Continuity of the phase space

Conclusion

Low vs moderate x_{Bj} matching for exclusive Compton scattering processes

Renaud Boussarie

CGC at the EIC

In collaboration with Y. Mehtar-Tani

DDVCS from low to moderate x

Accessing the partonic content of hadrons with an electromagnetic probe

sElectron-proton collision (parton model)

ontinuity of the phase space

QCD at moderate $x_{\rm Bj} \sim Q^2/s$

Bjorken limit: $Q^2 \sim s$

QCD factorization processes with a hard scale $Q \gg \Lambda_{QCD}$

 $\sigma = \mathcal{F}(\mathbf{x}, \mu) \otimes \mathcal{H}(\mathbf{x}, \mu)$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(x,\mu)$
- A Parton Distribution Function (PDF) $\mathcal{F}(x,\mu)$

 μ independence: DGLAP renormalization equation for ${\cal F}$

Transverse Momentum Dependent (TMD) factorization: semi-inclusive processes with one hard and one semihard scale $Q\sim\sqrt{s}\gg k_{\perp}$

 $\sigma = \mathcal{F}(x, k_{\perp}, \zeta, \mu) \otimes \mathcal{H}(\mu) \otimes \hat{\mathcal{F}}(\hat{x}, \hat{k}_{\perp}, \hat{\zeta}, \mu)$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(\mu)$
- A TMD PDF $\mathcal{F}(x, k_{\perp}, \zeta, \mu)$
- A TMD FF $\hat{\mathcal{F}}(\hat{x}, \hat{k}_{\perp}, \hat{\zeta}, \mu)$
- $\mu,\zeta,\hat{\zeta} \text{ independence: } \mathsf{TMD} \text{ evolution for } \mathcal{F},\hat{\mathcal{F}}$

Factorization with Generalized Parton Distributions (GPD): exclusive processes with one hard scale $Q \sim \sqrt{s}$

 $\sigma = \mathcal{F}(x_1, x_2, |\Delta_{\perp}|, \mu) \otimes \mathcal{H}(x_1, x_2, \mu)$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(x_1, x_2, \mu)$
- A Generalized Parton Distribution (GPD) $\mathcal{F}(x_1, x_2, |\Delta_{\perp}|, \mu)$

 μ independence: DGLAP/ERBL renormalization equation for ${\cal F}$

Bjorken	and	Regge	limits
00000		00	

Continuity of the phase space

The family tree of parton distributions

QCD at small $x_{
m Bi} \sim Q^2/s$

Regge limit: $Q^2 \ll s$

Bjorken and	Regge	limits
0000000	$\bullet \bullet \bullet$	

Continuity of the phase space

Conclusion

Factorized picture

$$\mathcal{S} = \int \mathrm{d}\mathbf{x}_1 \mathrm{d}\mathbf{x}_2 \, \Phi^{Y}(\mathbf{x}_1, \mathbf{x}_2) \, \langle \mathcal{P}' | [\mathrm{Tr}(U_{\mathbf{x}_1}^Y U_{\mathbf{x}_2}^{Y\dagger}) - \mathcal{N}_c] | \mathcal{P} \rangle$$

Written similarly for any number of Wilson lines in any color representation!

Y independence: B-JIMWLK, BK equations. Resums logarithms of s

Continuity of the phase space

DVCS beyond x = 0

Conclusion

The seemingly incompatible nature of the distributions

Two different kinds of gluon distributions

Moderate x distributions

Low x distributions

TMD, PDF...

Dipole scattering amplitude

 $\langle P|F^{-i}WF^{-j}W|P\rangle$

 $\langle P | \mathrm{tr} (\frac{U_1 U_2^{\dagger}}{U_2}) | P \rangle$

The Wilson line \leftrightarrow parton distribution equivalence

Most general equivalence: use the Non-Abelian Stokes theorem

[RB, Mehtar-Tani]

Inclusive low x cross section

Inclusive low x cross section = TMD cross section [Altinoluk, RB, Kotko], [Altinoluk, RB] Generalizes [Dominguez, Marquet, Xiao, Yuan]

$$\begin{split} \sigma &= \mathcal{H}_{2}^{ij}(\mathbf{k}) \otimes f_{2}^{ij}(\mathbf{x} = 0, \mathbf{k}) \\ &+ \mathcal{H}_{3}^{ijk}(\mathbf{k}, \mathbf{k}_{1}) \otimes f_{3}^{ijk}(\mathbf{x} = 0, \mathbf{x}_{1} = 0, \mathbf{k}, \mathbf{k}_{1}) \\ &+ \mathcal{H}_{4}^{ijkl}(\mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{1}') \otimes f_{4}^{ijkl}(\mathbf{x} = 0, \mathbf{x}_{1} = 0, \mathbf{x}_{1}' = 0, \mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{1}') \end{split}$$

