Possible measurements to access low-x physics at the EIC

Charlotte Van Hulse Alcalá University

AdT CM

Color-Glass Condensate at the electron-ion collider ECT* Trento, Italy May 15–19, 2023

The electron-ion collider

 $\overrightarrow{e} + \overrightarrow{p}^{\uparrow} A$, with A=D, ..., Au, Pb ~ 70% polarisation $\mathcal{L} = 10^{33-34} \text{cm}^{-2} \text{s}^{-1} \leftrightarrow \mathcal{L}_{\text{int}} = 10 - 100 \text{ fb}^{-1}/\text{year}$ $\sqrt{s} = 30 - 141 \, \text{GeV}$

The electron-ion collider

 $\overrightarrow{e} + \overrightarrow{p}^{\uparrow} A$, with A=D, ..., Au, Pb ~ 70% polarisation $\mathcal{L} = 10^{33-34} \text{cm}^{-2} \text{s}^{-1} \leftrightarrow \mathcal{L}_{\text{int}} = 10 - 100 \text{ fb}^{-1}/\text{year}$ $\sqrt{s} = 30 - 141 \, \text{GeV}$

Selection of possible beam energy modes e beam E [GeV] p beam E [GeV] \sqrt{s} [GeV]

e beam E [GeV]	A beam E [GeV]	\sqrt{s} [GeV]
18	110	89
10	110	66
5	110	47
5	41	29

The electron-ion collider

 $\overrightarrow{e} + \overrightarrow{p}^{\uparrow} A$, with A=D, ..., Au, Pb ~ 70% polarisation $\mathcal{L} = 10^{33-34} \text{cm}^{-2} \text{s}^{-1} \leftrightarrow \mathcal{L}_{\text{int}} = 10 - 100 \text{ fb}^{-1}/\text{year}$ $\sqrt{s} = 30 - 141 \, \text{GeV}$

Selection of possible beam energy modes e beam E [GeV] p beam E [GeV] \sqrt{s} [GeV]

e beam E [GeV]	A beam E [GeV]	\sqrt{s} [GeV]
18	110	89
10	110	66
5	110	47
5	41	29

The electron-proton/ion collider (ePIC) detector (current status)

The electron-proton/ion collider (ePIC) detector (current status)

hermetic coverage: $0^{\circ} \le \varphi \le 360^{\circ}$ $2^{\circ} \le \theta \le 178^{\circ} \iff -4 < \eta < 4$

AC-LGAD/TOF сл . ///muRWell/µMegas **FHCAL** B е dRICH FEMC AC-LGAD TOE 5.8 m

hermetic coverage:

 $2^{\circ} \le \theta \le 178^{\circ} \iff -4 < \eta < 4$

The ePIC central detector (current status) CCE

The ePIC central detector (current status) (c

The ePIC central detector (current status) CCC

The ePIC central detector (current status) CCC

EM CAL

- Electron-endcap EM cal (EEMC): high-precision PbWO₄+SiPMs
- Barrel EM cal (BEMC): Imaging EM cal
- Forward EM cal (FEMC): Finely segmented W-SciFi

HCAL

- Inner+outer HCAL: steel+Sci: control shower leakage (inner) and detection of neutrals
- FHCAL: finally segmented steel+tungsten+Sci for good energy resolution
- Backward HCal: steel+Sci sandwich: tail catcher

ARA

The ePIC central detector (current status) CCE

//muRWell/µMegas

				<u>В</u>	HCAL		
-in [cm]	R-out [cm]	R-Fibickne		C	ryostat EMIC	AC-LGA	D/TOF
140	h 170	return	30				
134	140						
125.5	134		8.8	0			
80	125.5		45.5				
79.5	80		0.5				र हना है
77	79.5		2.5		TH.	- +	V
74.5	77		2.5				
71.5	76.6		5.14				
65	71.5		6.5				

PID

- Cherenkov detectors: pfRICH, hpDIRC, dRICH
 - ~ 1 GeV/c<p<50 GeV/c
- AC-LGAD/TOF: ~ p < 0.5 – 3 GeV/c

The ePIC central detector (current status) CCC

PID

- Cherenkov detectors: pfRICH, hpDIRC, dRICH
 - ~ 1 GeV/c<p<50 GeV/c
- AC-LGAD/TOF:
 ~ p < 0.5 3 GeV/c

