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Quantum simulations

Resources

NISQ era: O(10− 100) noisy qubits.
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Introduction

QED 2+1

Toy model for QCD (confinement, dynamical mass generation)

V (r) =
α

r
+ σr + b log r

Cheaper than QCD: Nc = 1, d = 3 → Hamiltonian simulations

Hamiltonian simulations: either β ≪ 1 (electric basis) or β ≫ 1
(magnetic basis).
Small volumes → significant Finite Volume Effects

Lagrangian simulations: can go to large L, but β ∼ O(1).

→ we need to match the 2 formalisms to cover all values of β.

The gradient flow provides a natural choice for setting the scale
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Hamiltonian simulations

Advantages

Real time dynamics

|ψ(t)⟩ = e−iHt |ψ(0)⟩

No sign problem (finite baryon density, topological terms, . . . )

and out-of-equilibrium dynamics

No critical slowing down

But at present. . .

At the moment only toy models [1]

(1+1) and (2+1) dimensions

Small volumes

Low spectrum cutoff
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Hamiltonian-Lagrangian matching

Motivation

In the continuum Lagrangian and Hamiltonian are equivalent (!)
→ at finite as the need to be matched

Pure gauge theory [2]:

H ∼
∑
x⃗

1

β
E2(x⃗) + βReTrUµν(x⃗)

SW ∼ −β
∑
t,x⃗

ReTrUµν(t, x⃗)

But β in H is not the same as in L!
H sums are only spatial. . .

Question: How do I find βH from βL?
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Hamiltonian-Lagrangian matching

Hamiltonian limit

We need to find the “Hamiltonian limit”, i.e. send at while keeping a
function of as fixed.

Usual approach: Send the anisotropy at/as → 0 while as is constant:

OH = lim
at→0,as=const.

OL

Brute force: choose a set of matching observables and find the
relations among the couplings

g⃗H = f(g⃗L)

Look at a renormalized quantity, and match it up to lattice artifacts.
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Matchable observables

In pure gauge theory

Static potential

V (r) =
α

r
+ σr + b log r

Plaquette:

⟨P ⟩ ∼
∑
x

∑
i,j

Pij(x)

Mass gap of the theory and ground state:

⟨ψ|H|ψ⟩ → E0

First excited states: E1, . . .
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QED 2+1 observables

States beyond the ground state:

noisy correlators
truncation bias in the Hamiltonian simulations

Static potential:

At small volume FVEs are large → really bad signal-to-noise ratio
Very small volumes on the Hamiltonian → in practice we can compute
only V (a) and V (a

√
2).

Mass gap (glueball 0−−): ok but λCompton must fit the spatial box →
large volumes with the MC simulations
→ match with Hamiltonian requires extrapolation to small L.

Plaquette expectation value
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Matching steps

SW =
β

ξ0

∑
x,i

Re (1− P0i(x)) + βξ0
∑
x,i>j

Re (1− Pij(x))

Note: ξR = at/as ̸= ξ0

Start at a given β and ξ0 = 1.
Find r0/as.

Change ξ0 (≤ previous one), and change β such that r0/as stays
constant.

Repeat

Up to O(as) artifacts:

lim
at→0,as=const

. . . = lim
ξR→0,r0/as=const

. . .
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Naive Hamiltonian limit
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Matching steps (continued)
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ξR → 0 extrapolation

ξR found from the static potential
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ξR from the Gradient Flow

Gradient flow evolution [3]

U̇µ(x, τ) = − 1

β
[∇µ(x)SW (U)]Uµ(x, τ) ,

Scale setting

E(τ) = 2
∑
x

∑
µ>ν

ReTr [1− Pµν(x, τ)] .

τ2E(τ)|τ=τ0 = c ,

S. Romiti 20-24 March 2023 15 / 31



Scale setting
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Renormalized anisotropy

Plaquette energy contributions

E(τ) = 2
∑
x

∑
µ>ν

ReTr [1− Pµν(x, τ)] .

Ets ∼ a2ta
2
s

∑
x

∑
i

F 2
0i(x, τ) = a2ta

2
sV (d− 1)Ẽts ,

Ess ∼ a4s
∑
x

∑
i ̸=j

F 2
ij(x, τ) = a4sV

(d− 1)(d− 2)

2
Ẽss ,

ζ(τ) =

√
d− 2

2

Ets(τ)

Ess(τ)

Note: this is analogous to what done for QCD in [4]
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ξR from the flow
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Wilson flow VS static potential
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plot ⟨P ⟩ VS β
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Step scaling function

Goal

Find the Λ parameter of QED 2+1 by matching to 1-loop lattice
perturbation theory.
Be build numerically the step scaling function:

σ(α(r)) = α(s r)

where s is the scaling factor.

We match in the weak coupling region:

V (r) ≈ α

r

S. Romiti 20-24 March 2023 23 / 31



Step scaling function

Steps

1 Start at small g in the Hamiltonian simulations and compute:

α(r0) = u

Note: on th lattice we find α(r0/a0, g0).

2 Go to r1 = sr0, and adjust g such that:

α(r1/a1, g1) = α(sr0/a0, g0)

and r1/a1 = r0/a0.

3 By construction, α(sr0) = α(r1).
In the perturbative regime the running coupling function is invertible
=⇒ r1 = sr0 in physical units.

4 Continue until one can match to the Lagrangian simulations and
make contact to phenomenology.
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Step scaling function

g0 g1 g2 . . .
r0 : α(r0, g

2
0)

2r0 : α(2r0, g
2
0) = α(r1, g

2
1)

4r0 : α(2r1, g
2
1) = α(r2, g

2
2)

...

At this point (say in step p), we can determine rp in physical units:

1 Go to large L on the Lagrangian simulation → neglect FVEs.

2 Find ap with the gradient flow.

3 Find rp in physical units and each ri = rp/s
p−i

=⇒ we have determined the running of the coupling α.
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Conclusion

We can connect β in the Lagrangian with the β in the Hamiltonian

Support for both periodic and open boundary conditions

We have the setup for finding the Λ parameter of QED 2+1

Next steps

Include fermions on the Hamiltonian sector:

Account for O(as) corrections in ξR from the Wilson flow

Topics for discussion

Value of c in τ20E(τ0) = c: we find c = 1.628(91) · 10−3

Λ parameter (see yesterday talks): can we extract it from α(τ)?
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Thank you for your attention!

S. Romiti 20-24 March 2023 27 / 31



Main references

[1] Lena Funcke et al. “Review on Quantum Computing for Lattice Field
Theory”. In: arXiv preprint arXiv:2302.00467 (2023) (cit. on p. 6).

[2] Angus Kan et al. “Investigating a (3 + 1)D topological θ-term in the
Hamiltonian formulation of lattice gauge theories for quantum and
classical simulations”. In: Phys. Rev. D 104 (3 Aug. 2021),
p. 034504. doi: 10.1103/PhysRevD.104.034504. url:
https://link.aps.org/doi/10.1103/PhysRevD.104.034504

(cit. on p. 7).
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Effect of boundary conditions

Overview plots

In this section are shown the FVEs on the plaquette energy for the different choices of boundary conditions.
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Figure 1: Volume dependence of the plaquette energy expectation value.
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Effect of boundary conditions
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Figure 2: Volume dependence of the plaquette energy expectation value.

Ensembles

The following sections show the behavior of the plaquette energy during the MCMC for each ensemble.
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