All distributions are evaluated in the strict x = 0 limit

Bjorken		Regge	limits
00000	000		

Continuity of the phase space

Conclusion

Exclusive low x cross section

Exclusive low x amplitude = GTMD amplitude [Altinoluk, RB]

$$\mathcal{H}^{ij}\left(m{k}_{1},m{k}_{2}
ight)\otimes f^{ij}(x=0,\xi=0;m{k},\Delta)$$

Every exclusive low x process probes a Wigner distribution!

All distributions are evaluated in the strict x = 0 limit

All distributions are evaluated in the strict x = 0 limit

[NNLO NNPDF3.0 global analysis, taken from PDG2018]

Instabilities in the collinear corner of the phase space

All distributions are evaluated in the strict x = 0 limit

Hard part \mathcal{H} and gluon distribution f for an inclusive observable:

Bjorken limit	Leading twist of the CGC
$s\sim Q^2$	$s\gg Q^2, Q^2 ightarrow\infty$
$\int \mathrm{d} x f(x) \mathcal{H}(x)$	$f(0)\int\mathrm{d}\mathbf{x}\mathcal{H}(\mathbf{x})$

Strong mismatch beyond LL: the PDF is not a constant in $x \simeq 0$. Too late to restore a dependence on x via evolution: x is

already integrated over

Summary so far

Distributions involved in pQCD observables

Overarching scheme?

 $f(x_1...x_n; k_{\perp 1}...k_{\perp n})$

Bjorken limitRegge limit $s \sim Q^2$ $s \gg Q^2$ $f(x; 0_{\perp}) + O(Q^{-2})$ $f(0...0, k_{\perp 1}...k_{\perp n}) + O(x_{\rm Bj})$

Look for an interpolating scheme for simple observables

An interpolating scheme for exclusive Compton scattering

Bjorken limit $s \sim Q^2$ $f(\mathbf{x}, \mathbf{k}_{\perp} = \mathbf{0}) + O(Q^{-2})$

$$\begin{array}{l} \mbox{Regge limit} \\ s \gg Q^2 \\ f(x=0, {\color{black}{k_\perp}}) + O(x_{\rm Bj}) \end{array}$$

Interpolation?

 $s\gtrsim Q^2$

$$f(\mathbf{x}, \mathbf{k}_{\perp}) + O(\mathbf{x}_{\mathrm{Bj}}Q^{-2})$$

Basic observation: in both limits, $k^+ \simeq 0$ for *t*-channel gluons Factorization in k^+ space is consistent [Balitsky, Tarasov]

Building a semi-classical picture					
00000000	0000000000000000	000000000000000000000000000000000000000	0		
Bjorken and Regge limits	Continuity of the phase space	DDVCS beyond $x = 0$	Conclusion		

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit?

$$A^{\mu}(x) = A^{-}(x^{+}, x^{-}, x) n_{2}^{\mu} + A^{\mu}_{\perp}(x^{+}, x^{-}, x)$$

Building a semi-classical picture					
00000000	0000000000000000	000000000000000000000000000000000000000	0		
Bjorken and Regge limits	Continuity of the phase space	DDVCS beyond $x = 0$	Conclusion		

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit?

$$A^{\mu}(x) = A^{-}(x^{+}, \mathbf{x}^{-}, \mathbf{x}) n_{2}^{\mu} + A^{\mu}_{\perp}(x^{+}, \mathbf{x}^{-}, \mathbf{x})$$

Dependence on x^- : sub-sub-leading in twist counting

Ruilding a semi-	Building a semi-classical picture					
00000000	0000000000000000	000000000000000000000000000000000000000	0			
Bjorken and Regge limits	Continuity of the phase space	DDVCS beyond $x = 0$	Conclusion			

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit?

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x) n_{2}^{\mu} + A^{\mu}_{\perp}(x^{+}, 0^{-}, x)$$

Non-zero A_{\perp} : only two A^i contribute to DDVCS They can be computed using Ward-Takahashi: only necessary for consistency checks, can be dropped.

