Dynamically generated fourquark interactions in QCD

Wei-jie Fu
Dalian University of Technology

Workshop 'From first-principles QCD to experiments' ECT*, Italy, May 22-26, 2023

Based on :
WF, Chuang Huang, Jan M. Pawlowski, Yang-yang Tan, ‘Four-quark scatterings in QCD I’ SciPost Phys. 14 (2023) 069, arXiv:2209.13120;
WF, Chuang Huang, Jan M. Pawlowski, Yang-yang Tan, 'Four-quark scatterings in QCD II' in preparation;
WF, Chuang Huang, Jan M. Pawlowski, Yang-yang Tan, Li-jun Zhou, 'Four-quark scatterings in QCD III' in preparation

Rethinking of mass production in RG

Is it enough to use the flow of quark self-energy as follows to describe the chiral symmetry breaking and quark mass production?

> Similar with the quark gap
> equation in DSE

Our findings: Probably not!
How about to include an effective four-quark vertex generated dynamically in the regime of low energy?

fRG analogue of quark gap equation
coupled with

Our findings: Seemingly yes!

QCD with dynamical hadronization

Introducing a RG scale dependent composite field:

$$
\hat{\phi}_{k}(\hat{\varphi}), \text { with } \hat{\varphi}=(\hat{A}, \hat{c}, \hat{\bar{c}}, \hat{q}, \hat{\bar{q}})
$$

Gies, Wetterich , PRD 65 (2002)

$$
\left\langle\partial_{t} \hat{\phi}_{k}\right\rangle=\dot{A}_{k} \bar{q} \tau q+\dot{B}_{k} \phi+\dot{C}_{k} \hat{e}_{\sigma}
$$ 065001; 69 (2004) 025001;

Pawlowski, AP 322 (2007) 2831;
Flörchinger, Wetterich, PLB 680 (2009) 371

Wetterich equation is modified as

$$
\begin{aligned}
\partial_{t} \Gamma_{k}[\Phi]= & \frac{1}{2} \operatorname{STr}\left(G_{k}[\Phi] \partial_{t} R_{k}\right)+\operatorname{Tr}\left(G_{\phi \Phi_{a}}[\Phi] \frac{\delta\left\langle\partial_{t} \hat{\phi}_{k}\right\rangle}{\delta \Phi_{a}} R_{\phi}\right) \\
& -\int\left\langle\partial_{t} \hat{\phi}_{k, i}\right\rangle\left(\frac{\delta \Gamma_{k}[\Phi]}{\delta \phi_{i}}+c_{\sigma} \delta_{i \sigma}\right),
\end{aligned}
$$

Flow equation:

Mitter, Pawlowski, Strodthoff, PRD 91 (2015) 054035, arXiv:1411.7978; Braun, Fister, Pawlowski, Rennecke, PRD 94 (2016) 034016, arXiv:1412.1045; Cyrol, Mitter, Pawlowski, Strodthoff, PRD 97 (2018) 054006, arXiv:1706.06326; WF, Pawlowski, Rennecke, PRD 101 (2020) 054032
four-quark interaction encoded in Yukawa coupling:

Outline

* Introduction
* LEFT with momentum-independent 4quark vertex
* Three momentum (s, t, u) channelsdependent 4-quark vertex
* Embedding in unquenched QCD
* Summary and outlook

Momentum-independent 4-quark Vertex

Flow of 2- and 4-quark functions in LEFT:

$$
\partial_{t}(-0-)=\tilde{\partial}_{t}(-\Omega .0)
$$

- momentum-independent approximation:

$$
\begin{aligned}
\lambda_{\alpha} & =\lambda_{\alpha}\left(p_{i}=0\right), \quad(i=1, \cdots, 4) \\
M_{q} & =M_{q}(p=0)
\end{aligned}
$$

dimensionless variables

$$
\bar{\lambda}_{\alpha}=\lambda_{\alpha} k^{2}, \quad \bar{M}_{q}=\frac{M_{q}}{k}
$$

