Non-perturbative characteristics of (QCD) spectral functions at finite temperature

Peter Lowdon

(Goethe University Frankfurt)

Talk outline

- 1. QFT beyond the vacuum
- 2. The importance of spectral functions
- 3. Causality constraints
- 4. Spectral properties from Euclidean data
- 5. Revisiting T > 0 perturbation theory

1. QFT beyond the vacuum

 To describe physical phenomena in "extreme environments" one must understand of how QFT applies to systems that are hot, dense, or both

[[]Skyworks Digital Inc.]

• Correlation functions are the building blocks of any QFT \rightarrow they encode the dynamical properties that arise due to changes in temperature $T=1/\beta$ or density. In this talk we will restrict to vanishing density.

$$\langle \Omega_{\beta} | \phi(x_1) \cdots \phi(x_n) | \Omega_{\beta} \rangle$$

2. The importance of spectral functions

• At finite T spectral functions $\rho(\omega, \mathbf{p})$ play a particularly important role

$$\rho(\omega, \vec{p}) = \int d^4x \ e^{i(\omega x_0 - \vec{p} \cdot \vec{x})} \langle \Omega_\beta | \left[\phi(x), \phi(0) \right] | \Omega_\beta \rangle$$

• Spectral functions also enter into the calculation of numerous important observables (transport coefficients, particle production rates, etc.)

Important question: can general spectral function characteristics be disentangled from model-dependent effects?

3. Causality constraints

- Finite temperature QFT is *significantly* less well-understood than in vacuum, but important progress has been made for spectral functions
- For scalar fields, the fields being local, i.e. [Φ(x),Φ(y)]=0 for (x-y)²< 0, implies the following general representation*

$$\rho(\omega, \vec{p}) = \int_0^\infty ds \int \frac{d^3 \vec{u}}{(2\pi)^2} \ \epsilon(\omega) \ \delta\left(\omega^2 - (\vec{p} - \vec{u})^2 - s\right) \widetilde{D}_\beta(\vec{u}, s)$$

"Thermal spectral density"

 This is the T > 0 generalisation of the well-known Källén-Lehmann spectral representation

$$\rho(\omega, \vec{p}) \xrightarrow{\beta \to \infty} 2\pi \epsilon(\omega) \int_0^\infty ds \ \delta(p^2 - s) \ \rho(s) \qquad \qquad \text{e.g. } \rho(s) = \delta(s - m^2) \text{ for a massive free theory}$$

• Determining the properties of $\widetilde{D}_{\beta}(\boldsymbol{u},s)$ is clearly key to understanding how in-medium effects manifest themselves in $\rho(\boldsymbol{\omega},\boldsymbol{p})$

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys. Theor. 64 (1996)

3. Causality constraints

 <u>Proposition</u>: the medium contains "Thermoparticles": particle-like constituents which differ from collective quasi-particle excitations, and show up as *discrete* contributions [Bros, Buchholz, NPB 627 (2002)]

$$\widetilde{D}_{\beta}(\vec{u},s) = \widetilde{D}_{m,\beta}(\vec{u})\,\delta(s-m^2) + \widetilde{D}_{c,\beta}(\vec{u},s)$$

- → Thermoparticle components reduce to those of a vacuum particle state with mass *m* in the limit $T \rightarrow 0$
- → Non-trivial "Damping factor" $D_{\beta}(\boldsymbol{u})$ results in thermally-broadened peaks in the spectral function, i.e. parametrises the effects of collisional broadening
- → Component $\widetilde{D}_{c,\beta}(\boldsymbol{u},s)$ contains all other types of excitations, including those that are *continuous* in *s*

• In many instances *Euclidean* data is used to calculate T > 0 observables, e.g. spectral functions $\rho_{\Gamma}(\omega, p)$ from $C_{\Gamma}(\tau, \vec{x}) = \langle O_{\Gamma}(\tau, \vec{x}) O_{\Gamma}(0, \vec{0}) \rangle_{T}$ where O_{Γ} is some particle-creating operator

$$\widetilde{C}_{\Gamma}(\tau, \vec{p}) = \int_0^\infty \frac{d\omega}{2\pi} \frac{\cosh\left[\left(\frac{\beta}{2} - |\tau|\right)\omega\right]}{\sinh\left(\frac{\beta}{2}\omega\right)} \rho_{\Gamma}(\omega, \vec{p})$$

