

Office of Science

FoCal (UPC) program and connections with the EIC Daniel Tapia Takaki

Color Glass Condensate at the EIC

ECT* Trento, Italy – March 17, 2023

Gluons matter FARGER DEFINITION AND FRAME (1) is predicted

gluon gluon recombination

Dynamical equilibrium of gluon saturation state reached $\sqrt{2} - 1/k_T$

- Non-linear QCD evolution equations introduced, but how is gluon saturation triggered?
- can we determine experimentally the saturation scale (Q_S)?
 - Is there a state of matter formed by gluon saturated matter with universal properties?

Evolution of the hadronic structure with Bjorken-x and Q^2

- Experimental observables needed to map out the transition between the dilute and saturation regimes
- For nuclei, the saturation scale is enhanced by a A^{1/3} factor

$$(Q_s^A)^2 \approx c Q_0^2 \left[\frac{A}{x}\right]^{1/3}$$

Nuclear shadowing experimentally confirmed, but not fully understood

 $R = \frac{f_{i/A}}{A f_{i/p}}$ measured expected if no nuclear effects 1.5 Fermiantishadowing motion $\tau_{\text{DIS}}(\text{nucleus})/\sigma_{\text{DIS}}(\text{nucleon})$ 1.0 EMC-0.6 effect shadowing 0.2 10^{-3} 10^{-2} 10^{-1} x

- Experimental observation that parton distributions are different for protons and nuclei
- What's the mechanism responsible for shadowing? <u>How is gluon saturation</u> <u>related?</u>
 - The knowledge of the initial state of nuclei also needed for understanding the QGP evolution

Experimental program

- The <u>Electron-Ion Collider</u> will be a dedicated QCD machine with the precision and control capabilities for studying gluon saturation and shadowing in a systematic way
- The <u>LHC</u> explores the high energy domain for both hadronic and photon-induced reactions
- <u>FoCal</u> at ALICE will explore a unique low-*x* regime reaching *x* ~ 10⁻⁶
- Important to compare e+A DIS with forward p+A and UPC at the LHC

Experimental program

The ALICE FoCal

covering $3.4 < \eta < 5.8$

FoCal-E

Si+W EM calorimeter (2 subsystems)

| Designed for measurement of direct photons and high p_t neutral pions (Pb-Pb vs pp)

FoCal-H

| Scintillating fibers enclosed in Cu capillary-tubes, readout by SiPMs

| Designed to study the dynamics of hadronic matter and provides good Jet isolation capabilities

FoCal measurements

- Prompt and isolated photons (γ)
- Identified π⁰ and other neutron particles
- J/ψ and other excited quarkonia states
- W and Z bosons
- Inclusive jets
- Correlations: di-hadron, di-jet, γ+hadron, γ +jet, etc

Collision systems: p+p at 5, 8.8 and 14 TeV p+Pb at 8.8 TeV; (both p+Pb and Pb+p)

γ in FoCal Kinematics

Color Glass Condensate at the EIC-

Daniel Tapia Takaki

ALICE Forward Calorimeter (FoCal)

R&D studies and beam tests ongoing

Run 4 is currently scheduled for the period 2029–2032

The Technical Design Report (TDR) will be completed this year

	13	2020	2021	20	522	2025	2024	2025	2020	2027	2028	2029
	Q4	Q1 Q2 Q3	Q4 Q1 Q2 Q3	Q4 Q1	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1Q2Q3 Q4	Q1Q2Q3Q4				
LHC		LS2			Run-3	3			LS3			Run-4
Lol												
R&D												
Test beams (SPS, DESY, KEK)												
TDR												
US Project approval												
Final design												
Production, construction, test of module												
Pre-assembly, calibration with test beam (KEK)												
Installation and commissioning												
Contingency												
Global commissioning and physics data taking												

40 2020

The LHC is the Large **Photon** Collider

 <u>Ultra Peripheral Collisions (UPC)</u> can explore a wide range of energies using almost real photons

 $\begin{array}{l} \mathsf{k} = \gamma \mathsf{M}_{\mathsf{V}} \exp(\pm, \mathsf{y}) \\ \mathsf{Up} \text{ to several TeV in } \gamma \mathsf{p} \\ \mathsf{Up} \text{ to } \sim 700 \text{ GeV/nucleon in } \gamma \mathsf{A} \\ \mathsf{Up} \text{ to } \sim 150 \text{ GeV in } \gamma \gamma \text{ using UPC PbPb,} \\ \sim 4 \text{ TeV in in } \gamma \gamma \text{ using UPC pp} \end{array}$

 <u>UPCs at the LHC probe the hadronic structure over</u> broad and unique Bjoren x region, yet the precision not compatible to DIS machines like the EIC