- single channel approximation:

$$
\lambda_{\sigma-\pi} \equiv \lambda_{\pi}=\lambda_{\sigma}, \quad \lambda_{\alpha \notin\{\sigma, \pi\}}=0
$$

$$
\begin{aligned}
\partial_{t} \bar{\lambda}_{\sigma-\pi} & =2 \bar{\lambda}_{\sigma-\pi}-\mathscr{C}\left(\bar{M}_{q}\right) \bar{\lambda}_{\sigma-\pi}^{2} \\
\partial_{t} \bar{M}_{q} & =-\bar{M}_{q}\left[1+\bar{\lambda}_{\sigma-\pi} C\left(\bar{M}_{q}\right)\right]
\end{aligned}
$$

with

$$
\begin{aligned}
\mathscr{C}\left(\bar{M}_{q}\right) & =\frac{7-4 \bar{M}_{q}^{2}}{8 \pi^{2}\left(1+\bar{M}_{q}^{2}\right)^{3}} \\
C\left(\bar{M}_{q}\right) & =\frac{13}{16 \pi^{2}\left(1+\bar{M}_{q}^{2}\right)^{2}}
\end{aligned}
$$

Flow diagram

β function of 4-quark coupling:

- β function of 4-quark coupling:

$$
\beta_{\bar{\lambda}_{\sigma-\pi}} \equiv \partial_{t} \bar{\lambda}_{\sigma-\pi}=2 \bar{\lambda}_{\sigma-\pi}-\mathscr{C}\left(\bar{M}_{q}\right) \bar{\lambda}_{\sigma-\pi}^{2}
$$

with flat regulator

$$
\mathscr{C}\left(\bar{M}_{q}\right)=\frac{7-4 \bar{M}_{q}^{2}}{8 \pi^{2}\left(1+\bar{M}_{q}^{2}\right)^{3}}
$$

fixed point

$$
\bar{\lambda}_{\sigma-\pi}^{*}\left(\bar{M}_{q}\right)=\frac{2}{\mathscr{C}\left(\bar{M}_{q}\right)}
$$

Flow in the plane of the mass and coupling:

When

$$
\bar{M}_{q} \rightarrow \bar{M}_{q}^{\mathrm{Gauss}}=\frac{\sqrt{7}}{2}
$$

one has

$$
\mathscr{C}\left(\bar{M}_{q}\right) \rightarrow 0
$$

and
WF, Huang, Pawlowski,
Tan, SciPost Phys. 14 (2023) 069,
arXiv:2209.13120

Chiral limit

- quark mass and couplings vs RG scale for different initial quark masses:

- Constituent quark mass vs UV current quark mass:

WF, Huang, Pawlowski,
Tan, SciPost Phys. 14 (2023) 069, arXiv:2209.13120

Chiral limit

- quark mass and couplings vs RG scale for different initial quark masses:

- Constituent quark mass vs UV current quark mass:

Artifact due to loss of sufficient momentum dependence for the 4-quark vertex

WF, Huang, Pawlowski, Tan, SciPost Phys. 14 (2023) 069, arXiv:2209.13120

Fierz complete 4-quark vertices

- couplings of different channels:

- quark mass:

Emergent bound states

- Bound states encoded in n-point correlation functions:

- Flow equation of 4-quark interaction:

Note: playing the same role as the Bethe-Salpeter equation.
single momentum channel (t-channel) approximation:
Using

$$
t=P^{2} \rightarrow-m_{\pi}^{2}, \quad s=u \rightarrow 0
$$

one is led to
$\partial_{t} \lambda_{\pi, k}\left(P^{2}\right)=\mathscr{A}_{k}\left(P^{2}\right)+\mathscr{B}_{k}\left(P^{2}\right) \lambda_{\pi, k}\left(P^{2}\right)+\mathscr{C}_{k}\left(P^{2}\right) \lambda_{\pi, k}^{2}\left(P^{2}\right)$
pion mass is determined by the zero of denominator:

$$
\mathscr{D}_{k}\left(P^{2}\right) \equiv \exp \left\{\int_{\Lambda}^{k} \frac{d k^{\prime}}{k^{\prime}} \mathscr{B}_{k^{\prime}}\left(P^{2}\right)\right\}
$$

$$
1-\lambda_{\pi, \Lambda} \int_{\Lambda}^{0} \frac{d k}{k} \mathscr{D}_{k}\left(P^{2}\right) \mathscr{C}_{k}\left(P^{2}\right)=0
$$

