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1. QFT beyond the vacuum

* To describe physical phenomena in “extreme environments” one

must understand of how QFT applies to systems that are hot,

dense, or both

[Brookhaven National Lab] [Skyworks Digital Inc.]

* Correlation functions are the building blocks of any QFT — they encode
the dynamical properties that arise due to changes in temperature
T=1/PB or density. In this talk we will restrict to vanishing density.
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2. The importance of spectral functions

* At finite T spectral functions p(w,p) play a particularly important role
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* Spectral functions also enter into the calculation of numerous important

observables (transport coefficients, particle production rates, etc.)

Important question: can general spectral function characteristics be

disentangled from model-dependent effects?



3. Causality constraints

* Finite temperature QFT is significantly less well-understood than in

vacuum, but important progress has been made for spectral functions

* For scalar fields, the fields being local, i.e. [®(x),®(y)]=0 for (x-y)’< 0,
implies the following general representation*

(w,p) = /d‘s/da‘ (w) 6 (w?® — (F—@)* — s) Dg(id, s)
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* This is the T > 0 generalisation of the well-known Kallén-Lehmann

spectral representation
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* Determining the properties of Eﬁ(u,s) is clearly key to understanding

how in-medium effects manifest themselves in p(w,p)

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys. Theor. 64 (1996)



3. Causality constraints

* Proposition: the medium contains “Thermoparticles”: particle-like constituents

which differ from collective quasi-particle excitations, and show up as discrete
contributions [Bros, Buchholz, NPB 627 (2002)]

— —

Dy (i, s) = Dy, (@) 6(s — m?2) + D, g(, s)

— Thermoparticle components reduce to those of a vacuum particle state with
mass m in the limit T — 0

— Non-trivial “Damping factor” Dy(u) results
in thermally-broadened peaks in the spectral
function, i.e. parametrises the effects of

collisional broadening

— Component D_z(u,s) contains all other

types of excitations, including those that

are continuous in s




e.g. spectral functions p{(w,p) from Cr(r,z) =

some particle-creating operator

Cr(r.7) = /

dw cosh E— |T|) w}

sinh (ﬁ )

w,p)

4. Spectral properties from Euclidean data

* In many instances Euclidean data is used to calculate T > 0 observables,
(Or(,%) Or(0,0))r where O is

— Determine p{w,p) given EF(T,p): problem is ill-conditioned, need more information!

* Another quantity of interest in lattice studies is the spatial correlator
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[HotQCD collaboration,
PRD 100 (2019)]



4. Spectral properties from Euclidean data

oal: Use the additional constraints imposed by causality to better understand

how spectral features manifest themselves in Euclidean data |

* Causality implies a general connection between the spatial correlator and

thermal spectral density [P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]
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- Thermal spectral density |
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| in position space |
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— Thermoparticle states give rise to C(x;)

n 00
contributions that are particularly C(x3) ~ %Z / dR e~ ™D, 5(R)
; 3]

significant in the large-x; region =1

* Once the damping factors of these states are know one can use the T > 0

spectral representation to compute their analytic contribution to p(w,p)



4. Spectral properties from Euclidean data

* Can now apply these relations to QCD lattice data [P.L., O. Philipsen, 2022]

— Use data [Rohrhofer et al. PRD 100 (2019)] for spatial correlator Cs(x;) of light-

quark pseudo-scalar meson operator |Of, = iys 1)

Step 1: Perform fits to Gps(x;) data to obtain the functional dependence at different
temperatures (T = 220-960 MeV) — c; exp(-my; x;) + ¢ exp(-my« x;) describes data well

r- 0 = 0 =00 0 = 1
- Contribution of 2 lowest-lying states, 1T and *

Step 2: If T and T are thermoparticle-type states for T > 0, then:

— Fit ansatz implies | D, 3(Z) = a; e % | with screening masses |m;(T) = m;(T =0) +(T), i=m=n"

Step 3: Using D, 5(x) and spectral representation one can compute pps(w,p) contributions:
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4. Spectral properties from Euclidean data

Non-trivial test: Since procedure gives the full analytic structure of pps(w,p)

due to thermoparticle contributions, one can use this to predict the form

of the corresponding temporal correlator Cos(T,p)

* The spatial and temporal correlators have very different pps(w,p)

dependencies — a highly non-trivial check!

