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K. Wilson’s Exact Renormalization Group (ERG)

m Effective interactions under the change of the scale:
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m Non-perturbative fixed point relevant to particle physics?
m Many-flavor gauge theories (Banks-Zaks fixed point)?

m Asymptotically-safe gravity?

m Gauge symmetry is essential. ..



ERG: Polchinski equation in scalar theory

m Smooth momentum cutoff such as
K(p/N) = e #/™

“Integrate out” momentum modes |p| > A to yield the Wilson action Sa[¢]
Sa[¢]: reaction under the change of the cutoff A

Make everything dimensionless by taking A as the unit

S:[#] (r ~ —InA): reaction under the change of the scale

Polchinski equation:
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(We have generalized as K(p)[1 — K(p)] — p? and introduced the
anomalous dimension by v, = 9; In Z(r, 10))

m Huge application in critical phenomena. ..



ERG in gauge theory

m Local gauge transformation
AL) = A0+ 100~ | @Ak )
#(p) = ¥p) g [ N@T (e 0)

mixes modes with different momenta and the conventional ERG does
not keep a manifest gauge symmetry

m ERG keeps a modified gauge symmetry (Becchi, Ellwanger,
Bonini-D’Attanasio-Marchesini, Reuter-Wetterich, Higashi-ltou-Kugo,
Igarashi-ltoh-Sonoda), but its precise form depends on the Wilson action
itself!

m This prevents us to take a gauge-invariant ansatz (truncation) for the
Wilson action. ..

. critical exponents can depend on the gauge fixing parameter. ..
m We want ERG that keeps a manifest gauge symmetry



Representation of the Wilson action by the field diffusion

m “Integral representation” of the Wilson action:
5191
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Here, ¢'(t, x) is the solution to the diffusion equation
o' (t,x) = ¢/ (t,x),  ¢'(0,x) = ¢'(x),
where the diffusion time is given by
t—ty=e*""70 1,

and the scrambler

s=om|3 [ o W);()

m ERG and the field diffusion: Abe-Fukuma, Carosso-Hasenfratz-Neil,
Matsumoto-Tanaka-Tsuchiya



What happens with a gauge-covariant diffusion equation?

m Yang-Mills gradient flow (Narayanan-Neuberger, Lischer):

OAZ(L,X) = DLFS (6, X) = PAZ(LX) +-- ) AZ(0,%) = AZ(X)
m For fermion (LUscher):
o' (t,x) = D, D,y (t, x) '(0,x) = ¥'(x)
7! <— A~ i T/
o' (t,x) = ' (t,x)D;, D), P'(0,x) = ¥’ (x)

m Simply imitating the scalar theory,
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We term this, Gradient Flow Exact Renormalization Group (GFERG)

m Actually, to diffuse the gauge modes (Zwanziger term),
OAZ(t, x) = D, FA(t, x) + ao D, 0, A2(t, x) etc.

m RG evolution keeps a manifest gauge symmetry: If S;; is invariant under
(gT =e" I dr’ [(D74)/2+’YT/])

AL(X) = AL + 0ux*(X) + g- P AL ()X (%)
P(x) = »(x) = grx®(x) TP(x)
P(x) = D(X) + g X (X)P(x) T
then S; is invariant too.
m RG evolution keeps a modified chiral symmetry: If S, satisfies

. 3
[ o { o~ X)w( )+ 05 S
S Y .
+2/S—,—m’)’5m3—r —2itr |:755'(/_}(X)ST($1/}(X):| } =0

then S- does too. This is a generalization of the Ginsparg-Wilson relation
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Polchinski equation in GFERG

m Taking the 7 derivative of the integral representation,

a -
O Srlav.l
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m This contains functional derivatives up to 4th order (conventional ERG
contains only up to 2nd order)

m The price of the manifest gauge symmetry. ..



