., PRD 2021] [Dawid et al., 2303.04394] E_0 **Matrix indices describe** Parametrize: three on-shell particles \mathcal{K}_2 = Experiments $\mathcal{K}_{\mathrm{df},3}=\mathcal{K}_{\mathrm{df},3}^{\mathrm{I}}$

Fernando Romero-López, MIT

resonance properties

$$= c_0 + c_1 k^2 + \ldots
onumber \ {
m df}_{
m df,3} + {\mathcal K}_{
m df,3}^{
m iso,1} igg(rac{s-9m^2}{9m^2} igg) + \ldots$$

[Blanton, FRL, Sharpe, JHEP 2019]

C Three-particle formalism applied to weakly-interacting (non-resonant) systems: $\pi^+\pi^+\pi^+$, $\pi^+\pi^+K^+$ [Blanton ... FRL ... et al., PRL 2020 & JHEP 2021], [Draper ... FRL ... et al., JHEP 2023], [Fischer ... FRL ... et al, EPJC 2021]

[Blanton ... <u>FRL</u>... et al., PRL 2020 & JHEP 2021], [Draper ... <u>FRL</u>... et al., JHEP 20 [Alexandrou et al, Brett et al, Culver et al, Hansen et al, Mai et al]

[Blanton ... FRL ... et al., PRL 2020 & JHEP 2021], [Draper ... FRL ... et al., JHEP 2023], [Fischer ... FRL ... et al, EPJC 2021] [Alexandrou et al, Brett et al, Culver et al, Hansen et al, Mai et al]

Example: M⁺M⁺ scallering

Lattice data: [Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe, JHEP 2021] NLO ChPT: [Baeza-Ballesteros, Bijnens, Husek, FRL, Sharpe, Sjö, JHEP 2023]

Fernando Romero-López, MIT

Three-maescola systems

 \bigcirc Three-particle formalism applied to weakly-interacting (non-resonant) systems: $\pi^+\pi^+\pi^+$, $\pi^+\pi^+K^+$

parametrized by the three-particle K-matrix

$$\mathcal{K}_{ ext{df},3} = \mathcal{K}_0 + \mathcal{K}_1igg(rac{s-9M_\pi^2}{9M_\pi^2}igg) + \cdots$$

- Formalism to study relevant three-pion resonances is available [Blanton, Sharpe, PRD 2021] x 2, [Hansen, FRL, Sharpe, JHEP 2021], [Mai et al (GWQCD), PRL 2021]
 - **Preparing formalism for T**_{cc} [Draper, Hansen, <u>FRL</u>, Sharpe, (in prep)]
- **Extensive lattice QCD data is still not available**

Formalism to study relevant three-pion resonances is available 0 [Blanton, Sharpe, PRD 2021] x 2, [Hansen, FRL, Sharpe, JHEP 2021], [Mai et al (GWQCD), PRL 2021]

> **Preparing formalism for T**_{cc} [Draper, Hansen, <u>FRL</u>, Sharpe, (in prep)]

Extensive lattice QCD data is still not available

Extract resonance properties on a toy model [Garofalo, Mai, <u>FRL</u>, Rusetsky, Urbach (2211.05605)] 0

$$\mathcal{L} = \sum_{i=0,1} \Bigl(\partial_\mu \phi_i^\dagger \partial_\mu \phi_i + m_i \phi_i^\dagger \phi_i + \lambda_i \phi_i^4 \Bigr) + rac{g}{2} \phi_1^\dagger$$

- Test formalism in a controlled setup
- Computationally cheaper
- Allows access to several volumes & energy levels

 $\phi_0^3 + h. c.$

Induces transitions:

 $p_1
ightarrow {f 3} \phi_0 \ M_1 > 3 M_0)$

Successfully determined properties of three-particle resonance for the first time!

Good agreement between methods

Next: QCD resonances. (e.g. $h_1(1170)$, T_{cc}^+ and Roper)

- **M** Lattice QCD provides a first-principle tool to investigate the hadron spectrum
- **M** Access to quantities that are hard experimentally, e.g. hyperons
- \checkmark Several studies of scattering lattice QCD: $\Delta(1232), \Lambda(1405)$
- **M** First results on three-particle resonances on a toy model

- **M** Lattice QCD provides a first-principle tool to investigate the hadron spectrum
- **M** Access to quantities that are hard experimentally, e.g. hyperons
- \checkmark Several studies of scattering lattice QCD: $\Delta(1232), \Lambda(1405)$
- **M** First results on three-particle resonances on a toy model
- **Present frontier: lattice data for three-particle meson resonances**
- **G** Further theoretical developments necessary
 - $N(1440) \rightarrow N\pi, N\pi\pi$ Roper resonance
 - ➡ Four or more particle resonances

- **M** Lattice QCD provides a first-principle tool to investigate the hadron spectrum
- **M** Access to quantities that are hard experimentally, e.g. hyperons
- \checkmark Several studies of scattering lattice QCD: $\Delta(1232), \Lambda(1405)$
- **M** First results on three-particle resonances on a toy model
- **Present frontier: lattice data for three-particle meson resonances**
- **G** Further theoretical developments necessary
 - $N(1440) \rightarrow N\pi, N\pi\pi$ Roper resonance
 - ➡ Four or more particle resonances

Qualitatively more complicated than the two-particle case!