 $x = M_V / \gamma m_p \exp(\pm, y)$

Interactions mediated by the EM interactions

Equivalent photon flux

Vector meson (VM) photoproduction in UPCs

- As in DIS, several reactions are possible in UPCs:
 - -Exclusive photoproduction
 - -Semi-exclusive photoproduction
 - -Inclusive photoproduction

- By studying various VMs, it is possible to study the Q² dependence
- In the dipole approach, the light VMs (φ, ρ⁰) are more sensitive to saturation because of the larger dipole, but pQCD methods not applicable

First exclusive J/ ψ measurements by ALICE using Run 1 (2013)

Phys. Rev. Lett. 113 (2014) 23, 232504

- No change with respect to HERA power-law growth observed at low energies up to 700 GeV
- UPC pPb collisions • have no ambiguity on the photon energy

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Recent exclusive J/ ψ measurements by ALICE using Run 2 (2023)

Two-fold ambiguity on the photon direction in symmetric systems

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

Only UPC asymmetric systems (p-Pb) analyses provide <u>a model</u> independent way of the energy dependence of $\sigma(\gamma p)$

UPC VM projections for FoCal

A. Bylinkin, J. Nystrand and DTT J. Phys. G: Nucl. Part. Phys. 50 055105

VM	$\sigma(\mathbf{p} + \mathbf{Pb} \rightarrow \mathbf{p} + \mathbf{Pb} + \mathbf{VM})$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
		$p \rightarrow FoCal$	$\mathbf{p} \to \mathbf{FoCal}$
$ ho^0$	35 mb	140 nb	21,000
ϕ	1.7 mb	51 nb	7,700
${ m J}/\psi$	$98 \ \mu \mathrm{b}$	400 nb	60,000
$\psi(2S)$	$16 \ \mu b$	8.9 nb	$1,\!300$
$\Upsilon(1S)$	220 nb	0.38 nb	60
		$Pb \rightarrow FoCal$	$Pb \rightarrow FoCal$
$ ho^0$	35 mb	17 nb	2,600
ϕ	$1.7 \mathrm{~mb}$	5.3 nb	800
${ m J}/\psi$	$98 \ \mu \mathrm{b}$	36 nb	$5,\!400$
$\psi(2S)$	$16 \ \mu \mathrm{b}$	$0.53 \mathrm{~nb}$	80
$\Upsilon(1S)$	220 nb	0.67 pb	~ 0

Projections for exclusive J/ψ off protons

- Deviations from a power-law trend should signal non-linear QCD dynamics
- Here, projections based on STARlight which uses a parametrization based on HERA data $\sigma_0 (W_{\gamma p}/W_0)^{\delta}$
- For all figures, 60% efficiency. Conservative assumption after acceptance selection

Projections for exclusive J/ψ off protons

- Projections assuming a broken power-law
- Projected points based on NLO BFKL calculation

$$\sigma(\gamma p) \approx \frac{\sigma_0}{\frac{1}{W_{\gamma p}^{\delta}} + A}$$

Projections for exclusive J/ψ off protons

Power-law behavior (STARlight)

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

Broken power-law behavior (NLO BFKL)

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

FoCal measurement would be sufficient to observe a deviation from a power law behavior, if exists

Projections for exclusive $\psi(2S)$ and J/ ψ cross section ratio in γp

- Different wave functions and dipole sizes evolution result in great sensitivity to non-linear QCD effects
- No sensitivity at HERA, but expected at the LHC
- Projections here based on STARlight

Projections for dissociative J/ ψ cross section ratio in γp

J. Cepilia, J.G. Contreras and DTT Phys. Lett.B 766 (2017) 186-191

Color Glass Condensate at the EIC-

Daniel Tapia Takaki

<u>Near threshold and intermediate</u> energies for exclusive J/ψ in γp

$\mathcal{L} = 7.0 \text{ nb}^{-1}$

VM	$\sigma(Pb + Pb \rightarrow Pb + Pb + VM)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
$ ho^0$	5.0 b	$20 \ \mu \mathrm{b}$	$140,\!000$
ϕ	440 mb	$10 \ \mu \mathrm{b}$	$70,\!000$
${ m J}/\psi$	39 mb	$53~\mu{ m b}$	$370,\!000$
$\psi(2S)$	7.5 mb	$1.1 \ \mu \mathrm{b}$	7,500
$\Upsilon(1S)$	$94 \ \mu b$	5.0 nb	35

Projections for VMs in γ Pb

Recent NLO calculations indicate importance of quark contribution and large scale uncertainties