Building a semi-classical picture					
00000000	00000000000000000	000000000000000000000000000000000000000	0		
Bjorken and Regge limits	Continuity of the phase space	DDVCS beyond $x = 0$	Conclusion		

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x) n_{2}^{\mu}$$

Continuity of the phase space

DDVCS beyond x = 0

Conclusion

Effective Feynman rules in the slow background field

Effective fermion propagator in the external classical field

- $A_{cl}^{i} = 0$, $A_{cl}^{+} = 0$: the Dirac structure factorizes
- A_{cl} does not depend on x^- : conservation of + momentum
- $A_{\rm cl}$ is peaked around $x^+ = 0$:
 - Most external propagators get factorized out
 - $\bullet\,$ Gaussians $\sim \delta\,$ functions: conservation of transverse position
 - Possibility to extend Wilson lines to infinity $[x^+, y^+]_x = [\infty^+, -\infty^+]_x \equiv U_x$

Effective Feynman r	iles in the slow backgro	ound field	
	00000000000000000		
Bjorken and Regge limits	Continuity of the phase space	DDVCS beyond $x = 0$	Conclusion

Effective fermion propagator in the external classical field

• $A_{cl}^{i} = 0, \ A_{cl}^{+} = 0$: the Dirac structure factorizes

- A_{cl} does not depend on x^- : conservation of + momentum
- $A_{\rm cl}$ is peaked around $x^+ = 0$:
 - Most external propagators get factorized out
 - $\bullet~{\rm Gaussians}\sim\delta$ functions: conservation of transverse position
 - Possibility to extend Wilson lines to infinity $[x^+, y^+]_x = [\infty^+, -\infty^+]_x \equiv U_x$

Bjorken and Regge limits	Continuity of the phase space	DDVCS beyond x = 0	Conclusion
000000000		000000000000000000000000000000000	O
Effective Feynman ru	ules in the slow backgro	ound field	

Effective fermion propagator in the external classical field

- $A_{\rm cl}^i=0, \ A_{\rm cl}^+=0$: the Dirac structure factorizes
- A_{cl} does not depend on x^- : conservation of + momentum

$$D_F(\ell',\ell) = i \frac{\gamma^+}{2\ell^+} (2\pi)^D \delta^D(\ell'-\ell) + i \frac{\ell' \gamma^+ \ell}{2\ell^+} G_{\text{scal}}(\ell',\ell)$$

Effective Feynman rules in the slow background field

Effective scalar propagator in the external classical field

$$\begin{split} & \mathcal{G}_{\mathrm{scal}}(\ell',\ell) - \mathcal{G}_{0}(\ell')(2\pi)^{D} \delta^{D}(\ell'-\ell) \\ & = 2g \int \mathrm{d}^{D} z \int \frac{\mathrm{d}^{D} k}{(2\pi)^{D}} \mathrm{e}^{i(\ell'-k)\cdot z} \mathcal{G}_{0}(\ell') \left(k \cdot A\right)(z) \mathcal{G}_{\mathrm{scal}}(k,\ell). \end{split}$$

In coordinate space, it satisfies the Klein-Gordon equation in a potential

$$\left[-\Box_z + 2igA(z) \cdot \partial_z\right] G_{\rm scal}(z, z_0) = \delta^D(z - z_0)$$

Application to the exclusive $\gamma^{(*)}(q)P(p) \rightarrow \gamma^{(*)}(q')P(p')$ amplitude

Double, Spacelike, and Timelike exclusive Compton Scattering

Longitudinal momentum variables:

$$\mathbf{x}, \quad \mathbf{\xi} \sim rac{-q^2 + q'^2}{2q \cdot (p + p')}, \quad \mathbf{x}_{\mathrm{Bj}} = rac{-q^2 - q'^2}{2q \cdot (p + p')}$$

Can we restore the dependence on all 3 variables in our CGC-like scheme?

Double, Spacelike, and Timelike exclusive Compton Scattering

$$\begin{split} \mathcal{A} &= \frac{e^2}{\mu^{d-2}} \varepsilon_q^{\mu} \varepsilon_{q'}^{\nu*} \sum_f q_f^2 \int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \int \frac{\mathrm{d}^D k}{(2\pi)^D} \\ &\times \langle p' | \mathrm{tr} \left[\gamma_{\nu} D_F(k,\ell) \gamma_{\mu} D_F(-q+\ell,-q'+\ell+k) \right] | p \rangle \end{split}$$

