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Outline

Pressure and shear forces inside hadrons can be estimated through
electron scattering experiments

Burkert, Elouadrhiri, Girod, Nature 2018 and 2104.02031
Polyakov and Schweitzer, Int.J.Mod.Phys.A 33 (2018) 26, 1830025

Much easier to compute from the energy momentum tensor of quarks!
A chiral model with vector mesons

Drago and Mantovani Sarti, Phys.Rev.C 86 (2012) 015211

How to go to finite density: Wignher-Seitz approach
* Can we get “saturation”?

Pressure and shear forces at finite density



What are the EMT form factors?

From Polyakov and Schweitzer 2018
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The shear tensor can be decomposed into shear force s(r) and pressure p(r)

i il i cij
T (r)= 5 T3 07 )s(r) 4+ 0" p(r)

Conservation of the energy momentum tensor implies

2

2
8 (1) +—s(r) +p'(r) =0

And the equilibrium of internal forces for an isolated nucleon implies

/ dr?p(r) =0
0



From Polyakov and Schweitzer 2018

The most natural way to probe EMT form factors, scattering off gravitons in Fig. 1a, is also the least practical
one. A practical opportunity to access EMT form factors emerged with the advent of GPDs [7-21], which describe
hard-exclusive reactions, such as deeply virtual Compton scattering (DVCS) eN — ¢’ N’y sketched in Fig. 1b or hard
exclusive meson production eN — ¢’ N’M. In the case of the nucleon, the second Mellin moments of unpolarized

GPDs yield the EMT form factors
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/ de o H(z, €, t) = A%(t) + E2D(t), / do o Bz, &,t) = B(t) — £2D%(t) . (15)
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The GPDs can be viewed as “amplitudes” for removing from the nucleon a parton carrying the fraction = — £ of
the average momentum P and putting back in the nucleon a parton carrying the fraction x + £, while the nucleon
receives the momentum transfer A. For £ = 0 the momentum transfer is purely transverse and the Fourier transform
H(x,by) = [d*AL/(27)? exp(—iA1 by ) H*(x,0,—A%) describes the probability to find a parton carrying the
momentum fraction x of the hadron and located at the distance b; from the hadrons (transverse) center-of-mass on
the lightcone. This allows one to do femtoscale tomography of the nucleon [75-77].



Pressure and Shear forces
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Figure: The thick black line, in (a), (or black continous line in (b)) is the
fit results. The blue area is the range of uncertainties before the CLAS
data were included. The light green area are based on the CLAS data.
The red area represents the expected errors when the results from the
planned experiments will be included in the fits. The dashed black curve,
present only in (b), is a model prediction.

Yfrom Burket, Elouadhriri and Girod, 2018 (a), 2021 (b)
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Figure 3.1 Pressures: (a) o-model; (b) Chiral dilaton model; (c) Di-

electric model; (d) From experiments
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Figure 3.2 Shear Forces: (a) o-model; (b) Chiral dilaton model; (c)

Dielectric model; (d) From experiments



Chiral models at finite density

Failure of Linear-c model at finite density
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(R.J.Furnstahl, B.D.Serot,H.-B. Tang,Nucl.Phys.A 598 (1996))

HOW CAN WE REACH HIGHER DENSITIES AND STILL INCLUDE CHIRAL
SYMMETRY?



Linear realization of chiral symmetry with scale invariance

PROBLEM: the linear sigma model fails to yield saturation. It provides

chiral symmetry restoration (my = 0) already at low density due to the
form of the meson self-interaction
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Breaking of Scale Invariance in QCD

@ In QCD, scale symmetry is broken by trace anomaly. This mechanism is
responsible for the existence of Agcp parameter, which sets the scale of

hadron masses and radii

@ Formally the non conservation of the dilatation current is strictly
connected to a non vanishing gluon condensate

Ouiteo) = SEL 2L OF™ ()

@ In an effective model, the dynamics of the gluon condensate at mean-field

level, is obtained by introducing a scalar field ¢, the dilaton field ¢
(Schechter (1980), Migdal, Shifman (1982)), so that the potential is determined by:

o\ 4
o — 4V(6) — 62Y — ae,.. (3)