Qualitatively more complicated than the two-particle case!

Qualitatively more complicated than the two-particle case!

Fernando Romero-López, MIT

pair-wise rescattering

can go on-shell (physical divergence)

Finite-volume formalism has been developed independently by three groups 0 **Generic Relativistic Field Theory (RFT)** [Hansen, Sharpe, PRD 2014 & 2015] Non-Relativistic EFT (NREFT) Equivalence has been established [Hammer, Pang, Rusetsky, JHEP 2017] x 2 [Jackura et al. PRD 2019], [Blanton, Sharpe, PRD 2020], [Jackura, 2208.10587] [Mai, Döring, EPJA 2017] Finite-Volume Unitarity (FVU)

Fernando Romero-López, MIT

$$\mathcal{M}_2(s) = rac{16\pi\sqrt{s}}{k\cot\delta(k) - ik},$$

 $k = \pm\sqrt{k^2}$

Fig. 1 Naming convention for the poles in the *k*-plane. The thick red line for positive real valued k marks the physical momenta in the scattering regime

[Matuschek et al, EPJA 2021]

Ο Three pions and three kaons at maximal isospin have been explored by different groups

[Alexandrou et al, PRD 2020], [Blanton et al., PRL 2020 & JHEP 2021], [Brett et al, PRD 2021], [Culver et al, PRD 2021], [Fischer et al, EPJC 2021], [Hansen et al, PRL 2021], [Mai et a PRL 2019 & 2021]

O Requires large sets of energy levels obtained using variational techniques

Using stochastic LapH method [Morningstar et al, PRD 2011]

$3K^+$ energy levels

Fernando Romero-López, MIT

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe, JHEP 2021]

$$\mathcal{K}_{df,3} \stackrel{\text{Depend of CM ener}}{\mathcal{K}_{df,3}} = \mathcal{K}_{df,3}^{\text{iso},0} + \mathcal{K}_{df,3}^{\text{iso},1} \Delta + \Delta = \frac{s - 9m^2}{9m^2}$$

- Relevant three-body systems involve nonidentical particles ($\pi\pi N$)
- First step: formalism for three nonidentical scal 0 [Blanton, Sharpe, PRD 2021] x 2, [Hansen, FRL, Sharpe, JHEP 20

determinant runs over an additional "flavor" index

Fernando Romero-López, MIT

lars
e.g.
$$\pi^+\pi^0\pi^-, K^+K^+\pi^+, D_s^+D^0\pi^-$$

021], [Mai et al (GWQCD), PRL 2021]

$\det_{k,\ell,m,\mathbf{f}}[1-\mathbf{K}_{\mathrm{df},3}(E^{\star})\mathbf{F}_{3}(E,\boldsymbol{P},L)]=0$

- Relevant three-body systems involve nonidentical particles ($\pi\pi N$) O
- First step: formalism for three nonidentical scal 0 [Blanton, Sharpe, PRD 2021] x 2, [Hansen, FRL, Sharpe, JHEP 20

$$\det_{k,\ell,m,\mathbf{f}}[1-\mathbf{K}_{\mathrm{df},}]$$

determinant runs over an additional "flavor" index

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1}\Delta + \mathcal{K}_{\mathrm{df},3}^{B,1}\Delta_2^S + \mathcal{K}_{\mathrm{df},3}^{E,1} ilde{t}$$

$$\Delta = rac{s-M}{M^2} ~~~ ilde{t}_{22} = rac{\left(p_2-p_2'
ight)^2}{M^2} ~~~ \Delta_2 = rac{\left(p_1+p_{1'}
ight)^2-2}{M^2}$$

Fernando Romero-López, MIT

lars e.g.
$$\pi^+\pi^0\pi^-,~K^+K^+\pi^+,~D^+_sD^0\pi^-$$

021], [Mai et al (GWQCD), PRL 2021]

$[_{3}(E^{\star})\mathbf{F}_{3}(E, \mathbf{P}, L)] = 0$

22

 $-\,4m_{1}^{2}$

- Relevant three-body systems involve nonidentical particles ($\pi\pi N$)
- **First step: formalism for three nonidentical scalars** [Blanton, Sharpe, PRD 2021] x 2, [Hansen, FRL, Sharpe, JHEP 2021], [Mai et al (GWQCD), PRL 2021]

