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Introduction

Eikonal approximation in the CGC

In the CGC framework two approximations adopted:

(i) Semi-classical approximation → dense target is represented by a strong semiclassical gluon field Aµ(x)

(ii) Eikonal approximation → can be understood as the limit of infinite boost of Aµ(x):

• Under a boost of parameter γt along the ”−” direction, strong ordering between the components of the field:

A− = O(γt) � A⊥ = O(1) � A+ = O(1/γt)

? Only the enhanced component of the background field (A−) is kept.

• Lorentz contraction of the background field Aµ(x) (shockwave limit)

? background field is localized around x+ = 0 (no transverse motion within the target)

• Aµ(x) independent on x− (static limit) due to Lorentz time dilation

? dynamics of the target is neglected (no p+ transfer from the target).

Background field in the eikonal limit

Aµ(x+, x−,x) ≈ δµ−A−(x+,x) ∝ δ(x+)
Eikonal interaction between the projectile and the target:

• each parton picks up a Wilson line during the interaction UR(x) = P+exp

[
ig

∫
dx+T aRA

−
a (x+,x)

]

• dipole operator appears in the observable dR(x,y) =
1

DR
tr
[
UR(x)U †R(y)

]
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Introduction

From dipole operators to gluon TMDs

[Collins (2002) / Belitsky, Ji, Yuan (2002) / Ji,Yuan (2002)]

The unpolarized TMDs are defined as the FT of forward matrix elements of bilocal products gluon field strength
tensor:

F(x2, kt) ∝
∫
dz+ d2z⊥e

ix2p
−
Az

+−ikt·z⊥〈pA|tr
[
F i−0 U

[C]
(0,z) F

i−
z U

[C′]
(z,0)

]
|pA〉

U
[C]
(0,z): gauge staples connecting the points (0+, 0⊥) and (z+, z⊥) to ensure gauge invariance.

32

Transverse-momentum-dependent (TMD) factorization

SIDIS Drell-Yan

S. J. Brodsky, D. S. Hwang, and I. Schmidt, 2002;    J.C. Collins, 2002
A. V. Belitsky, X. Ji, and F. Yuan, 2003;   D. Boer, P. J. Mulders, and F. Pijlman, 2003

future pointing past pointing

• different choices to connect the points! → different TMDs enter different processes!

[Kotko, Kutak, Marquet, Sapeta, van Hameran (2015)]

• in the large kt limit: the process dependence of the gauge links disappear! At small-x, all the TMDs share a
universal perturbative tail (Unintegrated gluon distribution):

Fg/A(x2, kt) = UGD(x2, kt) +O(Q2
s/k

2
t )
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Introduction

Gauge links from Wilson lines

[Dominguez, Marquet, Xiao, Yuan (2011)]
gluon TMDs at small-x: average over the state |pA〉 is replaced with CGC averaging:

〈pA| · · · |pA〉
〈pA|pA〉

→ 〈· · · 〉x2
The Wilson line operator

U(−∞,+∞;x) = Pexp
[
ig

∫ +∞

−∞
dx+A−(x+, x)

]
Derivative of the Wilson line

∂iU(x) = ig

∫
dx+U(−∞, x+, x)F i−(x+, x)U(x+,+∞;x)

Dipole TMD

Parton distributions Gauge links Shockwaves Shockwaves ! TMD The dilute limit Polarized gluons

TMD gauge links

”Non-universality” of gluon TMD distributions

x+

x⊥

z
2

−z
2

Tr
[
F i−

( z

2

)
U [−]†F i−

(
− z

2

)
U [+]

]

x+

x⊥

z
2

−z
2

Tr
[
F i−

( z

2

)
U [+]†F i−

(
− z

2

)
U [+]

]

Shockwave ↔ TMD Non-universality ISMD2019 8

F (1)
qg (x2, kt) ∝

∫
dz+d2z eix2p

−
Az

++iktz
〈
pA|tr

[
F i−( z2)U [−]†F i−(− z

2)U [+]
]
|pA
〉

in the small-x limit:

F (1)
qg (x2, kt)→

∫
d2z eiktz

〈
tr
{[
∂iU †( z2)

