On time-like electromagnetic pion form factors

Reinhard Alkofer

University of Graz

From first-principles QCD to Experiments, ECT*, Trento, May 23, 2023

R. Alkofer (Graz)

Outline

- Analytic Structure of *n*-point Functions
- 2 Effect of resonances on hadron structure
- Pion form factor & Vector Meson Dominance
- Microscopic interaction model
- 5 Justification of Vector Meson Dominance
- 6 Conclusions
- **7** Outlook: $\gamma \pi \pi \pi$ form factor

Analytic Structure of *n*-point Functions

- Strong Interactions in Theory: QCD
 - The model quantum gauge field theory: Locality, Unitarity, Asymptotic Freedom
 - Non-perturbative phenomena: Dimensional Transmutation, Chiral Anomaly, D χ SB, Confinement
- Strong Interactions in Experiment: Hadrons
 - Hadron spectroscopy: many "unexpected" resonances, many "missing" resonances
 - Hadron structure: surprising results
- Quark-hadron duality:
 - Orthogonality of quark-glue d.o.f. vs. hadronic states
 - Physical S-matrix elements: Singularities (i.e., poles and cuts) only from intermediate physical (hadronic, leptonic, ...) states

< ロ > < 同 > < 回 > < 回 >

Lesson to be learned for any calculation in a gauge theory:

Singularities of gauge-dependent *n*-point functions

[need to, resp., should]

cancel in every $N(= N_i + N_f)$ -point function / amplitude of *N* physical (composite!) states describing the scattering of N_i to N_f particles.

(NB: cf. kinematical aspect of confinement!)

Domain of holomorphy of *n*-point Functions:

(see, e.g., beginning of Chapter 2 of RA & L. von Smekal, Phys. Rept. 353 (2001) 281)

- construction based on axioms of local quantum field theory in Minkowski spacetime¹
- time-ordered *n*-point Green functions: boundary values of analytic functions
- several steps to arrive at the permuted extended tubes as envelope of holomorphy domain
- the latter contains non-coincident Euclidean region: Justifies the incorporation of time-like vectors as complex four-vectors in an analytically continued Euclidean formulation!

¹for curved spacetimes see E. Witten, "Why Does Quantum Field Theory In Curved Spacetime Make Sense?", arXiv:2112.11614, and references therein

NB:

No room for essential singularities, complex conjugated poles, etc.!

Nevertheless successful phenomenology

(see, however, S. Ahlig et al., PRD 64 (2001) 014004)

In practice:

First-principles investigations of the analytical structure, there are

- many for propagators / two-point functions (P. Maris 1991, ...),
- a few for three-point functions,²
- none (?) for higher *n*-point functions.

²see, e.g., M. Q. Huber, W. J. Kern, R.A., "Analytic structure of three-point functions from contour deformations," Phys. Rev. D **107** (2023) 074026

UN

Only physical thresholds in *S*-matrix elements:

Hadron spectroscopy and hadron structure interrelated: Microscopic understanding of effect of resonances on form factors, structure functions, etc.?

Test case: **Pion form factor**³

Method: Functional method, in particular combination of Dyson-Schwinger / Bethe-Salpeter eqs.

Important for the time-like pion form factor:

- (i) Pion as pseudo Goldstone Boson
- (ii) Mixing of ρ -meson with virtual photon

(iii) ρ -meson decay

³A topic for me since the eighties [K. Langfeld et al., Z. Phys. C42 (1989) 159]

UN

Important for the time-like pion form factor:

- (i) Pion as $\bar{q}q$ bound state & as pseudo Goldstone Boson: composite, highly collective state in QCD, reflecting χ SB patterns
- (ii) Mixing of ρ -meson with virtual photon: ρ as $\bar{q}q$ bound state in quark-photon vertex (QCD & QED), theoretical explanation of Vector Meson Dominance
- (iii) ρ-meson decay ρ → ππ: two-pion cut and ρ-meson pole (on 2nd Riemann sheet) in quark-photon vertex and thus in e.m. timelike pion form factor.

∃ ► < ∃ ►</p>

Time-like pion form factor & Vector Meson Dominance

Experimentally, *e.g.*, from e^+e^- annihilation to $\pi \pi$

Convention: Negative Q^2 relates to timelike photon virtuality.

Time-like pion form factor & Vector Meson Dominance

Interactions in Dyson-Schwinger/Bethe-Salpeter eqs.

Interactions in this exploratory calculation:

- gluon exchange (Maris-Tandy model)
- pion exchange
- s- and u-channel pion decay contributions

Dyson-Schwinger/Bethe-Salpeter approach to time-like pion form factor

<u>Disclaimer</u>: To keep this calculation feasible a number of technically motivated approximations have been made, see arXiv:2102.12541 for details.

Major technical challenge: Find integration contour in presence of cuts generated by quark propagator poles, pion propagator pole as well as 2-pion cuts and ρ pole in quark-photon vertex!