 $\det_{k,\ell,m,\mathbf{f}}[1 - \mathbf{K}_{df,3}(E^{\star})\mathbf{F}_{3}(E, \mathbf{P}, L)] = 0$

determinant runs over an additional "flavor" index

$$\begin{aligned} & \mathcal{K}^{+}\mathcal{K}^{+} \text{ scallering} \\ & \mathcal{K}_{\mathrm{df},3} = \mathcal{K}^{\mathrm{iso},0}_{\mathrm{df},3} + \mathcal{K}^{\mathrm{iso},1}_{\mathrm{df},3} \Delta + \mathcal{K}^{B,1}_{\mathrm{df},3} \Delta_{2}^{S} + \mathcal{K}^{E,1}_{\mathrm{df},3} \end{aligned}$$

Example:

$$\Delta = rac{s-M}{M^2} ~~~ ilde{t}_{22} = rac{\left(p_2 - p_2'
ight)^2}{M^2} ~~~ \Delta_2 = rac{\left(p_1 + p_{1'}
ight)^2 - M^2}{M^2}$$

Fernando Romero-López, MIT

e.g. $\pi^+\pi^0\pi^-,\,K^+K^+\pi^+,\,D^+_sD^0\pi^-$

[Draper, Hanlon, Hörz, Morningstar, FRL, Sharpe (in preparation)] [Talk by S. Sharpe]

Integral equations (RFT Contraction and marked in section in an animal the second second Final step Physical 3->3 amplitude M_{z} $\mathcal{K}_2, \mathcal{K}_{df,3}$ Integral equations ĸĸĸŎŢŦĸſĊĊſĸŖŊĊŎŎĔĸĸĊĊŶĊŦĔĿĿŢŶĊĹĬĬſĊĬĿĿĊŴŢĬŢſŎŢŦĸſĊĊŦŖŊĊŎĔŔĸĿĊŶŶĔŦĔĿĿŖ

Integral equations (RF Final step Physical 3->3 amplitude M_{2} $\mathcal{K}_2, \mathcal{K}_{df,3}$ Integral equations

Particle-Dimer phase shift [Jackura et al.]

Final step $\mathscr{K}_2, \mathscr{K}_{df,3}$ M2 Integral equations

$\det_{k\ell m} \left[\mathcal{K}_{\mathrm{df},3} + F_3^{-1} ight] = 0$

Fernando Romero-López, MIT

Quantization Condition

 $\det_{k\ell m} \left[\mathcal{K}_{\mathrm{df},3} + F_3^{-1} \right] = 0$ $(E-\omega_k, \vec{P}-\vec{k})$ $\hat{a}^* \longrightarrow \ell, m$ BOOST $(\omega_k, ec k)$ [\dot{k} of the spectator] x [ℓm of the "pair"]

Quantization Condition

 $\det_{k\ell m} \left[\mathcal{K}_{\mathrm{df},3} \leftarrow F_3^{-1} \right]$)=0 $(E-\omega_k, \vec{P}-\vec{k})$ $\hat{a}^* \longrightarrow \ell, m$ BOOST $(\omega_k,ec k)$ [k of the spectator] x [ℓm of the "pair"]

Finite-volume information & two-body interactions

$$F_3 = rac{1}{L^3} igg[rac{F}{3} - F rac{1}{(\mathcal{K}_2)^{-1} + F + G} F igg]$$

 $\det_{k\ell m} \left[\mathcal{K}_{\mathrm{df},3} \leftarrow F_3^{-1} \right]$)=0 $(E - \omega_k, \vec{P} - \vec{k})$ $\hat{a}^* \longrightarrow \ell, m$ BOOST $(\omega_k,ec k)$ [k of the spectator] x [ℓm of the "pair"] (a) (b) \mathbf{F} $F_{00}ig(q^2ig) \sim \left| rac{1}{L^3} \sum_{ec{k}} - \int rac{d^3k}{(2\pi)^3}
ight| rac{1}{k^2-q^2}$ Fernando Romero-López, MIT

Finite-volume information & two-body interactions

$$F_3 = rac{1}{L^3} igg[rac{F}{3} - F rac{1}{(\mathcal{K}_2)^{-1} + F + G} F igg]$$

- Relevant three-body systems involve nonidentical particles ($\pi\pi N$) 0
- Let us consider mass-degenerate pions with different flavor O [Hansen, <u>FRL</u>, Sharpe, JHEP 2020]

- All pions have the same mass
- Overall isospin is conserved
- Presence of resonances
- Example of multi-channel scattering

e.g. $\pi^+\pi^0\pi^-$

 $I_{\pi\pi\pi}=0$

 $I_{\pi\pi\pi} = 2$

 $I_{\pi\pi\pi} = 1$