][
∂iU(− z

2)
]}〉

x2

Weizsäcker-Williams TMD

Parton distributions Gauge links Shockwaves Shockwaves ! TMD The dilute limit Polarized gluons

TMD gauge links

”Non-universality” of gluon TMD distributions

x+

x⊥

z
2

−z
2

Tr
[
F i−

( z

2

)
U [−]†F i−

(
− z

2

)
U [+]

]

x+

x⊥

z
2

−z
2

Tr
[
F i−

( z

2

)
U [+]†F i−

(
− z

2

)
U [+]

]

Shockwave ↔ TMD Non-universality ISMD2019 8

F (3)
gg (x2, kt) ∝

∫
dz+d2z eix2p

−
Az

++iktz
〈
pA|tr

[
F i−( z2)U [+]†F i−(− z

2)U [+]
]
|pA
〉

in the small-x limit:

F (3)
gg (x2, kt)→

∫
d2z eiktz

〈
tr
{[
∂iU( z2)

]
U †(− z

2)
[
∂iU(− z

2)
]
U †( z2)

}〉
x2
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Introduction

Correlation limit in the CGC

Dominguez, Marquet, Xiao, Yuan (2011)
Marquet, Petreska, Roiesnel (2016)

Petreska (2018)

How do we get the derivates of the Wilson lines?

Consider production of two hard jets:

|p1| ∼ |p2| � Qs & total momenta comes from the target: |p1 + p2| ∼ Qs

Two typical transverse scale that appears:
kt = p1 + p2: total momentum of the produced jets
P = z2p1 − z1p2: momentum imbalance of the two jets

61

Forward dijet production in pA

Close to back-to-back:

Collinear PDF 2 H 2 
Hard factor 8 TMDs

Dipole distribution

Weizsacker-Williams gluon distribution

kt � P: jets fly almost back-to-back (correlation limit). ⇒ small transverse size

We can perform a Taylor expansion of the Wilson and lines get access to TMDs

Ub+ r
2
Ub− r

2
− 1 =

ri

2

[
(∂iUb)Ub − Ub(∂iUb)

]
+O(r2)

in the small-x limit of TMDs: phase drops - only longitudinal dependence is in staple gauge links.

in the correlation limit of the CGC: expansion around small dipole size → derivatives of the Wilson lines

small-x limit of TMD factorization ≡ correlation limit of the CGC
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Introduction

Small-x improved TMD factorization

Tolga Altinoluk (NCBJ)                                                         Parton Distributions at High Energy    12/12   

Summary and outlook

dσ ∝ f(x1) ∑
c

H(c)(P, kt) × TMD(c)(x2, kt)

Standard collinear PDF 
for the large-x projectile

Off-shell hard 
factors

Several gluon TMDs 
for the small-x target

iTMD ∝ f(x1) ∑
c [H(c)( P,0 )(c) + # ( k2

t

P2 )(c)] × [UGD(x2, kt) + # ( Q2
s

k2
t )(c)]

Leading-twist 
hard factor 

Kinematic 
higher twists 

Universal 
perturbative tail

Leading-twist 
saturation corrections 

TMD ∝ f(x1) ∑
c [H(c)( P,0 )(c) + # ( k2

t

P2 )(c)] × [UGD(x2, kt) + # ( Q2
s

k2
t )(c)]

Improvement with respect to TMD factorization is all-order resummation of 
kinematic twists, which allows proper matching to BFKL physics at large kt

Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren (2015-2016)

TA, Boussarie, Kotko (2019)

• iTMD + (Qs/P)n → CGC TA, Boussarie (2019) / Boussarie, Mehtar-Tani (2020)

What about power corrections in P2/s or |P||k|/s beyond the eikonal limit?
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Introduction

Next-to-Eikonal corrections to the CGC

Next-to-Eikonal (NEik) power corrections to the standard CGC formalism:

• Of order 1/γt at the level of the boosted background field

• Of order 1/s at the level of a cross section

? NEik corrections arise from relaxing either of the three approximations:

1 Interactions with A⊥ field taken into account, not only A−.

2 Target with finite longitudinal width ⇒ transverse motion of the parton within the medium.

3 x− dependence of Aµ(x) beyond infinite Lorentz dilation:

• Treated as gradient expansion around a common x− value:

∂−A−(x)

A−(x)
= O(1/γt)

⇒ allows possibility of (small) p+ exchange with the target
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Introduction

DIS dijet production at NEik accuracy

Two different diagrams contribute to the DIS dijet production at NEik accuracy:

Photon splitting to qq̄ pair before the medium Photon splitting to qq̄ pair inside the medium

D. Power counting beyond the eikonal approximation

Since the aim of this study is the calculation of the first
subleading corrections beyond the eikonal approximation,
the NEik corrections, let us remind the reader how we
define the power counting in the high-energy limit in order
to have an unambiguous definition of the NEik corrections.
This issue has been discussed in depth in Ref. [57], and we
will provide here only a short reminder.
The high-energy limit of a collision process can be

understood, for example, as the limit of the infinite Lorentz
boost of the target. In that case, one can classify contri-
butions according to their scaling with the Lorentz boost
factor γt of the target.

Scaling of the background field: Under a large active
boost of the target along the x− direction, the compo-
nents of the background field strength are transformed
following the standard Lorentz transformation rules
for tensors. In light-cone coordinates, the tensor
components are enhanced by a factor γt for each
upper “−” or lower “þ” index under such a boost, and
are suppressed by a factor 1=γt for each lower “−” or
upper “þ” index. Hence, the components of the
background field strength scale as

F−j ∝ γt ≫ 1; ð25Þ

F ij ∝ðγtÞ0 ¼ 1; ð26Þ

F−þ ∝ðγtÞ0 ¼ 1; ð27Þ

Fþj ∝
1

γt
≪ 1; ð28Þ

under a large boost of the target along the x− direction.
These transformation rules can be extended to the
background gauge field of the target, resulting in the
following scaling:

A−ðxÞ ∝ γt ≫ 1; ð29Þ

AjðxÞ ∝ ðγtÞ0 ¼ 1; ð30Þ

AþðxÞ ∝ 1

γt
≪ 1: ð31Þ

Scaling of derivatives: All the components of the
momenta associated with the projectile photon or the
produced jets are defined to be invariant under a large
boost of the target. By contrast, components of the
momenta associated with the target, or equivalently
derivatives acting on the background field, follow the
same scaling rules based on the counting of “þ” and
“−” indices. Indeed, the action of a partial derivative on
a tensor leads to a higher rank tensor, so that

∂−F μν ∝
1

γt
F μν ≪ F μν; ð32Þ

∂þF μν ∝ γtF μν ≫ F μν; ð33Þ

∂iF μν ∝ðγtÞ0F μν; ð34Þ

and similar rules apply for partial derivative acting
on the background gauge field. Moreover, due to the
scaling rules of the components of the background
gauge field given in Eqs. (29), (30), and (31),
background covariant derivatives follow the scaling
rules as partial derivatives when acting on the
background field.

Scaling of the width of the target: Since the back-
ground field strength F μνðxÞ represents a hadronic or
nuclear target subject to confinement, it should decay
faster than a power for xþ → %∞. Hence, the profile
of F μνðxÞ along xþ has a finite width that we note as
Lþ. Under a large boost of the target along the x−

direction, that width scales as

Lþ ¼ O
!
1

γt

"
ð35Þ

due to Lorentz contraction. In particular, in the limit of
infinite boost, F μνðxÞ becomes a shock wave of
vanishing width along the xþ direction. For the
purpose of power counting, the finite width Lþ of

FIG. 1. Contributions to dijet production in DIS at next-to-eikonal accuracy: photon splitting into a qq̄ pair before reaching the target
(left panel) and photon splitting inside the target (right panel).

ALTINOLUK, BEUF, CZAJKA, and TYMOWSKA PHYS. REV. D 107, 074016 (2023)

074016-6

Sin
q1q̄2←γ∗ ∝ ελµ(q) ū(1)

[
#j

1 γ
+ γj γµ + #j

2 γ
µ γ+ γj + #ij

3 gµ+ γ+ γi γj
]
v(2)

longitudinal polarization vector εLµ(q) = g +
µ Q/q

+, then we get: γ+γ+ = 0 & {γ+, γj} = 0 & ε+λ (q) = 0

⇒ Contribution from the photon splitting inside the medium vanishes for dijet production via longitudinal photon.