Continuity of the phase space

Some operator algebra

$$\begin{aligned} &\operatorname{tr} G_{\operatorname{scal}}^{R}(x_{2}, x_{1}) G_{\operatorname{scal}}^{A}(y_{1}, y_{2}) \\ &= 16g^{2} \int \mathrm{d}^{D} x_{3} \int \mathrm{d}^{D} x_{4} \int \mathrm{d}^{D} y_{3} \int \mathrm{d}^{D} y_{4} \delta(y_{3}^{+} - x_{3}^{+}) \delta(x_{4}^{+} - y_{4}^{+}) \\ &\times (\partial_{x_{3}}^{+} G_{0}^{R})(x_{3}, x_{1}) (\partial_{x_{4}}^{+} G_{0}^{R})(x_{2}, x_{4}) (\partial_{y_{3}}^{+} G_{0}^{A})(y_{1}, y_{3}) (\partial_{y_{4}}^{+} G_{0}^{A})(y_{4}, y_{2}) \\ &\times \operatorname{tr} \left\{ \left[A^{-}(y_{3}) - A^{-}(x_{3}) \right] G_{\operatorname{scal}}^{A}(y_{3}, y_{4}) \left[A^{-}(y_{4}) - A^{-}(x_{4}) \right] G_{\operatorname{scal}}^{R}(x_{4}, x_{3}) \right\} \end{aligned}$$

(First) final result

Fully general result

 $\mathcal{A} \propto \mathcal{U}^{ij}(z, \boldsymbol{\ell}_1, \boldsymbol{\ell}_2) \otimes_{z, \boldsymbol{\ell}_1, \boldsymbol{\ell}_2} (\partial^i \Phi)(z, \boldsymbol{\ell}_1) (\partial^j \Phi^*)(z, \boldsymbol{\ell}_2)$

- Φ : standard wave functions
- \mathcal{U}^{ij} : generalization of the dipole operator

Contains unnecessary subleading powers of x_{Bj}, ξ and Q, Q'

Continuity of the phase space

Further simplifcations

Partial twist expansion

Typical transverse recoil of a fast parton: $\Delta x^2 \sim 1/(q^+(p^-+p'^-)) \sim 1/s$

1/s: eikonally suppressed in the Regge limit

 $1/s \sim 1/Q^2$: twist suppressed in in the Bjorken limit.

We can get rid of all corrections from transverse recoils without loss of accuracy

Bjorken and Regge limits 000000000 Continuity of the phase space

 Conclusion

Further simplifications

Partial twist expansion

x-dependent unintegrated GPD

$$\begin{split} \mathcal{G}^{ij}(\mathbf{x},\xi,\mathbf{k},\Delta) &\equiv \frac{2}{p^- + p'^-} \int \frac{\mathrm{d} \mathbf{v}^+}{2\pi} \mathrm{e}^{i\mathbf{x}\frac{p^- + p'^-}{2}\mathbf{v}^+} \int \frac{\mathrm{d}^d \mathbf{v}}{(2\pi)^d} \mathrm{e}^{-i(\mathbf{k}\cdot\mathbf{v})} \int_0^1 \mathrm{d} \mathbf{s} \mathrm{d} \mathbf{s}' \\ &\times \left\langle p' \left| \mathrm{tr}_c \left\{ \left[\mathbf{v}^+, \mathbf{0}^+ \right]_0 F^{i-} \left(\mathbf{0}^+, \mathbf{s} \mathbf{v} \right) \left[\mathbf{0}^+, \mathbf{v}^+ \right]_{\mathbf{v}} F^{j-} \left(\mathbf{v}^+, \mathbf{s}' \mathbf{v} \right) \right\} \right| p \right\rangle \end{split}$$

The unintegrated PDF

uGPD as a finite Wilson loop

x-dependent unintegrated GPD \Leftrightarrow FT of a finite Wilson loop

(Actual) final result

Continuity of the phase space

Final expression for the amplitude

$$\begin{aligned} \mathcal{A} &= g^2 \sum_{f} q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \int \mathrm{d}^d \mathbf{k} \\ &\times (\partial^i \Phi)(z, \ell - \mathbf{k}/2) (\partial^j \Phi^*)(z, \ell + \mathbf{k}/2) \\ &\times \int \mathrm{d}x \frac{\mathcal{G}^{ij}(x, \xi, \mathbf{k}, \Delta)}{x - x_{\mathrm{Bj}} - \frac{\ell^2}{2z\overline{z}q^+P^-} + i0} \end{aligned}$$