1Pl action I

m Usually, in non-perturbative studies in ERG, the so-called 1PI action I';
(Nicoll-Chang, Wetterich, Morris, Bonini-D’Attanasio-Marchesini) is

employed
m We can define the corresponding Legendre transf. in GFERG:
_ dS- _s, a1 5,
Au(x) = Au(x) + SR, (X) =e 78A.(x)5 e
W(x) = (x)+i _? S, =e % Ey(x)s e
d9p(x)
<_

V(x) = (x) + IS, =e S 5p(x)s7 e

s

5¢( )

Mo AL, v, 0] — / d®x A (X)AuL(x) + i / dx U(x)¥(x)

= S, [Au v, 0] + 1 /deAu(x x) =i [ Px w0
= [ @ AL0AL) + 1 [ dx [BO0R00) + 00V

m Keeps the manifest gauge symmetry and the chiral symmetry
m GFERG equation is however quite involved. . .



(Formal) equivalence to the RG flow defined through the gradient flow

m In the continuum limit, defined by
o — —00, 9, — 0,
at least formally,
- / [dA] &% A% (1/7%, X1 /A) - A% (1/72, Xa/ ),
where
AN= e_TeT"/\o, No — 00,

is kept fixed in the continuum limit, and the dimensionful field

Ad(t,%),  AL(F=0,%) = AL(X) = Nogr, A2(X),

obeys the Yang-Mills gradient flow

m RHS: RG flow defined through the gradient flow around the Gaussian
fixed point (Lischer, Makino-Morikawa-H.S.) and even non-perturbative
(Carosso-Hasenfratz-Neil, Carosso)

m This is “formal” because | neglected the issue of gauge fixing. ..
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Perturbative analysis

m Perturbative expansion around the Gauss fixed point (w.r.t. g;)
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Perturbative analysis

m Perturbative expansion around the Gauss fixed point (w.r.t. g;)

m D = 4 Yang-Mills theory to O(g?), we had the beta function
(Sonoda-H.S., unpublished).

— ,37— _ _LZ 2 acd gbed ab
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This is not the expected one.
ﬁ 1 11 >

Vr = _293 = _WECAQT
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Perturbative analysis

m Perturbative expansion around the Gauss fixed point (w.r.t. g;)

m D = 4 Yang-Mills theory to O(g?), we had the beta function
(Sonoda-H.S., unpublished).
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Yr = _2972— - (471_)2 ZCAg'H f f - CA6

This is not the expected one.
& 1 11 >

Vr = _293 = _WECAQT

m The gauge fixing is necessary in S;,?

kix—y) 1 K.k, Kk
(A200m ), ~ 6% [ | (5 - B ) e e

and no gauge fixing — &; = o
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GFERG with the gauge fixing?

m Introduce Faddeev-Popov (FP) ghost-anti-ghost and Nakanishi-Lautrup
(NL) field

m It is easy to make the diffusion equations invariant under the
conventional BRST:

SA%(X) = 8,%(x) + g FP° AL (x)c°(X)
6c?(x) = f%ngabccb(x)cc(x)

5ci(x) = B¥(x)

B (x) =

m However, the natural choice

A D
°=e U X g 5 6Az(x}
) 52

D D 1
xexp{ /d 5ca(x )6Ca(x)}exp{ /d 2 5B (x)0B(x)
breaks the BRST symmetry — (again) modified BRST symmetry...
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At least in QED, we can circumvent the difficulty

We can eliminate NL field

m FP ghost sector completely decouples and solvable
m BRST symmetry reduces to the WT identity
. S, Kk? §S,
5.0 T € Ele T RR)e 2 { w(=k)+ 6Au(k)}
&
+I T/ / ST =0
o J, S5 WP =57

This is linear in the Wilson action.
WT identity in the conventional ERG is infinite order in the Wilson action
Perturbative analysis to O(g2): The beta function,

8.
@)z 39

Anomalous dimensions associated with the electron:

_ 6 p - R S
b= G T = G

p=-21g" =~

The latter coincides with the one for the flowed electron field (Luscher)
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Possible application to the Adler-Bardeen theorem ('t Hooft anomaly is

not renormalized)

D = 4, massless fermion
Assume the global symmetry is SU(N), x SU(N)r
Introduce external gauge and ghost fields

Lu(x),  Ra(x), x£(x), xa(x)

Scrambler s does not contain these non-dynamical fields
Generator of the external BRST transt.