? Dijet production via longitudinal photon → only splitting to qq̄ pair before the medium contributes

? Dijet production via transverse photon → both splitting to qq̄ pair before the medium and inside the medium
contribute.

Disclaimer: We will only consider the DIS dijet production via longitudinal photon.
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Introduction

DIS dijet at NEik accuracy

[TA, Beuf, Czajka, Tymowska (2022)]
S-matrix element at NEik accuracy (longitudinal photon polarization)

Sq1q̄2←γ∗L =Sbef
q1q̄2←γ∗L

∣∣∣∣
Gen. Eik

+ Sbef
q1q̄2←γ∗L

∣∣∣∣
dyn. target

+ Sbef
q1q̄2←γ∗L

∣∣∣∣
dec. on q

+ Sbef
q1q̄2←γ∗L

∣∣∣∣
dec. on q̄

with

Sbef
q1q̄2←γ∗L

∣∣∣∣
Gen. Eik

= − 2Q
eef
2π

ū(1)γ+v(2)
(q++k+

1 −k+
2 )(q++k+

2 −k+
1 )

4(q+)2
θ(q++k+

1 −k+
2 ) θ(q++k+

2 −k+
1 )

×
∫
v,w

e−iv·k1 e−iw·k2 K0

(
Q̂ |w−v|

)∫
db− eib

−(k+1 +k+2 −q+)

[
UF
(
v, b−

)
U†F
(
w, b−

)
− 1

]
zeroth order term in the expansion around a common value b− = (v− + w−)/2
Its form resembles the strict eikonal term with extra b− dependence.

Sbef
q1q̄2←γ∗L

∣∣∣∣
dyn. target

= 2πδ(k+
1 +k+

2 −q+) iQ
eef
2π

ū(1)γ+v(2)
(k+

1 −k+
2 )

(q+)2

∫
d2v e−iv·k1

∫
d2w e−iw·k2

×
[

K0

(
Q̄ |w−v|

)
−
(
Q̄2−m2

)
2Q̄

|w−v|K1

(
Q̄ |w−v|

)] [
UF
(
v, b−

)←→
∂b−U†F

(
w, b−

)]∣∣∣∣
b−=0

first term in the expansion of the around the common value b−.
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Introduction

DIS dijet at NEik accuracy

Sbef
q1q̄2←γ∗L

∣∣∣∣
dec. on q

= 2πδ(k+
1 +k+

2 −q+)
eef
2π

(−1)Q
k+

2

(q+)2

∫
d2v e−iv·k1

∫
d2w e−iw·k2 K0

(
Q̄ |w−v|

)
× ū(1)γ+

[
[γi, γj ]

4
U (3)
F ;ij(v)− iU (2)

F (v) + U (1)
F ;j(v)

(
(kj2−kj1)

2
+
i

2
∂wj

)]
U†F (w) v(2)

Sbef
q1q̄2←γ∗L

∣∣∣∣
dec. on q̄

= 2πδ(k+
1 +k+

2 −q+)
eef
2π

(−1)Q
k+

1

(q+)2

∫
d2v e−iv·k1

∫
d2w e−iw·k2 K0

(
Q̄ |w−v|

)
× ū(1)γ+

[
UF (v)

(
[γi, γj ]

4
U (3)†
F ;ij(w)−iU (2)†

F (w)+

(
i

2

←−
∂vj − (kj2−kj1)

2

)
U (1)†
F ;j (w)

)]
v(2)

Stem from finite width and the interaction with the transverse component of the background field.

decorated Wilson lines:

U (1)
F ;j(v) =

∫ L+

2

−L+

2

dv+ UF
(L+

2
, v+;v

)←→DvjUF
(
v+,−L

+

2
;v
)

U (2)
F (v) =

∫ L+

2

−L+

2

dv+ UF
(L+

2
, v+;v

)←−−Dvj

−−→DvjUF
(
v+,−L

+

2
;v
)