* Using the T = 220 MeV p = 0 temporal data from [Rohrhofer et al. PLB 802
(2020)] one obtains:
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* No matter the procedure, comparing temporal and spatial correlator

predictions is an important test for any extracted spectral function



4. Spectral properties from Euclidean data

* Work is ongoing [D. Bala, O. Kaczmarek, P. Lowdon, O. Philipsen, and T. Ueding] to

apply this approach to pseudo-scalar mesons involving heavier quarks

(light-strange and strange-strange)
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* The temporal correlator predictions are now also compared for p > 0
— Consistent predictions are obtained in both light-strange and strange-
strange channels!
* This approach is straight-forwardly generalisable to higher spin states

(work in progress...)



5. Revisiting T > 0 perturbation theory

* It has long been understood that finite-temperature perturbation theory has

complications: non-analytic contributions, IR divergences, ...

* In fact, more specifically, Weldon [PRD 65 (2002)] showed that the perturbative
procedure in @ theory fails at 2-loop order because the self-energy IN(k) has a

branch point on the perturbative mass shell k,=E(k)

— This is a generic feature of perturbative

computations that use free thermal Dr(P) = 1

propagators, or in fact any propagators | (po+i€)*— E*(p)

that have a real dispersion relation p,=E(p)
* Physically, this arises due to the incompatibility of the KMS condition with

on-shell states and non-zero interactions [Landsman, Ann. Phys. 186, 141 (1988)]
( Narnhofer-Requardt-Thirring Theorem [Commun. Math. Phys. 92, 247 (1983)])



5. Revisiting T > 0 perturbation theory

|dea: Start with propagators that are off shell [Weldon, 2002]

* The logic is that interactions with the thermal medium persist, even for large
times x, — need to take into account in the definition of scattering states

@
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— But how does one decide what form these propagators should take?

* With decomposition Ds(is) = Dy s(@)d(s —m*) + D.s(d@,s) one can prove that the

thermoparticle component dominates the two-point function (Qs|é(z)#(0)[Q2s)

at large x, [Bros, Buchholz, NPB 627 (2002)]
L \
— Thermoparticles are a natural asymptotic thermal state candidate! |
\ ‘




5. Revisiting T > 0 perturbation theory

|dea: thermal scattering states are defined by imposing an asymptotic field
condition [Bros, Buchholz, NPB 627 (2002)]:

s | In @*theory

| Asymptotic fields &, are assumed to satisfy | ---------- o A |a: -| —>oo
| : O | :(82+m2)¢0($)+—, o(z) — 0
" dynamical equations, but only at large x, . 3 :

“Asymptotic mass”

* The thermoparticle damping factor Bmlﬁ(u) is uniquely fixed by the asymptotic

field equation

— This means that the non-perturbative effects experienced by

thermoparticle states are controlled by the asymptotic dynamics

* Given D, ;(u) one can simply combine this together with the spectral
representation to compute the explicit form of the thermoparticle propagator

or spectral function



5. Revisiting T > 0 perturbation theory

Can then start to perform perturbative calculations with this propagator
instead of a free field propagator — suggested that this could give rise to an

IR-regularised perturbative expansion for T > 0 [Bros, Buchholz hep-th/9511022]

Example: ¢* theory [PL, O. Philipsen, in preparation]