E/d X{ Bux(x) + fABCLg(X)XE(X)] 5L§(X)

20N ()

_0
X7 (x)

+XA()D(x) Pat L}

7XL( )tAPLw(X)5¢( ) 6'¢J( )

+ (right-handed part)

m Modified BRST transformation is given by 5 =868
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Possible application to the Adler-Bardeen theorem

m Since the diffusion equations can be BRST invariant, for the 't Hooft
anomaly,

5e5 =8 / [0A'dy did' dL' d, dR dxx] (delta functions)(8') "4’ e
m This is identical relation to the Wilson action:
e’ =5 / [dA dv’ d’ dL dx | dR’ dxr] (delta functions)(8) ' e
m Thus, the Wilson action infinitesimally deformed by the anomaly
S — ngesf = exp (ST - ne’sfgesf)
is also the solution of the GFERG
m This shows that the anomaly
Quxn = —€ > de™

is a composite operator with the scaling dimension D = 4
m If S; is local, then Q,, 5 is local
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Possible application to the Adler-Bardeen theorem

m First assume the anomaly Q,, 5 is a local functional of external fields
m It can be seen that diffused external fields with t — #, = —1,

Lfb(*1,X) R//j(flhx) Xf(f‘]?X) Xg(flhx)

are and their local products are composite operators
m and they obey the simple BRST transf.

SLA(—1,x) = Dux (=1, ) + FELE (=1, x)xE (—1, %)

S %) = 3 PO 0N, %)
6RA( 17X):8HXAI%(_1>X)+fABCRB(_17X)XLRC(_17X)
SXA(-1,%) = — S PENB( 1, 0xE(~1, %)

m Moreover the anomaly obeys the Wess-Zumino consistency

0Qx;xp =0
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Possible application to the Adler-Bardeen theorem

m The general solution is

Q= C / X o tr [ (— 1, X) Fop (=1, X)Frpo (<1, X) -]

where
xs(0) = 3 ben() — )], V() = 2 [Ru(3) + Lu(0)
m Then, from GFERG,
—c=0

't Hooft anomaly does not depend on the renormalization scale
m Thus, cannot depend on the gauge coupling
m Form the lowest order calculation (Y. Miyakawa, arXiv:2201.08181)

1

€= J6r2
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m We formulated GFERG, which keeps a manifest gauge symmetry and
the modified chiral symmetry, starting from a connection between ERG
and the field diffusion

m We can formulate the corresponding 1P| formalism

m We can argue that GFERG is basically equivalent to the familiar RG flow
defined through the gradient flow (Lischer, Makino-Morikawa-H.S.,
Carosso-Hasenfratz-Neil, Carosso, Kitazawa-H.S., ...)
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Future issues

m The issue of the gauge fixing term in S;

m Presumably, it is necessary at least in perturbative treatment = a
manifest BRST symmetry in the FP ghost sector is difficult

m We can circumvent this difficulty at least in QED =- reconsideration of
non-trivial fixed points in QED (Aoki-Morikawa-Sumi-Terao-Tomoyose,
Gies-Jaeckel, Igarashi-Iltoh-Pawlowski, Gies-Ziebell, . ..)

m With the gauge fixing but no FP ghost? (cf. stochastic quantization)
m Application in non-Abelian gauge theory?
m Generalization to gravity?
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Backup: “Composite operator”

m Composite operator O~ (x) (Wilson, Wegner, Becchi, ...) is a
combination that possesses a simple scaling law under ERG (—y- is
scaling dimension):

/ [de]e™90. ()8 [e " 6(x) e
—e 0 Z(r, 1)
X /[d¢] eSO, (e7 x)5 [e’azq&(xﬂ---e’az(p(xn)]
m From the definition, it obeys

d
(8T—x-a—x+yT—DT> O-(x)=0

2

o]

xj—eT " T0x;

D-0-(x)

e [é/de 6¢(zx) (232 + 222 ix %) ¢(X)§1eST,OT(x)]

m This can be regarded as an infinitesimal deformation of the Wilson
action:

S.[¢] = S.[¢] + &/ ¢ v / dPx e(x)0- (77 x)
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