Diffractive structure functions at NLO in the dipole picture

Jani Penttala

In collaboration with Guillaume Beuf, Tuomas Lappi, Heikki Mäntysaari and Risto Paatelainen

University of Jyväskylä Centre of Excellence in Quark Matter

Color Glass Condensate at the electron-ion collider

May 16th 2023

Diffractive structure functions

- Definition of diffraction
 - Experimental: A rapidity gap in the final state
 - Theoretical: No color exchange
- HERA: Almost 10% of DIS events diffractive
- Sensitive to gluon structure at high energy: $\sigma^D \sim [xg(x)]^2$
- Inclusive diffraction: final states with a definite invariant mass M_X^2

and momentum transfer $t = -\Delta^2$

Diffractive structure functions

$$x_{\mathbb{P}}F_{\lambda}^{D(4)}(x_{\mathbb{P}},Q^2,M_X^2,t) = rac{Q^2}{(2\pi)^2lpha_{\mathsf{em}}}rac{Q^2}{eta}rac{\mathrm{d}\sigma_{\lambda}^D}{\mathrm{d}|t|\,\mathrm{d}M_X^2}$$

 $x_{\mathbb{P}} \approx \frac{M_X^2 + Q^2}{M/2 \perp O^2}, \quad \beta \approx \frac{Q^2}{O^2 + M_z^2},$ Q^2 = photon virtuality, λ = photon polarization (L or T) J. Penttala (JYU)

Comparison to similar processes

- Lots of progress in recent years for calculating $\gamma^* + A$ processes at NLO
 - Inclusive DIS

Beuf: 1606.00777, 1708.06557; Hänninen et al: 1711.08207; Beuf et al: 2103.14549, 2112.03158, 2204.02486

Exclusive vector meson production

Boussarie et al: 1612.08026; Mäntysaari and JP: 2104.02349.2203.16911, 2204.14031

• Dijet production

Boussarie et al: 1405.7676, 1606.00419; Caucal et al: 2108.06347, 2208.13872, 2304.03304; Taels et al: 2204.11650

Dihadron production

Bergabo and Jalilian-Marian: 2207.03606, 2301.03117; Fucilla et al: 2211.05774

- The main difference: the final state
- Inclusive diffraction: The final state is fully perturbative
 - The only nonperturbative part is the interaction with the target

2108.06347

- talk by Pieter Taels

- talk by Jamal Jalilian-Marian

talk by Risto Paatelainen

Inclusive diffraction in the high-energy limit

High-energy limit leads to factorization:

Inclusive diffraction cross section at LO

$$\frac{\mathrm{d}\sigma_{\lambda}^{\mathrm{D}}}{\mathrm{d}M_{X}^{2}} = \frac{N_{C}}{(4\pi)^{2}} \int \mathrm{d}z \,\mathrm{d}^{2}\mathbf{r} \,\mathrm{d}^{2}\mathbf{\bar{r}} \,\mathrm{d}^{2}\mathbf{b} \,J_{0}\left(M_{X}|\mathbf{r}-\bar{\mathbf{r}}|\sqrt{z(1-z)}\right) N(\mathbf{r},\mathbf{b})N(\bar{\mathbf{r}},\mathbf{b})\Psi_{\lambda}^{\gamma^{*}\to q\bar{q}}(\mathbf{r},z)\left(\Psi_{\lambda}^{\gamma^{*}\to q\bar{q}}(\bar{\mathbf{r}},z)\right)^{*}$$

- $\Psi_{\lambda}^{\gamma^* \to q\bar{q}}$: Photon wave function for the $q\bar{q}$ state Calculable perturbatively
- N: Dipole-target scattering amplitude
 Energy dependence by the JIMWLK equation
- Eikonal interaction with target:

Convenient to work in the mixed space (\mathbf{r}, z)

- \bullet LO calculation not enough to describe the data small $\beta \ll 1$
- Gluons start to dominate appear only at higher orders
- Have been calculated at various different limits: Bartels:1999, Kovchegov:1999, Kopeliovich:1999, Kovchegov:2001, Munier:2003, Golec-Biernat:2005, Wusthoff:1997, GolecBiernat:1999, GolecBiernat:2001
- The full NLO calculation in general kinematics still missing
 - Contribution from initial-state gluon emission calculated in Beuf et al., 2206.13161
- How important are the loop corrections?