U (3)
F ;ij(v) =

∫ L+

2

−L+

2

dv+ UF
(L+

2
, v+;v

)
gt·Fij(v)UF

(
v+,−L

+

2
;v
)
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Introduction

Rewriting NEik corrections as Fµν insertions

The relation between derivatives of the Wilson lines and field strength insertions:

∂µUF (x+, y+;v, v−) + igt·Aµ(x+,v, v−)UF (x+, y+;v, v−)− igUF (x+, y+;v, v−)t·Aµ(y+,v, v−)

= −ig
∫ x+

y+
dv+UF (x+, v+;v, v−)t·F −µ (v)UF (v+, y+;v, v−) for µ 6= +

DIS dijet production cross section at NEik accuracy written in terms of field strength insertions!

Expressions are lengthy before considering the back-to-back limit! e.g.

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣dec. on q

NEik corr.

= (2q+) 2πδ(k+
1 +k+

2 −q+) 8k+
1 k

+
2 Q

2
(eef

2π

)2 k+
1 k

+
2

(q+)3

k+
2

2(q+)3

× 2Re

∫
v,v′,w,w′

eik1·(v′−v) eik2·(w′−w)K0

(
Q̄ |w′−v′|

)
K0

(
Q̄ |w−v|

)
× Tr

〈[
UF (w′)U†F (v′)− 1

][(
− iU (2)

F (v) +
(kj2−kj1)

2
U (1)
F ;j(v)

)
U†F (w) +

i

2
U (1)
F ;j(v) ∂wjU†F (w)

]〉
with

U (2)
F (v) =

∫
z+,z′+

(z+−z′+) θ(z+−z′+)UF (+∞, z+,v)[−igt · F −j (z+,v)]UF (z+, z′+;v)[−igt · F −j (z′+,v)]UF (z′+,−∞;v)

U (1)
F ;j(v) = −2

∫
z+
z+ UF (+∞, z+;v)[−igt · F −j (z+,v)]UF (z+,−∞;v)

U (1)
F ;j(v) ∂wjU†F (w) = −2

∫
z+,w+

z+ UF (+∞, z+;v)[−igt · F −j (z+,v)]UF (z+,−∞;v)

×U†F (w+,−∞;w)[igt · F −j (w+,w)]U†F (+∞, w+;w)

Remark: Terms with Fij insertions cancel at cross section level for γ∗L, but survive for γ∗T
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Back-to-back limit at amplitude level

Back-to-back limit

Back-to-back limit of dijets are conveniently expressed in terms of:

(total dijet momentum) k = k1 + k2 and (relative momentum) P = (z2k1 − z1k2)

z1 = k+
1 /(k

+
1 + k+

2 ) and z2 = k+
2 /(k

+
1 + k+

2 ) = 1−z1 such that

k1 = P + z1k k2 = −P + z2k

back-to-back correlation limit: |k| � |P|

In coordinate space:

(conjugate to k) b = (z1v + z2w) and (conjugate to P) r = v −w

such that

v = b + z2 r w = b− z1 r

back-to-back correlation limit: |r| � |b|

perform a small r expansion at the level of the squared amplitude
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Back-to-back limit at amplitude level

Small r expansion for the eikonal contribution

We perform small r expansion and use the following identity to simplify our results:

[
UR T

a
R U

†
R

]
ij

=
[
T bR

]
ij

(
UA

)
ab

Open dipole from the Generalized Eikonal term for r = v −w→ 0:

[
UF
(
v, b−

)
U†F
(
w, b−

)
− 1

]
= −rj

2

[
UF
(
b, b−

)←→
∂bjU†F

(
b, b−

)]
+O(r2)

= rj(−igta)
∫
z+
UA
(

+∞, z+;b, b−
)
ab
Fb −j (z+,b, b−) +O(r2)

r

v

w
F −

j

b

r → 0

z+
rj·

Note: 0th order in the r expansion trivial → first order needed
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Back-to-back limit at amplitude level

Small r limit for the NEik corrections

Open decorated dipole with U (1)
F ;j :

U (1)
F ;j(v)U†F

(
w
)