Chiral symmetry and Goldstone theorem

3d regulator:

4d regulator:

$\bar{M}_{q, \Lambda}=1 \times 10^{-4}$ Direct Calculation

- $\bar{M}_{q, \Lambda}=1 \times 10^{-3}$
- $\bar{M}_{q, \Lambda}=5 \times 10^{-3}$
- $\bar{M}_{q, \Lambda}=2 \times 10^{-2}$

Padé[2, 2]
Padé[20, 20]

Gell-Mann--Oakes--Renner relation:

WF, Huang, Pawlowski, Tan, SciPost Phys. 14 (2023) 069, arXiv:2209.13120

Note: chiral symmetry and Goldstone theorem are guaranteed automatically in this approach.

Momentum dependence of 4-quark vertices

- 4-quark effective action:

$$
\Gamma_{4 q, k}=-\sum_{\alpha} \int_{\vec{p}} \lambda_{\alpha}(\vec{p}) \mathscr{O}_{i j l m}^{(\alpha)} \bar{q}_{i}\left(p_{1}\right) q_{j}\left(p_{2}\right) \bar{q}_{l}\left(p_{3}\right) q_{m}\left(p_{4}\right)
$$

With $\alpha=1, \ldots, 10$ standing for ten Fierz-complete basis

$$
\begin{aligned}
& \alpha \in\left\{\sigma, \pi, a, \eta,(V \pm A),(V-A)^{\mathrm{adj}}\right. \\
&\left.(S \pm P)_{-}^{\mathrm{adj}},(S+P)_{+}^{\mathrm{adj}}\right\}
\end{aligned}
$$

- 4-quark vertex:

$$
\begin{aligned}
& \Gamma_{\bar{q}_{i} q_{j} \bar{q}_{l} q_{m}}^{(4)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
\equiv & \frac{\delta}{\delta q_{m}\left(p_{4}\right)} \frac{\delta}{\delta \bar{q}_{l}\left(p_{3}\right)} \frac{\delta}{\delta q_{j}\left(p_{2}\right)} \frac{\delta}{\delta \bar{q}_{i}\left(p_{1}\right)} \Gamma_{k}[q, \bar{q}] \\
= & \sum_{\alpha}\left(\lambda_{\alpha}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \mathcal{O}_{i j l m}^{(\alpha)}-\lambda_{\alpha}\left(p_{3}, p_{2}, p_{1}, p_{4}\right) \mathcal{O}_{l j i m}^{(\alpha)}\right) \\
= & \sum_{\alpha}(-2)(2 \pi)^{4} \delta^{4}\left(\lambda_{1}^{+}+p_{2}+p_{3}+p_{4}\right) \\
& \left.\left.\times(-4)(2 \pi)^{4} \delta^{4}, p_{3}, p_{4}\right) \mathscr{T}_{i j l m}^{\left(\alpha^{-}\right)}+\lambda_{\alpha}^{-}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \mathscr{T}_{3}^{\left(\alpha^{+}\right)}+p_{4}\right)
\end{aligned}
$$

where we have used 4-quark dressings and tensor structures with definite symmetries, viz.,

$$
\begin{aligned}
& \lambda_{\alpha}^{+}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
\equiv & \frac{1}{2}\left[\lambda_{\alpha}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)+\lambda_{\alpha}\left(p_{3}, p_{2}, p_{1}, p_{4}\right)\right], \\
& \lambda_{\alpha}^{-}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
\equiv & \frac{1}{2}\left[\lambda_{\alpha}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)-\lambda_{\alpha}\left(p_{3}, p_{2}, p_{1}, p_{4}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathscr{T}_{i j l m}^{\left(\alpha^{+}\right)} \equiv\left(\mathcal{O}_{i j l m}^{(\alpha)}+\mathcal{O}_{l j i m}^{(\alpha)}\right) / 2, \\
& \mathscr{T}_{i j l m}^{\left(\alpha^{-}\right)} \equiv\left(\mathcal{O}_{i j l m}^{(\alpha)}-\mathcal{O}_{l j i m}^{(\alpha)}\right) / 2
\end{aligned}
$$