Standard wave functions $\boldsymbol{\Phi}$

x-dependent unintegrated GPD $\mathcal{G}^{ij}(x,\xi,\boldsymbol{k},\Delta)$

Bjorken limit and Regge limit

The Bjorken limit

Recovering the Bjorken limit

The Bjorken limit is reached by neglecting transverse momentum transfert from the target:

$$|\boldsymbol{\ell}| \sim Q \gg |\boldsymbol{k}|$$

Key observation: \mathcal{G}^{ij} integrates into GPDs

$$\int \mathrm{d}^{d} \mathbf{k} (\partial^{i} \phi)(z, \ell - \mathbf{k}/2) (\partial^{j} \phi^{*})(z, \ell + \mathbf{k}/2) \mathcal{G}^{ij}(x, \mathbf{k})$$
$$\simeq (\partial^{i} \phi)(z, \ell) (\partial^{j} \phi^{*})(z, \ell) \int \mathrm{d}^{d} \mathbf{k} \mathcal{G}^{ij}(x, \mathbf{k})$$
$$\simeq (\partial^{i} \phi)(z, \ell) (\partial^{j} \phi^{*})(z, \ell) \mathcal{G}^{ij}(x)$$

We fully recover the well-known one-loop exclusive Compton scattering amplitudes

Continuity of the phase space

The Bjorken limit

Unpolarized contribution

$$\begin{aligned} &2\alpha_{\rm em}\alpha_s\sum_f q_f^2 \int dx \frac{(\varepsilon_q \cdot \varepsilon_{q'}^*)G(x,\xi,\Delta)}{(x+\xi-i0x_{\rm Bj})^2(x-\xi+i0x_{\rm Bj})^2} \\ &\times \frac{1}{2\xi} \left\{ \left[(x_{\rm Bj}+\xi)(x^2-\xi^2+4\xi x_{\rm Bj}+4\xi x)\ln\left(\frac{x_{\rm Bj}+x-i0}{x_{\rm Bj}+\xi-i0}\right) \right. \\ &- \frac{x_{\rm Bj}+\xi}{2}(x^2-\xi^2+2\xi x_{\rm Bj}+2\xi x) \left[\ln^2\left(\frac{x_{\rm Bj}+x-i0}{\xi}\right) - \ln^2\left(\frac{x_{\rm Bj}+\xi-i0}{\xi}\right) \right] \right. \\ &+ \frac{x_{\rm Bj}-\xi}{2}(x^2-\xi^2-2\xi x_{\rm Bj}-2\xi x) \left[\ln^2\left(\frac{x_{\rm Bj}+x-i0}{\xi}\right) - \ln^2\left(\frac{x_{\rm Bj}-\xi-i0}{\xi}\right) \right] \\ &- (x_{\rm Bj}-\xi)(x^2-\xi^2-4\xi x_{\rm Bj}+4\xi) \ln\left(\frac{x_{\rm Bj}+x-i0}{x_{\rm Bj}-\xi-i0}\right) \right] + (x \to -x) \right\} \end{aligned}$$

The Bjorken limit

Polarized contribution

$$\begin{aligned} &2\alpha_{\rm em}\alpha_s \sum_f q_f^2 \int dx \frac{\epsilon^{mn} e_h^m e_{h'}^{n*} \widetilde{G}(x,\xi,\Delta)}{(x+\xi-i0x_{\rm Bj})^2 (x-\xi+i0x_{\rm Bj})^2} \\ &\times \left\{ \left[2(2x^2+\xi^2) \ln\left(\frac{x_{\rm Bj}+x-i0}{\xi}\right) + 3x(x_{\rm Bj}-\xi) \ln\left(\frac{x_{\rm Bj}+x-i0}{x_{\rm Bj}+\xi-i0}\right) + 3x(x_{\rm Bj}-\xi) \ln\left(\frac{x_{\rm Bj}+x-i0}{x_{\rm Bj}-\xi-i0}\right) - \frac{1}{2}x(x_{\rm Bj}+\xi) \left[\ln^2\left(\frac{x_{\rm Bj}+x-i0}{\xi}\right) - \ln^2\left(\frac{x_{\rm Bj}+\xi-i0}{\xi}\right) \right] \\ &- \frac{1}{2}x(x_{\rm Bj}-\xi) \left[\ln^2\left(\frac{x_{\rm Bj}+x-i0}{\xi}\right) - \ln^2\left(\frac{x_{\rm Bj}-\xi-i0}{\xi}\right) \right] \\ &- \frac{1}{2}(x^2+\xi^2) \ln^2\left(\frac{x_{\rm Bj}+x-i0}{\xi}\right) \right] - (x \to -x) \right\} \end{aligned}$$

The Bjorken limit

Transversity contribution

$$2\alpha_{\rm em}\alpha_s \sum_{f} q_f^2 \tau^{mn,ij} \boldsymbol{e}_h^m \boldsymbol{e}_{h'}^{\prime n*} \int dx \frac{G_T^{ij}(x,\xi,\Delta)}{(x-\xi+i0x_{\rm Bj})^2 (x+\xi-i0x_{\rm Bj})^2} \\ \times \left[(x^2-\xi^2) + (x_{\rm Bj}^2-\xi^2) \ln \frac{(x_{\rm Bj}-x-i0)(x_{\rm Bj}+x-i0)}{(x_{\rm Bj}-\xi-i0)(x_{\rm Bj}+\xi-i0)} \right]$$

The Regge limit

Recovering the Regge limit? What is x?

