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1. QFT beyond the vacuum
● To describe physical phenomena in “extreme environments” one 

must understand of how QFT applies to systems that are hot, 
dense, or both            

● Correlation functions are the building blocks of any QFT → they encode 
the dynamical properties that arise due to changes in temperature 
T=1/β or density. In this talk we will restrict to vanishing density.  

[Brookhaven National Lab] [Skyworks Digital Inc.] 
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2. The importance of spectral functions

● At finite T spectral functions ρ( ,ω p) play a particularly important role        
      

● Spectral functions also enter into the calculation of numerous important 
observables (transport coefficients, particle production rates, etc.) 

Important question: can general spectral function characteristics be 
disentangled from model-dependent effects? 

 

             

Peak locations and their 
dispersion are related to the 
dynamics of the medium and 

the underlying degrees of 
freedom of the theory  
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3. Causality constraints

● Finite temperature QFT is significantly less well-understood than in 
vacuum, but important progress has been made for spectral functions 

● For scalar fields, the fields being local, i.e. [Φ(x),Φ(y)]=0 for (x-y)2< 0, 
implies the following general representation*

  

● This is the T > 0 generalisation of the well-known Källén-Lehmann 
spectral representation 

 
         

● Determining the properties of Dβ(u,s) is clearly key to understanding 
how in-medium effects manifest themselves in ρ( ,ω p) 

“Thermal spectral density” 

e.g. ρ(s)=δ(s-m2) for 
a massive free theory  

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996)

~
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● Proposition: the medium contains “Thermoparticles”: particle-like constituents 
which differ from collective quasi-particle excitations, and show up as discrete 
contributions [Bros, Buchholz, NPB 627 (2002)]

 

→ Thermoparticle components reduce to those of a vacuum particle state with               
    mass m in the limit T → 0

→ Non-trivial “Damping factor” Dβ(u) results                                                         
    in thermally-broadened peaks in the spectral                                                       
    function, i.e. parametrises the effects of                                                             
    collisional broadening 

→ Component Dc,β(u,s) contains all other                                                              
    types of excitations, including those that                                                            
    are continuous in s

             

3. Causality constraints

 Broadening from Dm,β(u) 
is model dependent 

Dc,β(u,s) contributions  

~

~
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● In many instances Euclidean data is used to calculate T > 0 observables, 
e.g. spectral functions ρΓ( ,ω p) from                                where OΓ is 
some particle-creating operator                  

● Another quantity of interest in lattice studies is the spatial correlator 

 

             

→  Determine ρΓ( ,ω p) given CΓ(τ,p): problem is ill-conditioned, need more information!

● Large-x3 behaviour CΓ (x3) ~ exp(-mscr|x3|)  
used to extract “screening masses” mscr(T ) [HotQCD collaboration, 

PRD 100 (2019)]

4. Spectral properties from Euclidean data

~
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● Causality implies a general connection between the spatial correlator and 
thermal spectral density [P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]

● Once the damping factors of these states are know one can use the T > 0 
spectral representation to compute their analytic contribution to ρ( ,ω p)  

  

             

→  Thermoparticle states give rise to C(x3)       
      contributions that are particularly              
      significant in the large-x3 region

4. Spectral properties from Euclidean data

Goal: Use the additional constraints imposed by causality to better understand 
        how spectral features manifest themselves in Euclidean data

Thermal spectral density 
in position space 
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Step 1: Perform fits to CPS(x3) data to obtain the functional dependence at different            
temperatures (T = 220-960 MeV) → c1 exp(-m  π x3) + c2 exp(-m * π x3) describes data well  

       

Step 2: If π and π* are thermoparticle-type states for T > 0, then: 

Step 3: Using Dm,β(x) and spectral representation one can compute ρPS( ,ω p) contributions: 

● Can now apply these relations to QCD lattice data [P.L., O. Philipsen, 2022] 

 → Use data [Rohrhofer et al. PRD 100 (2019)] for spatial correlator CPS(x3) of light-      
     quark pseudo-scalar meson operator

Contribution of 2 lowest-lying states, π and π*

→  Fit ansatz implies                           with screening masses  

4. Spectral properties from Euclidean data

π

π*
π

π*

π peak at 
T ~1.2 Tpc
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Non-trivial test: Since procedure gives the full analytic structure of ρPS(ω,p) 
due to thermoparticle contributions, one can use this to predict the form 
of the corresponding temporal correlator CPS(τ,p)

● The spatial and temporal correlators have very different ρPS(ω,p) 
dependencies → a highly non-trivial check!

● Using the T = 220 MeV p = 0 temporal data from [Rohrhofer et al. PLB 802 
(2020)] one obtains:

● No matter the procedure, comparing temporal and spatial correlator 
predictions is an important test for any extracted spectral function  

~

4. Spectral properties from Euclidean data

Prediction matches the data well for 
large ,τ  and then begins to undershoot 
→ Missing contributions from higher   
    excited states
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4. Spectral properties from Euclidean data

● Work is ongoing [D. Bala, O. Kaczmarek, P. Lowdon, O. Philipsen, and T. Ueding] to 
apply this approach to pseudo-scalar mesons involving heavier quarks 
(light-strange and strange-strange)

● The temporal correlator predictions are now also compared for p > 0       
→ Consistent predictions are obtained in both light-strange and strange-    
     strange channels! 

● This approach is straight-forwardly generalisable to higher spin states 
(work in progress...)  

Preliminary
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5. Revisiting T > 0 perturbation theory

● It has long been understood that finite-temperature perturbation theory has 
complications: non-analytic contributions, IR divergences, ...  