- \rightarrow Determine $\rho_{\Gamma}(\omega, \mathbf{p})$ given $C_{\Gamma}(\tau, \mathbf{p})$: problem is ill-conditioned, need more information!
- Another quantity of interest in lattice studies is the spatial correlator

$$C_{\Gamma}(x_3) = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} d\tau C_{\Gamma}(\tau, \vec{x}) = \int_{-\infty}^{\infty} \frac{dp_3}{2\pi} e^{ip_3 x_3} \int_{0}^{\infty} \frac{d\omega}{\pi\omega} \rho_{\Gamma}(\omega, p_1 = p_2 = 0, p_3)$$

• Large- x_3 behaviour $C_{\Gamma}(x_3) \sim \exp(-m_{scr}|x_3|)$ used to extract "screening masses" $m_{scr}(T)$

[HotQCD collaboration, PRD 100 (2019)]

<u>Goal</u>: Use the additional constraints imposed by causality to better understand how spectral features manifest themselves in Euclidean data

• Causality implies a general connection between the spatial correlator and thermal spectral density [P.L., *PRD* 106 (2022); P.L., O. Philipsen, *JHEP* 10, 161 (2022)]

$$C(x_3) = \frac{1}{2} \int_0^\infty ds \int_{|x_3|}^\infty dR \ e^{-R\sqrt{s}} D_\beta(R,s) -$$
Thermal spectral density in position space

→ Thermoparticle states give rise to $C(x_3)$ contributions that are particularly significant in the large- x_3 region

$$C(x_3) \approx \frac{1}{2} \sum_{i=1}^n \int_{|x_3|}^\infty dR \ e^{-m_i R} D_{m_i,\beta}(R)$$

• Once the damping factors of these states are know one can use the T > 0spectral representation to compute their analytic contribution to $\rho(\omega, \mathbf{p})$

- Can now apply these relations to QCD lattice data [P.L., O. Philipsen, 2022]
 - → Use data [Rohrhofer et al. *PRD* 100 (2019)] for spatial correlator $C_{PS}(x_3)$ of lightquark pseudo-scalar meson operator $\mathcal{O}_{PS}^a = \overline{\psi}\gamma_5\frac{\tau^a}{2}\psi$

<u>Step 1</u>: Perform fits to $C_{PS}(x_3)$ data to obtain the functional dependence at different temperatures (T = 220-960 MeV) $\rightarrow c_1 \exp(-m_\pi x_3) + c_2 \exp(-m_\pi x_3)$ describes data well

Contribution of 2 lowest-lying states, π and π^*

<u>Step 2</u>: If π and π^* are thermoparticle-type states for T > 0, then:

→ Fit ansatz implies $D_{m_i,\beta}(\vec{x}) = \alpha_i e^{-\gamma_i |\vec{x}|}$ with screening masses $m_i(T) = m_i(T=0) + \gamma_i(T)$, $i = \pi, \pi^*$

<u>Step 3</u>: Using $D_{m,\beta}(\mathbf{x})$ and spectral representation one can compute $\rho_{PS}(\omega, \mathbf{p})$ contributions:

<u>Non-trivial test</u>: Since procedure gives the full analytic structure of $\rho_{PS}(\omega, \mathbf{p})$ due to thermoparticle contributions, one can use this to **predict** the form of the corresponding temporal correlator $\widetilde{C}_{PS}(\tau, \mathbf{p})$

- The spatial and temporal correlators have very different $\rho_{PS}(\omega, p)$ dependencies \rightarrow a highly non-trivial check!
- Using the T = 220 MeV p = 0 temporal data from [Rohrhofer et al. *PLB* 802 (2020)] one obtains:

 No matter the procedure, comparing temporal and spatial correlator predictions is an important test for any extracted spectral function

 Work is ongoing [D. Bala, O. Kaczmarek, P. Lowdon, O. Philipsen, and T. Ueding] to apply this approach to pseudo-scalar mesons involving heavier quarks (light-strange and strange-strange)

- The temporal correlator predictions are now *also* compared for $\boldsymbol{p} > 0$
 - → Consistent predictions are obtained in both light-strange and strangestrange channels!
- This approach is straight-forwardly generalisable to higher spin states (work in progress...)

- It has long been understood that finite-temperature perturbation theory has complications: non-analytic contributions, IR divergences, ...
- In fact, more specifically, Weldon [*PRD* 65 (2002)] showed that the perturbative procedure in Φ^4 theory fails at 2-loop order because the self-energy $\Pi(k)$ has a branch point on the perturbative mass shell $k_0 = E(k)$
 - → This is a generic feature of perturbative computations that use free thermal propagators, or in fact any propagators that have a real dispersion relation $p_0=E(p)$

$$D_R(P) = \frac{1}{(p_0 + i\epsilon)^2 - E^2(p)}$$

 Physically, this arises due to the incompatibility of the KMS condition with on-shell states and non-zero interactions [Landsman, Ann. Phys. 186, 141 (1988)] (Narnhofer-Requardt-Thirring Theorem [Commun. Math. Phys. 92, 247 (1983)])

Idea: Start with propagators that are off shell [Weldon, 2002]

• The logic is that interactions with the thermal medium persist, even for large times $x_0 \rightarrow need$ to take into account in the definition of scattering states

 \rightarrow But how does one decide what form these propagators should take?