with the symmetry relations

$$
\begin{aligned}
& \lambda_{\alpha}^{+}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\lambda_{\alpha}^{+}\left(p_{3}, p_{2}, p_{1}, p_{4}\right) \\
= & \lambda_{\alpha}^{+}\left(p_{1}, p_{4}, p_{3}, p_{2}\right)=\lambda_{\alpha}^{+}\left(p_{3}, p_{4}, p_{1}, p_{2}\right), \\
& \lambda_{\alpha}^{-}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=-\lambda_{\alpha}^{-}\left(p_{3}, p_{2}, p_{1}, p_{4}\right) \\
= & -\lambda_{\alpha}^{-}\left(p_{1}, p_{4}, p_{3}, p_{2}\right)=\lambda_{\alpha}^{-}\left(p_{3}, p_{4}, p_{1}, p_{2}\right)
\end{aligned}
$$

Three momentum (s, t, u) channel approximation

- parameterization of external momenta of 4-quark vertices:

- three momentum (s, t, u) channel approximation for 4quark dressings of definite symmetries:

$$
\lambda_{\alpha}^{ \pm}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \approx \lambda_{\alpha}^{ \pm}(t, u, s)
$$

with

$$
\begin{aligned}
t & =\left(p_{1}-p_{2}\right)^{2} \\
u & =\left(P^{2},\right. \\
s & =\left(p_{1}+p_{3}\right)^{2}=\left(\bar{p}-\bar{p}^{\prime}\right)^{2}, \\
& =\left(\bar{p}+\bar{p}^{\prime}\right)^{2}
\end{aligned}
$$

- for the convenience of computation, we choose a subspace of the full momentum of 4-quark vertices as follows

$$
\begin{aligned}
P_{\mu} & =\sqrt{P^{2}}(1,0,0,0) \\
\bar{p}_{\mu} & =\sqrt{\bar{p}^{2}}(1,0,0,0) \\
\bar{p}_{\mu}^{\prime} & =\sqrt{\bar{p}^{2}}(\cos \theta, \sin \theta, 0,0)
\end{aligned}
$$

one is led to

$$
t=P^{2}, \quad u=2 \bar{p}^{2}(1-\cos \theta), \quad s=2 \bar{p}^{2}(1+\cos \theta)
$$

Here, $\left\{\sqrt{P^{2}}, \sqrt{\bar{p}^{2}}, \cos \theta\right\}$ is in one-by-one correspondence with respect to $\{t, u, s\}$

Bethe-Salpeter amplitude (quark-meson coupling)

- Bethe-Salpeter amplitude can be extracted from the 4-quark vertex in the proximity of on-shell momentum of bound states:

That is

$$
\lambda(\bar{p}, P) \sim \frac{h^{2}(\bar{p}, P)}{P^{2}+m_{\text {meson }}^{2}}
$$

where $h(\bar{p}, P)$ is the BS amplitude. Note that the angular dependence of $h(\bar{p}, P)$ between \bar{p} and P, i.e., θ, can be further recovered by computing the flows on the solutions with

$$
\bar{p}_{\mu}=\bar{p}_{\mu}^{\prime}=\sqrt{\bar{p}^{2}}(\cos \theta, \sin \theta, 0,0)
$$

Chiral limit revisited

momentum-independent 4quark vertex:

three momentum channel
approximation:

WF, Huang, Pawlowski,
Tan, in preparation

- Artifact region, blue area, shrinks obviously when more momentum dependence is included
- It is expected that this effect would be more prominent in QCD

σ, π vs other channels

4-quark dressings of different channels:

Quark mass function:

- Dominance of scalar-pseudoscalar channels over other channels is more pronounced in the momentum-dependent approximations
- One can safely include 4-quark vertices of only sigma and pion channels in the calculations

Embedding in unquenched QCD

Glue sector:

	-

Matter sector:

WF, Huang, Pawlowski,
Tan, Zhou, in preparation

Gluon, ghost dressings and strong couplings

Gluon dressing:

Lattice: Sternbeck et al., PoS LATTICE2012 (2012) 243

Ghost dressing:

Gluon propagator:

fRG: WF, Huang, Pawlowski,
Tan, Zhou, in preparation

Strong couplings:

Note: Comparison with the DSE and fRG with DH has not done yet.