= −2

∫
z+

z+ UF
(

+∞, z+;v
)

(−ig)t·F −j (z+,v)UF
(
z+,−∞;v

)
U†F (w)

= 2igta
∫
z+

z+ UA
(

+∞, z+;b
)
ab
Fb −j (z+,b) +O(|r|)

r

v

w
F −

j

b

r → 0

z+F −
j

z+

• Nontrivial result already at 0th order in the small r expansion due to the decoration
• Similar result as for the Generalized Eikonal contribution, except for the z+ factor
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Back-to-back limit at amplitude level

Small r limit for the NEik corrections

Open decorated dipole from the dynamics of the target:

[
UF
(
v, b−

)←→
∂b−U†F

(
w, b−

)]∣∣∣∣
b−=0

=

∫
z+

{
UF (v)U†F

(
z+,−∞;w

)
igt·F+−(z+,w)U†F

(
+∞, z+;w

)
−UF

(
+∞, z+;v

)
(−ig)t·F+−(z+,v)UF

(
z+,−∞;v

)
U†F (w)

}
= 2igta

∫
z+
UA
(

+∞, z+;b
)
ab
F+−
b (z+,b) +O(|r|)

⇒ Involves the longitudinal chromoelectric field F+− instead of the transverse field F −j

r

v

w

F+−

b

r → 0

z+

F+−

z+

v

w w

z+

F+−−
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Back-to-back limit at amplitude level

Small r limit for the NEik corrections

Open decorated dipole with U (2)
F :

U (2)
F (v)U†F (w) =

∫
z+,z′+

(z+−z′+) θ(z+−z′+)UF (+∞, z+,v)[−igt · F −j (z+,v)]

× UF (z+, z′+;v)[−igt · F −j (z′+,v)]UF (z′+,−∞;v)U†F (w)

= −g2(tatb)

∫
z+,z′+

(z+−z′+) θ(z+−z′+)UA
(

+∞, z+;b
)
aa′
Fa′ −j (z+,b)

× UA
(

+∞, z′+;b
)
bb′
Fb′ −j (z′+,b) +O(|r|)

r

v

w
F −

j

br → 0

z′+

F −
j

z+
z′+

F −
j

z+
F −

j

2 Field strength insertions at amplitude level
⇒ At least 3 at cross section level (beyond TMDs)
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Results at cross section level

Back-to-back cross section: (Generalized) Eikonal piece
The dijet cross section for the longitudinal photon in the back-to-back correlation limit:

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

=
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Gen. Eik

+
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

NEik corr.

with

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Gen.Eik

= 2q+

∫
d(∆b−)ei∆b

−(k+1 +k+2 −q+)(eef )2(q+ + k+
1 − k+

2 )2(q+ − k+
1 + k+

2 )2 2k+
1 k

+
2

(q+)6

Q2PiPj

(P2 + Q̂2)4

× g2TF

∫
b,b′

e−ik·(b−b
′)
∫
z+,z′+

〈
Fa −i

(
z′+,b′,−∆b−

2

)[
U†A
(

+∞, z′+;b′,−∆b−

2

)
UA
(

+∞, z+;b,
∆b−

2

)]
ab

×Fb −j
(
z+,b,

∆b−

2

)〉
On the other hand:

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Gen. Eik

=
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Strict Eik

+
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

NEik corr. from Gen. Eik

with

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Strict.Eik

= 2q+2πδ(k+
1 + k+

2 − q+)(eef )2g2TF 32z3
1z

3
2Q

2 PiPj

(P2 + Q̄2)4

×
∫
b,b′

e−ik·(b−b
′)
∫
z+,z′+

〈
Fa −i (z′+,b′)

[
U†A(+∞, z′+;b′)UA(+∞, z+;b)

]
ab
Fb −j (z+,b)

〉
• Strict eikonal contribution: Twist-2 gluon TMDs (both linearly polarized and unpolarized)

• NEik corr. from Gen. Eik: Either 2 or 3-body terms: twist 4? (study is still in progress!)
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Results at cross section level

Back-to-back cross section: NEik terms
Explicit NEik corrections to the dijet cross section for the longitudinal photon in the back-to-back correlation limit:

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

NEik corr.