• With decomposition $\tilde{D}_{\beta}(\vec{u},s) = \tilde{D}_{m,\beta}(\vec{u}) \,\delta(s-m^2) + \tilde{D}_{c,\beta}(\vec{u},s)$ one can prove that the thermoparticle component *dominates* the two-point function $\langle \Omega_{\beta} | \phi(x) \phi(0) | \Omega_{\beta} \rangle$ at large x_0 [Bros, Buchholz, NPB 627 (2002)]

→ Thermoparticles are a natural asymptotic thermal state candidate!

<u>Idea</u>: thermal scattering states are defined by imposing an asymptotic field condition [Bros, Buchholz, *NPB* 627 (2002)]:

Asymptotic fields Φ_0 are assumed to satisfy dynamical equations, but only at large x_0

- The thermoparticle damping factor $\widetilde{D}_{m,\beta}(u)$ is **uniquely fixed** by the asymptotic field equation
 - → This means that the non-perturbative effects experienced by thermoparticle states are controlled by the asymptotic dynamics
- Given $D_{m,\beta}(u)$ one can simply combine this together with the spectral representation to compute the explicit form of the thermoparticle propagator or spectral function

 Can then start to perform perturbative calculations with *this* propagator instead of a free field propagator → suggested that this could give rise to an IR-regularised perturbative expansion for T > 0 [Bros, Buchholz hep-th/9511022]

Example: Φ^4 theory [PL, O. Philipsen, in preparation]

→ Thermoparticle propagator: (*Width parameter* $\kappa \sim \sqrt{|\lambda|T}$)

$$\widetilde{G}_{\beta}^{(-)}(k_0, \vec{p}) = \frac{1}{4|\vec{p}|\kappa} \ln\left[\frac{-k_0^2 + m^2 + (|\vec{p}| + \kappa)^2}{-k_0^2 + m^2 + (|\vec{p}| - \kappa)^2}\right]$$

- → Spectral function already has a width at 1-loop order (and is renormalisable)
- → At 2-loop the thermoparticle peak plays a dominant role at low energies

Summary & outlook

- Causality imposes **non-perturbative** constraints for T > 0 which have • significant implications
 - \rightarrow Spectral properties of thermal correlation functions
 - \rightarrow Connection between real-time observables and Euclidean correlators
 - \rightarrow New insights into the characteristics of perturbation theory
- So far, only real scalar fields ϕ with T > 0 have been considered, but this ۲ approach *can* be extended
 - \rightarrow Other hadronic states (baryons, exotic states, ...)
 - \rightarrow Higher spin fields/states (fermions, vectors, ...) Work in progress!
 - \rightarrow Non-vanishing density, $|\mu| > 0$
- Ultimately, these constraints and methods can help in gaining a better • understanding of the phase structure of QCD

Backup: Euclidean spectral relations

- One can use the assumptions of local QFT at finite T to put constraints on the the structure of Euclidean correlation functions
 - → From the KMS condition and locality:

$$\mathcal{W}_E(\tau, \vec{x}) = \frac{1}{\beta} \sum_{N=-\infty}^{\infty} w_N(\vec{x}) e^{\frac{2\pi i N}{\beta}\tau}$$

• The Fourier coefficients of the Euclidean two-point function are then related to the thermal spectral density as follows [P.L., *PRD* 106 (2022)]:

$$w_N(\vec{x}) = \frac{1}{4\pi |\vec{x}|} \int_0^\infty ds \ e^{-|\vec{x}|\sqrt{s + \omega_N^2}} D_\beta(\vec{x}, s)$$

• With the Bros-Buchholz decomposition this becomes

$$w_N(\vec{x}) = \frac{1}{4\pi |\vec{x}|} \left[D_m(\vec{x}) e^{-|\vec{x}|\sqrt{m^2 + \omega_N^2}} + \int_0^\infty ds \, e^{-|\vec{x}|\sqrt{s + \omega_N^2}} D_c(\vec{x}, s) \right]$$

 \rightarrow The continuous component $D_c(\mathbf{x},s)$ is increasingly suppressed for large $|\mathbf{x}|$