Naive argument

- In the Regge limit, the amplitude is dominated by its imaginary part
- Leading order amplitude:

$${
m Im} \mathcal{A}_{LO} \propto {
m Im} \int {
m d}x \mathcal{H}^{q}(x,\xi,t) rac{1}{x-x_{
m Bj}+i\epsilon} = -\pi \mathcal{H}^{q}(x_{
m Bj},\xi,t)$$

• Hence take $x = x_{Bj}$

Problems

- At NLO, the x cut is way more complicated
- For DDVCS and for TCS, *s*-channel cuts also contribute to the imaginary part

The Bjorken limit

Recovering the Regge limit

The Regge limit is reached by neglecting $x_{\rm Bj}$ and setting $\frac{\ell^2}{z\bar{z}} \ll q \cdot P$, then taking the x cut:

$$rac{1}{x-x_{\mathrm{Bj}}-rac{\ell^2}{2z\overline{z}q^+P^-}+i0}
ightarrow rac{1}{x+i0}
ightarrow -i\pi\delta(x),$$

then taking $x_{\rm Bj}, \xi \ll 1$. Key observation:

$$\begin{split} &\int \frac{\mathrm{d}^d \boldsymbol{\ell}_1}{(2\pi)^d} \int \frac{\mathrm{d}^d \boldsymbol{\ell}_2}{(2\pi)^d} \mathrm{e}^{-i(\boldsymbol{\ell}_1 \cdot \boldsymbol{r}_1) + i(\boldsymbol{\ell}_2 \cdot \boldsymbol{r}_2)} \boldsymbol{r}_1^i \boldsymbol{r}_2^j \big[\mathsf{x} \boldsymbol{G}^{ij}(\mathbf{x}, \boldsymbol{\ell}_2 - \boldsymbol{\ell}_1) \big]_{\mathbf{x} = \mathbf{0}} \\ &= \frac{N_c}{2\pi^2 \alpha_s} \delta^d(\boldsymbol{r}_1 - \boldsymbol{r}_2) \int \frac{\mathrm{d}^d \boldsymbol{v}_2}{(2\pi)^d} \mathrm{Re} \frac{\left\langle \boldsymbol{P} \big| \mathbf{1} - \frac{1}{N_c} \mathrm{tr}_c \big(\boldsymbol{U}_{\boldsymbol{v}_2 + \boldsymbol{r}_1} \boldsymbol{U}_{\boldsymbol{v}_2}^\dagger \big) \big| \boldsymbol{P} \right\rangle}{\left\langle \boldsymbol{P} \big| \boldsymbol{P} \right\rangle} \end{split}$$

Continuity of the phase space

 Conclusion

The Regge limit

Recovering the Regge limit

$$\begin{aligned} &(\partial^{i}\Phi)(z,\ell-\frac{k}{2})(\partial^{j}\Phi^{*})(z,\ell+\frac{k}{2})\otimes_{\ell,k} \times G^{ij}(x,k)\delta(x) \\ &\to \Psi(z,\mathbf{r}_{1})\Psi^{*}(z,\mathbf{r}_{2})\otimes_{\mathbf{r}_{1},\mathbf{r}_{2}}\mathbf{r}_{1}^{i}\mathbf{r}_{2}^{j}\left[\times G^{ij}(x,k)\right]_{x=0} \\ &\to \Psi(z,\mathbf{r}_{1})\Psi^{*}(z,\mathbf{r}_{2})\otimes_{\mathbf{r}_{1},\mathbf{r}_{2}}\delta^{d}(\mathbf{r}_{1}-\mathbf{r}_{2})UU \\ &\to |\Psi(z,\mathbf{r})|^{2}\otimes_{\mathbf{r}}D(\mathbf{r}) \end{aligned}$$

We fully recover the small-x description of exclusive Compton scattering e.g. [Hatta, Xiao, Yuan]. Rq: x = 0 is the reason why wave functions involve the same dipole size in the wave functions