The FoCal region is gluon dominated

- At LO predicted to be proportial to the square of the gluon density (Z. Ryskin Phys. C 57, 89 (1993), but several caveats
- UPC J/ψ also
 described by
 Generalized Parton
 Distributions (GPDs),
 with some theory
 considerations

Nuclear suppression factor for UPC J/ ψ : Comparing γ Pb to γ p

V. Guzey et al. PLB 726 (2013)

An experimental definition, which can be linked to PDFs at LO

$$S_{Pb}(x) = \sqrt{\frac{\sigma_{\gamma A \to J/\psi A}(W_{\gamma p})}{\sigma_{\gamma A \to J/\psi A}^{\mathrm{IA}}(W_{\gamma p})}} = \kappa_{A/N} \frac{xg_A(x,\mu^2)}{Axg_N(x,\mu^2)}$$

Run 1 data from ALICE was the first at indicating nuclear gluon shadowing at $x \sim 10^{-3}$

Large scale NLO uncertainties should cancel in the $S_{Pb}(x)$ ratio

ALICE results at y=0 have no ambiguity on the photon energy determination

Color Glass Condensate at the EIC-

Daniel Tapia Takaki

Nuclear suppression factor for peripheral (not UPC) J/ ψ

J.G. Contreras, Phys. Rev. C 96 (2017) 1, 015203

Run 1 data from ALICE observed Coherent-like J/ψ from peripheral hadronic PbPb events. Process later confirmed by STAR

The photon flux depends on the impact parameter, these peripheral J/ψ explore γP energies beyond coherent J/ψ at the same y interval at the same cms energy

Sensitivity to x ~ 10⁻⁵

Neutron-dependence of coherent J/ ψ in γ Pb

The photon flux (n) depends on the impact parameter

Decomposed in terms of neutron configurations emitted in the forward region

$$\frac{d\sigma}{dy} = \frac{d\sigma(0n0n)}{dy} + 2\frac{d\sigma(0nXn)}{dy} + \frac{d\sigma(XnXn)}{dy}$$

Solving the linear equations resolves the two-photon ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = \frac{n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)}{n(-y)\sigma(\gamma p, -y)}$$

Run 1 and Run 2 results – latest results

Color Glass Condensate at the EIC-

Daniel Tapia Takaki

Projections for Run 3+4 – without FoCal

Z. Citron et al. CERN Yellow Rep.Monogr. 7 (2019) 1159-1410

- Projections consider neutrons-dependence analysis for VMs at y ≠ 0
- Analysis combined Run 3+4 statistics, important precision expected, while FoCal will explore further down in x where the gluon contribution is dominant

Neutron-dependence of coherent J/ ψ in γ Pb

Decomposed in terms of neutron configurations emitted in the forward region

$$\frac{d\sigma}{dy} = \frac{d\sigma(0n0n)}{dy} + 2\frac{d\sigma(0nXn)}{dy} + \frac{d\sigma(XnXn)}{dy}$$

Neutron configuration	$\sigma(Pb + Pb \rightarrow J/\psi + Pb + Pb)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
0n0n	28.8 mb	$47 \ \mu \mathrm{b}$	$329,\!000$
0nXn + Xn0n	$7.3 \mathrm{\ mb}$	$5.0~\mu{ m b}$	35,000
XnXn	3.0 mb	$2.0~\mu{ m b}$	$14,\!000$

Solving the linear equations resolves the two-photon ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Projections for Neutron-dependence of coherent J/ ψ in γ Pb

- Neutrons measured with Zero Degree Calorimeters
- Projections based on STARlight
- ALICE will be the only detector capable of explore x ~ 10⁻⁶ in Pb thanks to FoCal

Summary

- FoCal will enable a unique physics program at the LHC, complementary to the EIC
- The LHC is the energy frontier collider for photon-induced processes using Ultra Peripheral Collisions
- Strong research program in UPCs for probing the hadronic structure at high energies. <u>New measurements and instrumentation in the forward region needed</u>
- FoCal will explore the Bjorken x region of a few 10⁻⁶ for proton and nuclei using UPC VMs, potential to observe deviations of non-linear QCD effects at high energies via comprehensive physics program.
- Examples of other UPC analyses not discussed:
 - Momentum-transfer (t) dependence of VMs
 - Inclusive photoproduction, angular correlations
 - Dijet photoproduction, two-photon process

- CERN-LHCC-2020-009 ; LHCC-I-036 <u>https://cds.cern.ch/record/2719928?ln=es</u>
- ALICE-PUBLIC-2023-001
 https://cds.cern.ch/record/2858858
- A. Bylinkin, J. Nystrand and DTT J. Phys. G: Nucl. Part. Phys. 50 055105