Backup: Damping factors from asymptotic dynamics

• Applying the asymptotic field condition for ϕ^4 theory, the resulting damping factors have the form [Bros, Buchholz, 2002]:

$$\rightarrow \text{ For } \boldsymbol{\lambda} < \mathbf{0}: \quad D_{m,\beta}(\vec{x}) = \frac{\sin(\kappa |\vec{x}|)}{\kappa |\vec{x}|} \quad \rightarrow \text{ For } \boldsymbol{\lambda} > \mathbf{0}: \quad D_{m,\beta}(\vec{x}) = \frac{e^{-\kappa |\vec{x}|}}{\kappa_0 |\vec{x}|}$$

where κ is defined with r = m/T: $\kappa = T\sqrt{|\lambda|}K(r), \quad K(r) = \sqrt{\int \frac{d^3\hat{\vec{q}}}{(2\pi)^3 2\sqrt{|\hat{\vec{q}}|^2 + r^2}} \frac{1}{e^{\sqrt{|\hat{\vec{q}}|^2 + r^2}} - 1}}$

→ The parameter κ has the interpretation of a thermal width: $\kappa \rightarrow 0$ for $T \rightarrow 0$, or equivalently κ^{-1} is mean-free path

• Now that one has the exact dependence of $D_{m,\beta}(\mathbf{x})$ on the external physical parameters, in this case T, m and λ , one can use this to calculate observables *analytically*

Backup: Analytic shear viscosity computation

- Of particular interest is the *shear viscosity* η , which measures the resistance of a medium to sheared flow
 - \rightarrow This quantity can be determined from the spectral function of the spatial traceless energy-momentum tensor

$$\rho_{\pi\pi}(p_0) = \lim_{\vec{p} \to 0} \mathcal{F}\left[\langle \Omega_\beta | \left[\pi^{ij}(x), \pi_{ij}(y) \right] | \Omega_\beta \rangle \right](p)$$

... and η is recovered via the Kubo relation

$$\eta = \frac{1}{20} \lim_{p_0 \to 0} \frac{d\rho_{\pi\pi}}{dp_0}$$

• Using $D_{m,\beta}(\textbf{\textit{x}})$ for $\lambda < 0$, the EMT spectral function $ho_{\pi\pi}$ has the form:

- The presence of interactions causes resonant peaks to appear \rightarrow peaked when $p_0 \sim \kappa = 1/\ell$
- For $\lambda{\rightarrow}0$ the free-field result is recovered, as expected
- The dimensionless ratio m/T controls the magnitude of the peaks

Backup: Analytic shear viscosity computation

Applying Kubo's relation, the shear viscosity η₀ arising from the asymptotic states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, *PRD* 104 (2021)]

$$\eta_0 = \frac{T^3}{15\pi} \left[\frac{\mathcal{K}_3\left(\frac{m}{T}, 0, \infty\right)}{\sqrt{|\lambda|}} + \sqrt{|\lambda|} \mathcal{K}_1\left(\frac{m}{T}, 0, \infty\right) + \frac{\mathcal{K}_4\left(\frac{m}{T}, \sqrt{|\lambda|} K\left(\frac{m}{T}\right), \sqrt{|\lambda|} K\left(\frac{m}{T}\right)\right)}{4|\lambda|} \right]$$

 \rightarrow For fixed coupling, η_0/T^3 is entirely controlled by functions of m/T

Backup: Shear viscosity from FRG data

• Locality constraints imply that particle damping factors $D_{m,\beta}(x)$ can also be calculated from Euclidean momentum space data [P.L., *PRD* 106 (2022)]

$$D_{m,\beta}(\vec{x}) \sim e^{|\vec{x}|m} \int_0^\infty \frac{d|\vec{p}|}{2\pi} \ 4|\vec{p}| \sin(|\vec{p}||\vec{x}|) \ \widetilde{G}_\beta(0,|\vec{p}|).$$
 propagator

Holds for large separation $|\mathbf{x}|$

- In [P.L., R.-A. Tripolt, PRD 106 (2022)] pion propagator data from the quarkmeson model (FRG calculation) was used to compute the damping factor at different values of T via the analytic relation above
- Fits to the resulting data were consistent with the form:

$$D_{m_{\pi},\beta}(\vec{x}) = \alpha_{\pi} e^{-\gamma_{\pi}|\vec{x}|}$$

calculations, e.g. shear viscosity Similar qualitative features to results from chiral perturbation theory

• $D_{m,\beta}(\mathbf{x})$ can then be used as input for