= 10²

10

Kinematic coverage for DIS

х

X 5

Reconstruction of DIS variables

Helicity structure of the nucleon: gluons

Helicity structure of the nucleon: gluons

Helicity structure of the nucleon: gluons

Helicity structure of the nucleon: sea quarks

Semi-inclusive measurements, via good hadron PID \rightarrow access to sea-quark spin

Helicity structure of the nucleon: sea quarks

Semi-inclusive measurements, via good hadron PID

 \rightarrow access to sea-quark spin

systematic uncertainty =|reconstructed-generated|

Helicity structure of the nucleon: sea quarks

Semi-inclusive measurements, via good hadron PID

 \rightarrow access to sea-quark spin

Spin-independent TMD PDF

9

Fit:

A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

3D spin-dependent momentum structure of the nucleon

Semi-inclusive measurements, with hadron reconstruction and pid down to low p_T (~100 MeV for π)

Sivers asymmetry

- Low x and Q²: asymmetry well below 1% \rightarrow need high precision
- TMD evolution

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2

Uncertainties Sivers asymmetry

- Beam polarisations set to 70%.
- systematic uncertainty=
- generated reconstructed
- additionally: 3% scale uncertainty

Sivers TMD PDF: impact of EIC

Q=2 GeV

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$

 $0.01 < y < 0.95$
 $W^2 > 10 \text{ GeV}^2$

$$5 \times 41 \text{ GeV}^2$$

$$10 \times 100 \text{ GeV}^2$$

$$18 \times 100 \text{ GeV}^2$$

$$18 \times 275 \text{ GeV}^2$$

$$\mathcal{L} = 10$$

Parametrisation from M. Bury et al., JHEP, 05:151, 2021

 fb^{-1} for each collision energy

pion and kaon data

12

Di-hadron production from in eA

Di-jet correlations \rightarrow search for signs of saturation: suppression of back-to-back dijet correlations in nucleus

Di-hadron production from in eA

Di-hadron production and jets in eA

 Complementarity region covered by dihadron and jet production

Exclusive measurements on p

Detection of the recoil protons

3D position+momentum structure of nucleon: exclusive measurements on p

Deeply virtual Compton scattering

 b_{\perp}

Coherent eA production

 \rightarrow probe gluon saturation

 \rightarrow nuclear imaging in position space:

$$\int_{0}^{\infty} d\Delta_{\perp} \operatorname{GPD}(x, 0, \Delta_{\perp}) e^{-ib_{\perp}\Delta_{\perp}}$$

Experimentally limited by maximum transverse momentum. Need measured p_T range as extended as possible. ~third diffractive minimum.

Coherent eA production

 \rightarrow probe gluon saturation

 \rightarrow nuclear imaging in position space:

Experimentally limited by maximum transverse momentum. Need measured p_T range as extended as possible. ~third diffractive minimum.

 \rightarrow resolving minima is crucial

 Need 90%, 99%, and > 99.8% veto efficiency for incoherent production, for the respective minima at

 veto of events where nuclei break up \rightarrow use entire far-forward detector systems

Need precise determination of t.

 reconstruction via scattered lepton and exclusively produced vector meson/photon 17

Diffractive eA: study of exclusive J/ψ production in ePb

Extraction of coherent signal from coherent and incoherent production

t via scattered lepton and reconstructed vector meson $p_T^2 \approx (\vec{p}_{J/\psi,T} + \vec{p}_{e',T})^2$

 \rightarrow nuclear imaging in position space:

Coherent ϕ production in eA

w. EEMC: E_e from EECAL; m_e from PDG; angles from tracking; $\phi \rightarrow KK$ from tracking

track only: e and ϕ from tracking only best: weighted average of above methods after cut on their E ratios (0.5 - 1.5)

\rightarrow probe gluon saturation

Kong Tu

Summary

- EIC with ePIC can address various low-x physics topics through:
 - Precise inclusive (spin-dependent) DIS measurements via high-resolution EM calorimeters.
 - Measurements for 3D (spin-dependent) tomography in momentum space provided by good Cherenkov-based and TOF AC-LGAD hadron PID detectors and tracking.
 - Study of nuclear matter via heavy-flavour production (precise vertexing) and di-hadrons.
 - Diffractive and exclusive measurements with coherent/incoherent separation via very precise EM calorimeters and forward detector system.