— Thermoparticle propagator:
e O [ g7 — L 1n [ (1 +
(Width parameter x~ \/|\T ) 6 y 4pk —k% 4 m2 + (Ip] — 5)2
— Spectral function already has a width o) \
) ) 50 — m/T=1/2
at 1-loop order (and is renormalisable) = m/T-1/3

m/T=1/4
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— At 2-loop the thermoparticle peak
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Summary & outlook

* (Causality imposes non-perturbative constraints for T > 0 which have
significant implications

— Spectral properties of thermal correlation functions

— Connection between real-time observables and Euclidean correlators
— New insights into the characteristics of perturbation theory

* So far, only real scalar fields @ with T > 0 have been considered, but this

approach can be extended

— Other hadronic states (baryons, exotic states, ...)

— Higher spin fields/states (fermions, vectors, ...) | Work in progress! |

— Non-vanishing density, |u|>0

* Ultimately, these constraints and methods can help in gaining a better

understanding of the phase structure of QCD



Backup: Euclidean spectral relations

* One can use the assumptions of local QFT at finite T to put constraints on

the the structure of Euclidean correlation functions

27r7,N7_

— From the KMS condition and locality: Wg(T, T) :% Z wy (T)e P
N=—0c0

* The Fourier coefficients of the Euclidean two-point function are then related
to the thermal spectral density as follows [P.L., PRD 106 (2022)]:
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* With the Bros-Buchholz decomposition this becomes

1 q : o0 q :
wn (@) = [Dm<f)ewm2+wfv + / ds e” VR D(7, 5)
0

— The continuous component D (x,s) is increasingly suppressed for large | x|



Backup: Damping factors from asymptotic dynamics

* Applying the asymptotic field condition for @' theory, the resulting damping
factors have the form [Bros, Buchholz, 2002]:

. - e~ K|
— ForA<O0: |D 5 — Sin(s|7]) — ForA>0: |D,, 5(7) = —
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where K is defined with r=m/T: |x=1VNEK(r), K )J '/(zfr)‘*?\/f}“'rg 1

— The parameter K has the interpretation of a thermal

width: K—0 for T—0, or equivalently k-1 is mean-free path

* Now that one has the exact dependence of D, z(x) on the external physical
parameters, in this case T, m and A, one can use this to calculate observables
analytically



Backup: Analytic shear viscosity computation

* Of particular interest is the shear viscosity n, which measures the resistance of
a medium to sheared flow

— This quantity can be determined from the spectral function of the

spatial traceless energy-momentum tensor

prr(Po) = }13.1_%}) f[(%l [Wij (m)aﬂij (”J)] |Qﬁ>] (p)

1 dprr

. = - _ 1.
. and n is recovered via the Kubo relation |7 20 ™ "o

* Using D,,s5(x) for A < 0, the EMT spectral function p, has the form:
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T4
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— ]I=20, m/T=0
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— ]AI=20, m/T=1.0

* The presence of interactions causes resonant

1

peaks to appear — peaked when p, ~ k=1/4

* For A—0 the free-field result is recovered, as

~[3

expected
* The dimensionless ratio m/ T controls the

magnitude of the peaks




Backup: Analytic shear viscosity computation

* Applying Kubo's relation, the shear viscosity n, arising from the asymptotic

states can be written [P.L., R-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104 (2021)]
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— For fixed coupling, ny/ T’ is entirely controlled by functions of m/ T



Backup: Shear viscosity from FRG data

* Locality constraints imply that particle damping factors D, 5(x) can also be

calculated from Euclidean momentum space data [P.L., PRD 106 (2022)]

e — — e — — — e s — — — - - o

- d : \
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Holds for large separation |x|

® In [P.L., R-A. Tripolt, PRD 106 (2022)] pion propagator data from the quark-
meson model (FRG calculation) was used to compute the damping factor

at different values of T via the analytic relation above

* Fits to the resulting data were consistent with the form: |D,,_3(Z) = a, e 7" /*

* D, 5(x) can then be used as input for

120

calculations, e.g. shear viscosity " m =106 MeV
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