Non-commutativity of the limits

Interpolating scheme for exclusive Compton scattering

Overarching scheme

 $\int \mathrm{d} \boldsymbol{x} \int \mathrm{d}^{\boldsymbol{d}} \boldsymbol{k} \mathcal{G}^{\boldsymbol{i} \boldsymbol{j}}(\boldsymbol{x}, \boldsymbol{\xi}, \boldsymbol{k}, \boldsymbol{\Delta}) H^{\boldsymbol{i} \boldsymbol{j}}(\boldsymbol{x}, \boldsymbol{\xi}, \boldsymbol{k}, \boldsymbol{\Delta})$

Bjorken limit

Regge limit

 $\begin{array}{c|c} \int \mathrm{d}\mathbf{x} H^{ij}(\mathbf{x},\xi,0,\Delta) \\ \times [\int \mathrm{d}^d k \mathcal{G}^{ij}(\mathbf{x},\xi,\mathbf{k},\Delta)] \end{array} & & \int \mathrm{d}^d k \mathcal{G}^{ij}(\mathbf{0},\xi,\mathbf{k},\Delta) \\ \times [\int \mathrm{d}\mathbf{x} H^{ij}(\mathbf{x},\xi,\mathbf{k},\Delta)] \end{array}$

We found an interpolating scheme

Double limit

Do the two limits commute?

Leading twist limit of the Regge limit

$$\lim_{Q^2+Q'^2\to\infty} \mathcal{A}_{\text{Regge}} = g^2 \sum_f q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \times (-i\pi) \frac{G^{ij}(0,\xi,t)}{(0,\xi,t)} (\partial^i \Phi)(z,\ell) (\partial^j \Phi^*)(z,\ell)$$

Eikonal limit of the Bjorken limit

$$\lim_{x_{\rm Bj},\xi\to 0} \mathcal{A}_{\rm Bjorken} = g^2 \sum_f q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \times \lim_{x_{\rm Bj},\xi\to 0} \int \mathrm{d}x \, \frac{G^{ij}(x,\xi,t)(\partial^j \Phi)(z,\ell)(\partial^j \Phi^*)(z,\ell)}{x - x_{\rm Bj} - \frac{\ell^2}{2z\bar{z}q^+P^-} + i0}$$

Bjorken and Regge limits 000000000 Continuity of the phase space

 Conclusion

Double limit

Do the two limits commute?

If $G^{ij}(x,\xi,t)$ is a constant at x = 0:

$$\int dx \frac{G^{ij}(x,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)}{x-x_{\rm Bj}-\frac{\ell^{2}}{2z\bar{z}q^{+}P^{-}}+i0}$$

$$\simeq G^{ij}(0,\xi,t) \int dx \frac{(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)}{x-x_{\rm Bj}-\frac{\ell^{2}}{2z\bar{z}q^{+}P^{-}}+i0}$$

$$= G^{ij}(0,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)$$

$$\times \ln \left(\frac{1-x_{\rm Bj}-\frac{\ell^{2}}{z\bar{z}\frac{Q^{2}+Q^{\prime 2}}{2}}\xi+i0}{-1-x_{\rm Bj}-\frac{\ell^{2}}{z\bar{z}\frac{Q^{2}+Q^{\prime 2}}{2}}\xi+i0}\right)$$

and thus

$$\lim_{x_{\mathrm{B}j},\xi\to 0} \int \mathrm{d}x \, \frac{G^{ij}(x,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)}{x-x_{\mathrm{B}j}-\frac{\ell^{2}}{2z\bar{z}q^{+}P^{-}}+i0}$$
$$\simeq -i\pi G^{ij}(0,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)$$

Double limit

Do the two limits commute?

Leading twist limit of the Regge limit

$$\lim_{Q^2+Q'^2\to\infty} \mathcal{A}_{\text{Regge}} = g^2 \sum_f q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \times (-i\pi) \frac{G^{ij}(0,\xi,t)}{(0,\xi,t)} (\partial^i \Phi)(z,\ell) (\partial^j \Phi^*)(z,\ell)$$

Eikonal limit of the Bjorken limit provided the GPDs are constant at x = 0

$$\lim_{\substack{x_{\mathrm{Bj}},\xi \to 0}} \mathcal{A}_{\mathrm{Bjorken}} = g^2 \sum_{f} q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \\ \times (-i\pi) G^{ij}(0,\xi,t) (\partial^i \Phi)(z,\ell) (\partial^j \Phi^*)(z,\ell)$$

Checked with explicit final expressions for both double limits

Conclusion

Where do we stand?

Bad news

- Semi-classical small x physics has, at its core, issues with collinear logarithms
- The problem can be traced down to the very starting point Good news
- We now have a minimal correction of semi-classical small x which solves the problem from first principles
- Wave functions, and thus hard parts, are not modified by the scheme
- All we need is the right evolution equation...