Dotted: $q\bar{q}g$ at large Q^2

May 16th 2023

Inclusive diffraction cross section at NLO

$$i\mathcal{M}_{n} = \sum_{m} \int \mathrm{d}[\mathsf{PS}]_{m} 2q^{+}(2\pi)\delta(q^{+}-p_{n}^{+})e^{-i\mathbf{b}\cdot\mathbf{\Delta}}\Psi_{\mathrm{in}}^{\gamma^{*}\to m}(\Psi_{\mathrm{out}}^{n\to m})^{*}N^{m}$$
$$\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}^{\mathrm{D}}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{X}^{2}} = \sum_{\mathrm{color-singlet}\ n} \int \mathrm{d}[\mathsf{PS}]_{n} 2q^{+}(2\pi)\delta(q^{+}-p_{n}^{+})\delta(M_{X}^{2}-M_{n}^{2})\delta^{2}(\mathbf{\Delta}-(\mathbf{p}_{n}-\mathbf{q}))|\mathcal{M}_{n}|^{2}$$

where at NLO we need $\mathcal{M}_{q\bar{q}} = \mathcal{M}_{(a)} + \mathcal{M}_{(b)}$ and $\mathcal{M}_{q\bar{q}g} = \mathcal{M}_{(c)} + \mathcal{M}_{(d)}$.

Divide the cross section into three parts based on the Wilson line structure of $\mathcal{M} \times \mathcal{M}^*$:

- dip: dipole × dipole*
- trip: tripole \times tripole^{*}
- dip-trip: dipole \times tripole* + tripole \times dipole*

• $|(a)|^2$ and $|(d)|^2$: Contain UV divergences that are made finite by the UV subtraction term

• $|(c)|^2$: Finite

• This contribution has already been calculated in Beuf et al., 2206.13161

• $(b) \times (a)^*$: Contains a UV divergence that is made finite by the UV subtraction term

- JIMWLK evolution arises from the combination $(b) \times (a)^* \mathsf{UV}$
- $(c) \times (d)^*$: Finite

J. Penttala (JYU)

Divergences at NLO

Regularization scheme: dim. reg. for transverse coordinates, cutoff α for plus momentum k^+

- Corrections to the initial state: UV ε and log α divergences Included in the photon wave function Ψ^{γ*→qq}_λ
- ⁽²⁾ UV divergences from gluon loops over the shock wave
- Rapidity divergence for gluons with small plus momentum over the shock wave: log α divergence regularized by JIMWLK (BK) equation
- Self-energy diagrams: IR and UV divergences
 Cancel in dimensional regularization with one ε
- Corrections to the final state: IR and log α divergences Complicated!

Final-state corrections

- Lots of pesky diagrams to calculate
- Cut introduces a delta function $\delta(M_X^2 M_n^2)$
 - Hard to integrate!
- Strategy:
 - Sum the diagrams in momentum space
 - Pourier transform to mixed space

- Divergences from gluon's plus-momentum fraction $z_g = z_0 z_{\overline{0}}$ going to zero
- This expression can be simplified by rewriting:
 - The sum of the energy denominators
 - Optimization 1 The numerator

Sum of the energy denominators:

$$\frac{\delta(M_0^2 - M_X^2)}{(M_0^2 - M_1^2 - i\delta)(M_0^2 - M_2^2 - i\delta)} + \frac{\delta(M_1^2 - M_X^2)}{(M_1^2 - M_0^2 + i\delta)(M_1^2 - M_2^2 - i\delta)} + \frac{\delta(M_2^2 - M_X^2)}{(M_2^2 - M_0^2 + i\delta)(M_2^2 - M_1^2 + i\delta)}$$
$$= \frac{1}{2\pi i} \left[\frac{1}{(M_X^2 - M_0^2 - i\delta)(M_X^2 - M_1^2 - i\delta)(M_X^2 - M_2^2 - i\delta)} - \frac{1}{(M_X^2 - M_0^2 + i\delta)(M_X^2 - M_1^2 + i\delta)(M_X^2 - M_2^2 + i\delta)} \right]$$

- This combines divergences from different graphs
- Note: the signs of the infinitesimals $i\delta$ important!

Rewrite the numerator as:

$$(z_{\overline{0}}\mathbf{K}_{01} - z_{0}\mathbf{K}_{\overline{01}}) \cdot (z_{\overline{1}}\mathbf{K}_{01} - z_{1}\mathbf{K}_{\overline{01}})$$

= $\frac{1}{2}z_{g} \left[z_{0}z_{\overline{1}}(M_{X}^{2} - M_{0}^{2}) + z_{0}z_{\overline{1}}(M_{X}^{2} - M_{2}^{2}) - (z_{\overline{0}}z_{1} + z_{0}z_{\overline{1}})(M_{X}^{2} - M_{1}^{2}) - z_{g}M_{X}^{2} \right]$

• Written in terms of the energy denominators

• $D_{01}, D_{12} \sim z_g \log z_g$: a logarithmic divergence $\log^2 \alpha$

- D_{02} : a power divergence $1/\alpha$
- $D_{012} \sim z_g \log z_g$: no divergences