For two different parameters η of the Maris-Tandy model:

	m_{π}	f_{π}	$m_ ho$	m_ω	$M_{ ho}$	$\Gamma_{ ho}$
$\eta = 1.5$	0.139	0.138	0.768	0.778	0.750	0.100
$\eta =$ 1.6	0.126	0.138	0.774	0.784	0.759	0.105

 $m_{
ho}$ and m_{ω} : Masses (in GeV) without two-pion decay kernel

 M_{ρ} and Γ_{ρ} (in GeV) determined from ρ -meson pole position defined as $M_{pole}^2 = M_{\rho}^2 - iM_{\rho}\Gamma_{\rho}$ with two-pion decay kernel taken into account

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Real and imaginary part of the leading (transversely projected) amplitude of the quark-photon vertex for $p \cdot Q = 0$. The two-pion branch cut starts at $Q^2 = -4m_{\pi}^2$. [A. S. Miramontes,H. Sanchis-Alepuz, EPJA **55** (2019) 170 [arXiv:1906.06227].]

Results

Phase of the pion form factor in the time-like $Q^2 < 0$ domain for the model parameters $\eta = 1.5$ and $\eta = 1.6$ compared to experimental data on pion-pion phase shift.

Results

Pion form factor in the space-like $Q^2 > 0$ domain for the model parameters $\eta = 1.5$ and $\eta = 1.6$ compared to experimental data. (The inset illustrates the impact of one of the technically motivated approximations.)

R. Alkofer (Graz)

Time-like pion form factors

16/27

Results

Absolute value of the pion form factor in the time-like $Q^2 < 0$ domain for the model parameters $\eta = 1.5$ and $\eta = 1.6$.

R. Alkofer (Graz)

Predicted by VMD (without ρ - ω mixing):

$$\begin{aligned} & \textit{Re}\,F_{\pi}(Q^2)-1 = \\ & -\frac{a_1Q^2+a_2(Q^2)^2}{b_0+b_1Q^2+b_2(Q^2)^2} \\ & \textit{Im}\,F_{\pi}(Q^2) = \\ & \frac{c_1Q^2+c_2(Q^2)^2}{d_0+d_1Q^2+d_2(Q^2)^2} \,. \end{aligned}$$

and verified by our "microscopic model" calculation

	<i>η</i> =1.5	η =1.6	VMD
a_1	0.5587	0.4149	0.72
a_2	0.8828	0.6827	1.2
b_0	0.3600	0.3600	0.36
b_1	1.2307	1.2517	1.2
b ₂	1.0722	1.1000	1.0037
<i>C</i> ₁	0.0591	0.0997	0
<i>C</i> ₂	0.1295	0.2383	0.2308
d_0	0.3600	0.3600	0.36
d_1	1.1924	1.2464	1.2
d_2	0.9973	1.0916	1.0037

18/27

크

- Other terms than VMD-predicted ones are tiny: Elaborated calculation yields within error margin the VMD predicted functional form.
- No significant impact from quark propagator poles! (Wanted in view of confinement! But why in this model-based calculation?)
- The resulting time-like pion form factor in the region 0 > Q² > 0.8GeV² is determined by the ρ-meson pole and the two-pion cut!

3 + 4 = +

Pion time-like form factor: All BSE amplitudes

Absolute value of the pion form factor, $Q^2 < 0$, $\eta = 1.5$ with all BS amplitudes in 2- π -exchange kernels taken into account (requires 10 × CPU time) [A. Miramontes, unpublished]

extracted pole position: $M_{\rho} = 755$ MeV, $\Gamma_{\rho} = 123$ MeV (before: 100 MeV, expt.: 149 MeV).

R. Alkofer (Graz)

Time-like pion form factors

UN

Pion time-like form factor: Large virtuality

New experimental results from 0.32 to 1.2 GeV from CMD-3 at VEPP-2000 [arXiv:2302:08834]:

At appr. one GeV:

- "strong deviation from the theoretical prediction" (citation from abstract)
 Impact on determination of anomalous magnetic moment of muon!
- Some deviation from predictions based on dispersion relations
- Similar for Vector Meson Dominance
- Large discrepancy of our results to experimental data!!!

... further analysis on-going ...

- © Exploratory DSE/BSE calculation of pion time-like form factor (... we can do time-like ...)
- © ρ -meson resonance & 2π cut determine time-like pion form factor: Detailed verification of VMD from microscopic model!
- © Despite modelling and technical limitations: Remarkable agreement with experiment.

- \implies Isospin breaking:
 - Effect of different quark masses vs. electric charges *cf.* A.S. Miramontes et al., Phys. Lett. **B 833** (2022) 137291
 - ρ - ω mixing, resp. ρ - ω - ϕ -mixing . . .

3 > 4 3

< < >>

$\implies \gamma \pi \pi \pi$ form factor:

(Experimental data from COMPASS currently analysed.)

- Anomaly determining soft-point value in symmetry-preserving truncation confirmed.
- Spacelike momenta: Results of S. Cotanch and P. Maris (Phys. Rev. D68 (2003) 036006) verified.
- Effect of hadron resonances ($\rho \& \omega$) for timelike $s \dots$

\implies Long-term wish list: Time-like form factors from first-principle "functional" calculations.

26/27

크

R. Alkofer (Graz)

< A

To appear soon:

[F. Lllanes-Estrada, A. Salas-Bernadez, RA]

Verification of ³P₀ meson production mechanism from

- chromo-electric flux-tube,
- non-linear Breit-Wheeler process and
- χ SB tensor structures of the quark-gluon vertex!