BACKUP

•000

$$\begin{split} &\operatorname{tr} G_{\mathrm{scal}}^{R}(x_{2},x_{1}) G_{\mathrm{scal}}^{A}(y_{1},y_{2}) \\ &= 16g^{2} \int \mathrm{d}^{D} x_{3} \int \mathrm{d}^{D} x_{4} \int \mathrm{d}^{D} y_{3} \int \mathrm{d}^{D} y_{4} \delta(y_{3}^{+} - x_{3}^{+}) \delta(x_{4}^{+} - y_{4}^{+}) \\ &\times (\partial_{x_{3}}^{+} G_{0}^{R})(x_{3},x_{1}) (\partial_{x_{4}}^{+} G_{0}^{R})(x_{2},x_{4}) (\partial_{y_{3}}^{+} G_{0}^{A})(y_{1},y_{3}) (\partial_{y_{4}}^{+} G_{0}^{A})(y_{4},y_{2}) \\ &\times \operatorname{tr} \left\{ \left[A^{-}(y_{3}) - A^{-}(x_{3}) \right] G_{\mathrm{scal}}^{A}(y_{3},y_{4}) \left[A^{-}(y_{4}) - A^{-}(x_{4}) \right] G_{\mathrm{scal}}^{R}(x_{4},x_{3}) \right\} \end{split}$$

Can be proven via the repeated use of Klein-Gordon in a potential, or by proving the generalization to $G_{\rm scal}$ of the relation

$$\frac{\partial}{\partial x^{+}}[y^{+},x^{+}]_{x_{1}}[x^{+},z^{+}]_{x_{2}} = -ig[y^{+},x^{+}]_{x_{1}}\left[A^{-}(x^{+},x_{1}) - A^{-}(x^{+},x_{2})\right][x^{+},z^{+}]_{x_{2}}$$

Structurally ready for a so-called dilute (perturbative) expansion

The free propagators G_0 provide the energy denominators.

Simplifications

Two useful technical details

• The classical field does not depend on x^- so $G_{\text{scal}}(x, x_0)$ only depends on $(x^- - x_0^-)$, not on each separately: we can define

$$G_{\rm scal}(x,x_0) \equiv \int \frac{{\rm d}\boldsymbol{p}^+}{2\pi} \frac{{\rm e}^{-i\boldsymbol{p}^+(x^--x_0^-)}}{2i\boldsymbol{p}^+} (\boldsymbol{x}|\mathcal{G}_{\boldsymbol{p}^+}(x^+,x_0^+)|\boldsymbol{x}_0)$$

 ${\mathcal G}$ satisfies the Schrödinger equation instead of Klein-Gordon

• Since $A^i = 0$, we have

$$A^{-}(x^{+},\boldsymbol{x}) - A^{-}(x^{+},\boldsymbol{y}) = -(\boldsymbol{x}^{i} - \boldsymbol{y}^{i}) \int_{0}^{1} \mathrm{d}\boldsymbol{s} \, F^{i-}(x^{+},\boldsymbol{s}\boldsymbol{x} + (1-\boldsymbol{s})\boldsymbol{y})$$

Further simplifcations

Partial twist expansion

 $(\mathbf{x}_{1}|\mathcal{G}_{p^{+}}^{R}(x_{1}^{+},x_{2}^{+})|\mathbf{x}_{2}) \simeq \theta(p^{+})(\mathbf{x}_{1}|\mathcal{G}_{p^{+}}^{(0)R}(x_{1}^{+},x_{2}^{+})|\mathbf{x}_{2})[x_{1}^{+},x_{2}^{+}]_{\frac{x_{1}+x_{2}}{2}}$

 $(\mathbf{y}_{2}|\mathcal{G}_{p^{+}}^{A}(x_{2}^{+},x_{1}^{+})|\mathbf{y}_{1}) \simeq \theta(-p^{+})(\mathbf{y}_{2}|\mathcal{G}_{p^{+}}^{(0)A}(x_{2}^{+},x_{1}^{+})|\mathbf{y}_{1})[x_{2}^{+},x_{1}^{+}]_{\frac{y_{1}+y_{2}}{2}}$

[Altinoluk, Armesto, Beuf, Martinez, Salgado]

$$F^{i-}(x_1^+, sx_1 + \bar{s}y_1) \simeq F^{i-}(x_1^+, s\frac{x_1 + x_2}{2} + \bar{s}\frac{y_1 + y_2}{2})$$