L4



The dilatonic potential

The dilaton field potential:

E. K. Heide, S. Rudaz, and P. J. Ellis, Phys. Lett. B293, 259 (1992)



The introduction of vector mesons

@ Vector mesons dominance — better description of nucleon properties

@ N — N interaction — provide the necessary repulsion at short distances
(OBE model)

How to introduce the vector mesons in an effective Lagrangian

@ VM as massive Yang-Mills fields of SU(2), ® SU(2)r symmetry group

@ principle of universality — p meson couples to isospin current and w
meson couples to the baryonic current:

1

BoNN — Bpgq — Bprnm — Bppp s 8wqq = gngN(qz — 0)



The Lagrangian of the Chiral Dilaton Model

@ in the hadronic sector — fermionic fields are nucleons;

@ chiral fields (o, w) — nuclear physics at low densities (Heide, Rudaz, Ellis,
Nucl.Phys.A571, 713 (1994)), restoration of chiral symmetry at quite high densities
(Drago, Bonanno, Phys.Rev.C79:045801,2009),

MAIN IDEA: use the same nucleon Lagrangian, but now introducing quarks
degrees of freedom — fermionic fields are quarks

The Lagrangian density becomes:
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Soliton in vacuum: projecting the Hedgehog

@ the Hedgehog is not an eigenstate of spin and isospin — projection on

physical states with good quantum numbers J and /(Ruiz-Arriola et al. NPA591,
Birse PRD33)

@ it also breaks translational invariance — projection on linear momentum

@ easier approach to estimate the center-of-mass corrections(Dethier et al.
PRD27,(1983)): My = (E; — P2)1/2

Set of parameters

@ model without VM: m, = 550 MeV, g =5
@ model with VM:

@ better fit to nucleon properties: g = 3.6, g, = 13, g, = 4 and
ms = 1200 (SET )



Soliton in vacuum

Contributions to the total soliton energy at MFL:

Quantity Log. Model | Linear o-Model
Quark eigenvalue 114.5 112.9 @ chiral and vector mesons
Quark kinetic energy 1075.8 1080.6 contributions are
E, (mass+kin.) 213.8 212.2 comparable — VMs play
E, (mass+kin.) 393.2 397.3 a fundamental role in
Potential energy o — m 81.2 80.4 building up the soliton
E, (mass+kin. —194.4 —196.5 .
(mass ) ) ’ @ results with the
FE, (mass+kin. 162.6 165.4 : .
2 ) logarithmic model and
E 4 (mass+kin.) 329.5 334.1 :
| the linear-o model are
Total energy 1329.5 1331.7 ..
very similar




Soliton in vacuum

Model without VM :

Model with VM, SET I:

Quantity | Log. Model o-Model Exp.
Ey/p (MeV) 1075 1002
My (MeV) 960 894 938
Esp (MeV) 1140 1075
VA (MeV) 1032 975 1232
(rg)p (fm?) 0.5! 0.61 0.74
(ri)n (fm?) —0.02 —0.02 —0.12
(r3)p (fm?) 0.7 0.72 0.74
rs o, (fm ).T2 75 ).T7
() (fm2) | 0.72 0 0
ty (pn) 2.25 2.27 2.79
o (pn) —1.97 -1.92 -191
Ja 1.52 1.10 1.26

Quantity | Log. Model o-Model Exp.
Eyjp(MeV) 1020 1008
My (MeV) 926 912 038
Es/0 (MeV) 1148 1147
My (MeV) 1066 1063 1232
(ri)p (fm?) 0.67 0.66 0.74
(r2), (fm?) —0.05 —0.05 —0.12
(r3), (fm?) 0.77 0.76 0.74
(rign (fm?) 0.78 0.77 0.77
iy (fin) 2.63 2.64 2.79
fin (fin) —2.37 ~2.38 —1.91
[y 1.58 1.46 1.26