Quark propagator and quark-gluon vertex of different channels

Quark mass function:

Lattice: Oliveira et al., PRD 99 (2019) 094506

Quark-gluon vertex of different channels:

Quark wave function:

fRG: WF, Huang, Pawlowski, Tan, Zhou, in preparation

Gell-Mann--Oakes--Renner relation

LEFT with single momentum dependence:

WF, Huang, Pawlowski, Tan, SciPost Phys. 14 (2023) 069, arXiv:2209.13120

QCD:

WF, Huang, Pawlowski, Tan,
Zhou, in preparation

4-quark dressings and pion BS amplitude

4-quark dressings:

Pion BS amplitude:

WF, Huang, Pawlowski, Tan,
Zhou, in preparation

Contributions to λ_{π} from different diagrams

flow of λ_{π} vs RG scale:

integrated flow of λ_{π} vs RG scale:

integrated flow of λ_{π} vs $P=\sqrt{t}$:

WF, Huang, Pawlowski, Tan,
Zhou, in preparation

Comparison to results in DH

- Exchange couplings

- Propagator gapping

- Composite (mesonic) degrees of freedom take over active dynamics from partonic ones when the RG scale is lowered down $k \lesssim 600 \sim 800 \mathrm{MeV}$.
- LEFTs emerge naturally from fundamental theory in the regime of low energy, in agreement with the viewpoint of RG.

Contributions to λ_{σ} from different diagrams

flow of λ_{σ} vs RG scale:

integrated flow of λ_{σ} vs RG scale:

integrated flow of λ_{σ} vs $P=\sqrt{t}$:

WF, Huang, Pawlowski, Tan,
Zhou, in preparation

Contributions to quark mass from different diagrams

Flow of quark mass:

Integrated flow of quark mass:

Quark mass function:

WF, Huang, Pawlowski, Tan, Zhou, in preparation

Pion decay constant

- The pion weak decay constant reads

$$
\langle 0| J_{5 \mu}^{a}(x)\left|\pi^{b}\right\rangle=i P_{\mu} f_{\pi} \delta^{a b}
$$

The left side is given by

$$
\begin{aligned}
& \langle 0| J_{5 \mu}^{a}(x)\left|\pi^{b}\right\rangle \\
= & \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma_{\mu} \gamma_{5} t^{a} G_{q}(q+P) h_{\pi}(q, P) \gamma_{5} t^{b} G_{q}(q)\right] \\
\simeq & \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma_{\mu} \gamma_{5} t^{a} G_{q}(q) h_{\pi}(q, P) \gamma_{5} t^{b} G_{q}(q)\right]
\end{aligned}
$$

WF, Huang, Pawlowski, Tan, Zhou, in preparation

Summary and outlook

* Analogues of self-consistent quark gap equation and Bethe-Salpeter equation are developed in terms of RG flows, where effective multi-quark interactions generated dynamically in the regime of low energy are found to play a crucial role.
\star This formalism has been embedded in $N_{f}=2$ flavor unquenched QCD, a number of interesting observables have been obtained.
* This formalism provides a promising approach to study hadron physics, e.g., PDA of mesons, spectrum, etc., from first-principles QCD, and related work is in progress.
* Stay tuned for more results!

Summary and outlook

* Analogues of self-consistent quark gap equation and Bethe-Salpeter equation are developed in terms of RG flows, where effective multi-quark interactions generated dynamically in the regime of low energy are found to play a crucial role.
\star This formalism has been embedded in $N_{f}=2$ flavor unquenched QCD, a number of interesting observables have been obtained.
* This formalism provides a promising approach to study hadron physics, e.g., PDA of mesons, spectrum, etc., from first-principles QCD, and related work is in progress.
* Stay tuned for more results!

Thank you very much for your attentions!