Final state: Instantaneous gluon exchange

These can be combined similarly:

$$F_{\rm C0} + F_{\rm C2} \propto \int \frac{\mathrm{d}^2 \mathbf{K}_{01} \, \mathrm{d}^2 \mathbf{K}_{\overline{01}}}{(2\pi)^4} e^{i \mathbf{K}_{\overline{01}} \cdot \mathbf{x}_{\overline{01}} - i \mathbf{K}_{01} \cdot \mathbf{x}_{01}} \frac{1}{z_g^2} \times \left\{ \frac{\delta(M_X^2 - M_2^2)}{M_0^2 - M_2^2 - i\delta} + \frac{\delta(M_X^2 - M_0^2)}{M_2^2 - M_0^2 + i\delta} \right\}$$

$$\frac{\delta(M_X^2 - M_2^2)}{M_0^2 - M_2^2 - i\delta} + \frac{\delta(M_X^2 - M_0^2)}{M_2^2 - M_0^2 + i\delta} = \frac{1}{2\pi i} \left[\frac{1}{(M_X^2 - M_0^2 + i\delta)(M_X^2 - M_2^2 + i\delta)} - \frac{1}{(M_X^2 - M_0^2 - i\delta)(M_X^2 - M_2^2 - i\delta)} \right] = -D_{02}$$

- ullet Combined with the previous diagrams, these cancel the power divergence $1/\alpha$
- Some $\log^2 \alpha$ divergences still left

J. Penttala (JYU)

Final state: Cut gluon loops

- Can be calculated analytically without additional Feynman/Schwinger integrals
- Contain IR (collinear) and $\log^2 \alpha$ divergences
- \bullet Self-energy diagrams: IR \rightarrow UV divergences
- $\log^2 \alpha$ divergence cancels with the other final-state diagrams
- In total: final-state corrections have UV ε and log α divergences
- The same divergence structure as the NLO wave function for $\gamma^* o q ar q$

Cancellation of divergences

• UV divergences:

NLO $\gamma^*
ightarrow q ar q \, + \,$ final-state corrections $\, + \,$ gluon loops crossing the shock wave $\, = \,$ finite

• Remaining $\log \alpha$ divergence:

Absorbed into the JIMWLK evolution of the Wilson lines

 \Rightarrow All of the divergences cancelled: finite result!

Remaining finite pieces

• Cross-terms with gluon emission from initial and final states

• Finite:

- Cut regulates UV region
- No IR divergences due to the energy denominator structure:

gluon emission in the initial state from an *off-shell* guark – cannot go on-shell \Rightarrow no divergence

- Related to the diagrams where the gluon is absorbed before the final state
 - Simplifications in their sum

Final result

$$\begin{split} \frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}} &= \left[\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dip}} + \left[\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{trip}} + \left[\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dip}} \mathrm{trip} \\ &\left[\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dip}} = 2\pi\alpha_{\mathrm{em}}N_{\mathrm{e}}\sum_{r}e_{r}^{2}\int[\mathrm{d}\mathrm{PS}]_{\mathrm{dep}}\left[\sigma_{\mathrm{e},\mathrm{dep}}^{\mathrm{L}} + \left(\frac{\alpha_{\mathrm{e}}C_{\mathrm{e}}}{2\pi}\right)\sigma_{\mathrm{e},\mathrm{dep}}^{\mathrm{N}(\mathrm{d})}\right]\left(1 - \hat{s}_{\mathrm{d}}^{\mathrm{D}}\right)^{\dagger} \\ &\left[\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dep}} = 2\pi\alpha_{\mathrm{em}}N_{\mathrm{e}}\sum_{r}e_{r}^{2}\int[\mathrm{d}\mathrm{PS}]_{\mathrm{dep}}\left(\frac{\alpha_{\mathrm{e}}C_{\mathrm{e}}}{2\pi}\right)\sigma_{\mathrm{e},\mathrm{dep}}^{\mathrm{N}(\mathrm{d})}\left(1 - \hat{s}_{\mathrm{d}}^{\mathrm{D}}\right)^{\dagger} \\ &\left[\frac{\mathrm{d}\sigma_{\gamma_{\lambda}^{+}+A}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dep}} = 2\pi\alpha_{\mathrm{em}}N_{\mathrm{e}}\sum_{r}e_{r}^{2}\int[\mathrm{d}\mathrm{PS}]_{\mathrm{dep}\,\mathrm{dep}}\frac{\alpha_{\mathrm{e}}C_{\mathrm{e}}}{2\pi} \\ &\left[\frac{\mathrm{d}\sigma_{\mathrm{e},\mathrm{d}}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dep}} = 2\pi\alpha_{\mathrm{em}}N_{\mathrm{e}}\sum_{r}e_{r}^{2}\int[\mathrm{d}\mathrm{PS}]_{\mathrm{dep}\,\mathrm{dep}}\frac{\alpha_{\mathrm{e}}C_{\mathrm{e}}}{2\pi} \\ &\left[\frac{\mathrm{d}\sigma_{\mathrm{e},\mathrm{d}}}{\mathrm{d}^{2}\mathbf{\Delta}\,\mathrm{d}M_{\lambda}^{2}}\right]_{\mathrm{dep}\,\mathrm{dep}} = 2\pi\alpha_{\mathrm{em}}N_{\mathrm{e}}\sum_{r}e_{r}^{2}\int[\mathrm{d}\mathrm{PS}]_{\mathrm{dep}\,\mathrm{dep}\,\mathrm{dep}}\frac{\alpha_{\mathrm{e}}C_{\mathrm{e}}}{2\pi} \\ &\times \left\{g_{\mathrm{e},\mathrm{d},\mathrm{d}}^{2}\mathrm{d}M_{\lambda}^{2}\right\}_{\mathrm{dep}\,\mathrm{dep}} = 2\pi\alpha_{\mathrm{em}}N_{\mathrm{e}}\sum_{r}e_{r}^{2}\int[\mathrm{d}\mathrm{PS}]_{\mathrm{dep}\,\mathrm{dep}\,\mathrm{dep}}\frac{\alpha_{\mathrm{e}}C_{\mathrm{e}}}{2\pi} \\ &\times \left\{g_{\mathrm{e},\mathrm{d},\mathrm{d}}^{2}\mathrm{d}M_{\lambda}^{2}\right\}_{\mathrm{dep}\,\mathrm{dep$$