● In fact, more specifically, Weldon [PRD 65 (2002)] showed that the perturbative 
procedure in Φ4 theory fails at 2-loop order because the self-energy Π(k) has a 
branch point on the perturbative mass shell k0=E(k)

→ This is a generic feature of perturbative                                             
    computations that use free thermal                                                   
    propagators, or in fact any propagators                                               
    that have a real dispersion relation p0=E(p) 

● Physically, this arises due to the incompatibility of the KMS condition with 
on-shell states and non-zero interactions [Landsman, Ann. Phys. 186, 141 (1988)] 
(Narnhofer-Requardt-Thirring Theorem [Commun. Math. Phys. 92, 247 (1983)])  
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5. Revisiting T > 0 perturbation theory

Idea: Start with propagators that are off shell [Weldon, 2002]

● The logic is that interactions with the thermal medium persist, even for large 
times x0  → need to take into account in the definition of scattering states

→ But how does one decide what form these propagators should take?

● With decomposition                                     one can prove that the 
thermoparticle component dominates the two-point function                        
at large x0  [Bros, Buchholz, NPB 627 (2002)]          

x0 

 

∞-∞

→ Thermoparticles are a natural asymptotic thermal state candidate!
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Idea: thermal scattering states are defined by imposing an asymptotic field 
condition [Bros, Buchholz, NPB 627 (2002)]:

    

● The thermoparticle damping factor Dm,β(u) is uniquely fixed by the asymptotic 
field equation

→ This means that the non-perturbative effects experienced by                    
    thermoparticle states are controlled by the asymptotic dynamics

● Given Dm,β(u) one can simply combine this together with the spectral 
representation to compute the explicit form of the thermoparticle propagator 
or spectral function    

  

            

●  

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory

“Asymptotic mass”

~

5. Revisiting T > 0 perturbation theory
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● Can then start to perform perturbative calculations with this propagator 
instead of a free field propagator → suggested that this could give rise to an 
IR-regularised perturbative expansion for T > 0 [Bros, Buchholz hep-th/9511022]  

Example: Φ4 theory [PL, O. Philipsen, in preparation]

→ Thermoparticle propagator:

 

→ Spectral function already has a width                                                
    at 1-loop order (and is renormalisable)

→ At 2-loop the thermoparticle peak                                                    
    plays a dominant role at low energies                                               

5. Revisiting T > 0 perturbation theory

(Width parameter              )



 16

Summary & outlook 

● Causality imposes non-perturbative constraints for T > 0 which have 
significant implications

       →  Spectral properties of thermal correlation functions

      →  Connection between real-time observables and Euclidean correlators 

      →  New insights into the characteristics of perturbation theory     

● So far, only real scalar fields Φ with T > 0 have been considered, but this 
approach can be extended

      →  Other hadronic states (baryons, exotic states, ...)

      →  Higher spin fields/states (fermions, vectors, ...)

      →  Non-vanishing density, |μ|>0

● Ultimately, these constraints and methods can help in gaining a better 
understanding of the phase structure of QCD 

Work in progress!
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● One can use the assumptions of local QFT at finite T to put constraints on 
the the structure of Euclidean correlation functions

       

● The Fourier coefficients of the Euclidean two-point function are then related 
to the thermal spectral density as follows [P.L., PRD 106 (2022)]:   

● With the Bros-Buchholz decomposition this becomes

 

 
→ The continuous component Dc(x,s) is increasingly suppressed for large |x|

→  From the KMS condition and locality:

Backup: Euclidean spectral relations
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● Applying the asymptotic field condition for Φ4 theory, the resulting damping 
factors have the form [Bros, Buchholz, 2002]:

where  κ is defined with r =m/T:

● Now that one has the exact dependence of Dm,β(x) on the external physical 
parameters, in this case T, m and λ, one can use this to calculate observables 
analytically                

 

→  For λ < 0: →  For λ > 0:

    →  The parameter  has the interpretation of a thermal             κ
         width: κ→0 for T→0, or equivalently κ-1 is mean-free path    

Backup: Damping factors from asymptotic dynamics
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● Of particular interest is the shear viscosity η, which measures the resistance of 
a medium to sheared flow

→ This quantity can be determined from the spectral function of the            
    spatial traceless energy-momentum tensor 

     ... and η is recovered via the Kubo relation

● Using Dm,β(x) for  λ < 0, the EMT spectral function ρ  ππ has the form: 

● The presence of interactions causes resonant 
peaks to appear → peaked when p0 ~ =κ 1/   ℓ

● For λ→0 the free-field result is recovered, as 
expected

● The dimensionless ratio m/T controls the 
magnitude of the peaks    

Backup: Analytic shear viscosity computation
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● Applying Kubo’s relation, the shear viscosity η0 arising from the asymptotic 
states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104 (2021)] 

      

Dominant component 
for small |λ| For large |λ|, η0 ~ |λ|

Global minima

Magnitude of large |λ| 
growth controlled by m/T  

→  For fixed coupling, η0/T 
3 is entirely controlled by functions of m/T 

Backup: Analytic shear viscosity computation
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Backup: Shear viscosity from FRG data

● Locality constraints imply that particle damping factors Dm,β(x) can also be 
calculated from Euclidean momentum space data [P.L., PRD 106 (2022)]

● In [P.L., R.-A. Tripolt, PRD 106 (2022)] pion propagator data from the quark-
meson model (FRG calculation) was used to compute the damping factor 
at different values of T via the analytic relation above

● Fits to the resulting data were consistent with the form:
● Dm,β(x) can then be used as input for                                    

calculations, e.g. shear viscosity      

   

 

             

p-space Euclidean 
propagator

Holds for large separation |x|

mπ=106 MeV

Similar qualitative features to results 
from chiral perturbation theory
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