Going to finite density: the Wigner-Seitz approximation to

nuclear matter

@ Approximating nuclear matter by a lattice of solitons — we consider the
meson fields configuration centered at each lattice point, generating a
periodic potential in which the quarks move

@ Wigner-Seitz approximation: replace the cubic lattice by a spherical
symmetric one — each soliton sits on a spherical cell of radius R with
specific boundary conditions on the surface of the sphere

The Hamiltonian for a periodic system must obey Bloch's theorem, so the
quark spinor must be of the form:

U(r) = e"k*(bk(r): (k = 0 for the ground state)

The bottom of the band is defined as the state satisfying the following periodic
boundary conditions, dictated by symmetry arguments (parity):

v(R) = h(R) = p(R) = 0.
u'(R) = o3,(R) = w'(R) = As(R) = AT(R) = 0.



Going to finite density: how to define the band width

In our work we use two different methods to estimate the band width:

@ A (rather crude) approximation to the width of a band can be obtained
by using (Glendenning, Banerjee PRC 34(1986)):

— 2 1)2_
A \/60+(2R o],

€top — €0 + A.

@ An alternative approximation is obtained by imposing that the upper
Dirac component vanishes at the boundary(Birse,Rehr,Wilets PRC38 (1988)):

u(R)=0

@ the eigenvalue obtained imposing this boundary condition represents an
upper limit to the top and the true top would be about half way between
this upper limit and the bottom of the band

@ uniform filling of the band — lower band has G = 0, color is the only
degeneracy left — 3 quarks per soliton completely fill the band



Fields at finite density: model without VM

— R=41m
o L s R=31fm
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@ down to R = 2 fm the fields do not change significantly, at
lower values the finite density effects deeply modify the
behaviour of fields.



Flattening of the w.f. at saturation density
without and with vector mesons
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Fields at finite density: model with VM
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@ more stable solutions — fields start to get deformed at R ~ 1



Results at finite density: the effect of the dilaton potential

For the model without VM
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@ For a fixed value of m,, the CDM allows the system to reach higher
densities

@ as m, raises, the system remains stable to lower R



Results at finite density: the effect of vector mesons (1)

For the model with VM:
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@ the introduction of VM stabilizes the solution at high densities — reach
even higher densities in comparison to the model with only chiral fields



Energy (MeV)

Stabilizing effect of the band at large densities
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Going to finite density: how do we obtain saturation?

@ interplay between attraction from chiral fields and repulsion from vector
mesons, dominant up to po

@ the logarithmic potential is fundamental to keep the soliton stable at
densities large enough that the vector mesons start to provide repulsion

@ at densities p > po the band effect provides the necessary repulsion to
obtain saturation

60

40

15 2.0 - 25 3.0 3.5
plpo

@ the model admits "saturation” for different sets of parameters — partial overlap
with parameters for the single nucleon (Broniowski, Banerjee PRD34 (1986))



Dependence of the radius on the density
Electric isoscalar and magnetic isovector do not appear at the same order in N,

Illll‘lll'llll

2
(<r M>|=1)

L oL
o N ®©

I T I T ‘ T IIIIIIIIIIIIIIIIHI

n
[é)

—_
N
S

N
T

-

(&)

o
=X N

o T
O
o
(&)}
o
—

0.15 0.2 0.25
Cell Density (fm”°)



r? p(r) (fm™)

Pressure and shear forces
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Evolution of the pressures:
what happens at deconfinement?
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Conclusions and open guestions

A Wigner-Seitz lattice of chiral solitons with vector mesons can be built and it provides a
model for nuclear matter, although VERY schematic

Within that model we can obtain an «equation of state»

The modifications of integrated quantitites as e.g. the electric isoscalar radius are small
till saturation

We can observe deconfinement, at the density at which quarks start populating the
conduction band

Strong changes in the internal forces, even at moderate densities

Still open problems: which is the relation between the internal pressure and the
thermodynamical pressure? Which is the equivalent of Von Laue condition for a soliton
in a Wigner-Seitz crystal?
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