=
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

dyn. target

+
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

dec. on q + q̄

with

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

dyn. target

= −(2q+)2πδ(k+
1 + k+

2 − q+)(eef )2g2TF
(k+

1 k
+
2 )2(k+

1 − k+
2 )

(q+)6

16Q2Pi

(P2 + Q̄2)3

[
1− (Q̄2 −m2)

P2 + Q̄2

]
2Re

×
∫
b,b′

e−ik·(b−b
′)
∫
z+,z′+

〈
Fa −i (z′+,b′)

[
U†A(∞, z′+;b′)UA(∞, z+;b)

]
ab
F+−
b (z+,b)

〉
⇒ NEik. correction stemming from the dynamics of the target is a twist-3 gluon TMD. [Mulders, Rodrigues (2000)]

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

dec. on q + q̄

= 2πδ(k+
1 + k+

2 − q+)(eef )2g2TF 16z2
1z

2
2Q

2P
i(2Pj−(z2 − z1)kj)

(P2 + Q̄2)3

∫
b,b′

e−ik·(b−b
′)

×
∫
z+,z′+

i(z+−z′+)
〈
Fa −i (z′+,b′)

[
U†A(∞, z′+;b′)UA(∞, z+;b)

]
ab
Fb −j (z+,b)

〉
+ 3 body contributions

• The term proportional to kj is a kinematical twist 3 contribution.

• The main contribution from this term is a contribution to twist-2 gluon TMDs.
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Results at cross section level

Twist 2 term from NEik corrections
Leading twist contributions from Strict Eik. and NEik (dec. on q + q̄) terms can be combined:

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Strict Eik

+
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

dec. on q + q̄

' 2π(2q+)δ(k+
1 + k+

2 − q+)(eef )2g2TF 32z3
1z

3
2Q

2 PiPj

(P2 + Q̄2)4

×
∫
b,b′

e−ik·(b−b
′)
∫
z+,z′+

[
1 + i(z+ − z′+)

P2 + Q̄2

2q+z1z2

]〈
Fa −i (z′+,b′)

[
U†A(∞, z′+;b′)UA(∞, z+;b)

]
ab
Fb −j (z+,b)

〉

On the other hand, the “− ” momentum extracted from the target can be defined from the conservation relation:

xP−tar. ≡ ǩ−1 + ǩ−2 − q− =
k2

1 +m2

2k+
1

+
k2

2 +m2

2k+
2

+
Q2

2q+
=

P2 + Q̄2

2q+z1z2
+

k2

2q+

• k2 term is a kinematical twist 4 contribution (can be neglected to our accuracy!)

The leading twist contribution can be summed into a phase! ⇒ x dependence of the twist 2 gluon TMDs

dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

Strict Eik

+
dσγ∗L→q1q̄2
dP.S.

∣∣∣∣∣
corr. lim.

dec. on q + q̄

' 2π(2q+)δ(k+
1 + k+

2 − q+)(eef )2g2TF 32z3
1z

3
2Q

2 PiPj

(P2 + Q̄2)4

×
∫
b,b′

e−ik·(b−b
′)
∫
z+,z′+

ei(z
+−z′+)xP−tar.

〈
Fa −i (z′+,b′)

[
U†A(∞, z′+;b′)UA(∞, z+;b)

]
ab
Fb −j (z+,b)

〉
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Summary

?To further study the interplay between CGC and TMD frameworks, we studied the back-to-back
limit of the DIS dijet production at NEik accuracy.

We obtained various contributions:

• Leading twist term: interpreted as the first order expansion of the x phase from the gluon
TMD definition. (stems from strict eikonal term together with the ”dec. on q + q̄”)

• Kinematical twist 3 terms. (stems from the ”dec. on q + q̄” term)

• Twist 3 gluon TMD: This term has one F+− as an insertion instead of F −i . (stems from the
”dyn. target” contribution)

• Correlators of 3 field strengths: These terms stem from the expansion of the ”Generalized
Eikonal” terms after expanding it around b− = 0 (correction to the strict eikonal limit in this
specific contribution)
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