$$\begin{split} &+ \left[\log \left(\frac{M_{2} - M_{2}}{M_{2}} - \frac{M_{2}}{M_{2}} \right) \delta_{1} \sqrt{Q_{2}} M_{2} M_{2} - m_{2} + m_{2}^{2} + f_{1} \sqrt{Q_{2}} M_{2} M_{2} - m_{2} + m_{2}^{2} \right) \\ &+ \left[1 - f_{1} + m_{2}^{2} + m_{2}^{$$

 $f^{UV} = (2\log(x_1x_1) - 3)$

$$\begin{split} \mathcal{G}^{11,00}_{(1,00)} = & \delta_{2,0,1} Q^2 K_0(QX_{121}) K_0(QX_{221}) & \sim \frac{M_{1}}{N_{121}} \Lambda(M_1 Y_{121}) \\ \times & \left\{ x_1^2 \left[2 g_1(x_1 + x_2) + x_1^2 \right] \frac{M_{1} - X_{221}}{M_{1} - M_{1}} \frac{\pi}{\pi} \left\{ x_1^2 - \frac{X_{221}}{M_{1}} + \frac{\pi}{\pi} \left\{ x_1^2 - \frac{X_{221}}{M_{1}} + \frac{\pi}{\pi} \left\{ x_1 - \frac{X_{221}}{M_{1}} + \frac{\pi}{\pi} \right\} \right\} \\ & - \pi g_{1,1} \left[g_1(1 - x_1) + x_1(1 - x_1) \right] \left[\frac{M_{1} - X_{221}}{M_{1} - M_{1}} + \frac{\pi}{\pi} \frac{M_{1} - X_{221}}{M_{1}} \right] \\ & \left\{ \mathcal{G}^{21,00}_{(1,0)} - 2 g_{2,0} Q^2 K_0(QX_{10}) K_0(QX_{10}) \frac{1}{M_{1}} \frac{1}{M_{1}} \frac{M_{1}}{M_{10}} \Lambda(M_1 Y_{101}) \\ \times & \left\{ T_{1,00}^{(1,0)} + T_{100}^{(1,0)} + T_{100}^{(1,0)} + T_{100}^{(1,0)} + T_{100}^{(1,0)} + T_{100}^{(1,0)} + T_{100}^{(1,0)} \right\} \end{split}$$

$$\begin{split} & \tilde{\mathcal{G}}_{12,00}^{(11,0)} = \frac{\hbar}{2} \mathcal{G}^{11} \mathcal{G}_{1}(\mathcal{K}_{111},\mathcal{G}) \\ & \times \left[r_{1}^{2} (1-z_{1}) \mathcal{K}_{0}\left(\log ||\vec{G}_{1}|\right) \\ & \times \left[s_{1}^{2} (1-z_{1}) \mathcal{K}_{0}\left(\log ||\vec{G}_{1}|\right) \\ & \times s_{1} \left(\sqrt{n_{12}} - z_{1} + z_{1}$$

- Diffractive structure functions are a good probe for saturation effects
- Previously: leading log Q^2 calculated at NLO
- We are completing the full NLO calculation
 - Explicit cancellation of divergences
 - Results suitable for numerical calculations
- Future:
 - Numerical implementation of the full NLO result
 - Comparisons to the existing HERA data and predictions for the EIC