# Use of the gradient flow in matching the QED $2+1$ Hamiltonian and Lagrangian 

Simone Romiti

L. Funcke, C. Groß, K. Jansen, S. Kühn, C. Urbach

HISKP - University of Bonn, Germany
20-24 March 2023


## ECT*

## EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

## Quantum simulations

## Resources

NISQ era: $O(10-100)$ noisy qubits.

IBM qubits


## Introduction

## QED 2+1

- Toy model for QCD (confinement, dynamical mass generation)

$$
V(r)=\frac{\alpha}{r}+\sigma r+b \log r
$$

- Cheaper than QCD: $N_{c}=1, d=3 \rightarrow$ Hamiltonian simulations


## Introduction

## QED $2+1$

- Toy model for QCD (confinement, dynamical mass generation)

$$
V(r)=\frac{\alpha}{r}+\sigma r+b \log r
$$

- Cheaper than QCD: $N_{c}=1, d=3 \rightarrow$ Hamiltonian simulations
- Hamiltonian simulations: either $\beta \ll 1$ (electric basis) or $\beta \gg 1$ (magnetic basis).
Small volumes $\rightarrow$ significant Finite Volume Effects
- Lagrangian simulations: can go to large $L$, but $\beta \sim O(1)$.
- $\rightarrow$ we need to match the 2 formalisms to cover all values of $\beta$.

The gradient flow provides a natural choice for setting the scale

## Table of contents

(1) Theory, motivation and main ideas
(2) Hamiltonian limit

- Hamiltonian limit from anisotropic lattices
- $\xi_{R}$ from the Gradient Flow
(3) $\beta^{H}-\beta^{L}$ point-by-point matching

4 Running coupling and $\Lambda$ parameter
(5) Backup

## Hamiltonian simulations

## Advantages

- Real time dynamics

$$
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle
$$

- No sign problem (finite baryon density, topological terms, ...)
- and out-of-equilibrium dynamics
- No critical slowing down


## But at present. . .

At the moment only toy models [1]

- ( $1+1$ ) and $(2+1)$ dimensions
- Small volumes
- Low spectrum cutoff


## Hamiltonian-Lagrangian matching

## Motivation

In the continuum Lagrangian and Hamiltonian are equivalent (!)
$\rightarrow$ at finite $a_{s}$ the need to be matched
Pure gauge theory [2]:

$$
\begin{gathered}
H \sim \sum_{\vec{x}} \frac{1}{\beta} E^{2}(\vec{x})+\beta \operatorname{Re} \operatorname{Tr} U_{\mu \nu}(\vec{x}) \\
S_{W} \sim-\beta \sum_{t, \vec{x}} \operatorname{Re} \operatorname{Tr} U_{\mu \nu}(t, \vec{x})
\end{gathered}
$$

But $\beta$ in $H$ is not the same as in $L$ !
$H$ sums are only spatial. . .
Question: How do I find $\beta_{H}$ from $\beta_{L}$ ?

## Hamiltonian-Lagrangian matching

## Hamiltonian limit

We need to find the "Hamiltonian limit", i.e. send $a_{t}$ while keeping a function of $a_{s}$ fixed.

- Usual approach: Send the anisotropy $a_{t} / a_{s} \rightarrow 0$ while $a_{s}$ is constant:

$$
O^{H}=\lim _{a_{t} \rightarrow 0, a_{s}=\text { const. }} O^{L}
$$

- Brute force: choose a set of matching observables and find the relations among the couplings

$$
\vec{g}^{H}=f\left(\vec{g}^{L}\right)
$$

- Look at a renormalized quantity, and match it up to lattice artifacts.


## Matchable observables

## In pure gauge theory

- Static potential

$$
V(r)=\frac{\alpha}{r}+\sigma r+b \log r
$$

- Plaquette:

$$
\langle P\rangle \sim \sum_{x} \sum_{i, j} P_{i j}(x)
$$

- Mass gap of the theory and ground state:

$$
\langle\psi| H|\psi\rangle \rightarrow E_{0}
$$

- First excited states: $E_{1}, \ldots$


## QED $2+1$ observables

- States beyond the ground state:
- noisy correlators
- truncation bias in the Hamiltonian simulations
- Static potential:
- At small volume FVEs are large $\rightarrow$ really bad signal-to-noise ratio
- Very small volumes on the Hamiltonian $\rightarrow$ in practice we can compute only $V(a)$ and $V(a \sqrt{2})$.


## QED $2+1$ observables

- States beyond the ground state:
- noisy correlators
- truncation bias in the Hamiltonian simulations
- Static potential:
- At small volume FVEs are large $\rightarrow$ really bad signal-to-noise ratio
- Very small volumes on the Hamiltonian $\rightarrow$ in practice we can compute only $V(a)$ and $V(a \sqrt{2})$.
- Mass gap (glueball $0^{--}$): ok but $\lambda_{\text {Compton }}$ must fit the spatial box $\rightarrow$ large volumes with the MC simulations
$\rightarrow$ match with Hamiltonian requires extrapolation to small $L$.
- Plaquette expectation value
(1) Theory, motivation and main ideas
(2) Hamiltonian limit
- Hamiltonian limit from anisotropic lattices
- $\xi_{R}$ from the Gradient Flow
(3) $\beta^{H}-\beta^{L}$ point-by-point matching

4) Running coupling and $\Lambda$ parameter
(5) Backup

## Matching steps

$$
S_{W}=\frac{\beta}{\xi_{0}} \sum_{x, i} \operatorname{Re}\left(1-P_{0 i}(x)\right)+\beta \xi_{0} \sum_{x, i>j} \operatorname{Re}\left(1-P_{i j}(x)\right)
$$

Note: $\xi_{R}=a_{t} / a_{s} \neq \xi_{0}$

- Start at a given $\beta$ and $\xi_{0}=1$.

Find $r_{0} / a_{s}$.

- Change $\xi_{0}$ ( $\leq$ previous one), and change $\beta$ such that $r_{0} / a_{s}$ stays constant.
- Repeat

Up to $O\left(a_{s}\right)$ artifacts:

$$
\lim _{a_{t} \rightarrow 0, a_{s}=\text { const }} \ldots=\lim _{\xi_{R} \rightarrow 0, r_{0} / a_{s}=\text { const }} \ldots
$$

## Naive Hamiltonian limit




## Matching steps (continued)



## $\xi_{R} \rightarrow 0$ extrapolation

$\xi_{R}$ found from the static potential



## $\xi_{R}$ from the Gradient Flow

## Gradient flow evolution [3]

$$
\dot{U}_{\mu}(x, \tau)=-\frac{1}{\beta}\left[\nabla_{\mu}(x) S_{W}(U)\right] U_{\mu}(x, \tau),
$$

## Scale setting

$$
\begin{gathered}
E(\tau)=2 \sum_{x} \sum_{\mu>\nu} \operatorname{Re} \operatorname{Tr}\left[1-P_{\mu \nu}(x, \tau)\right] \\
\left.\tau^{2} E(\tau)\right|_{\tau=\tau_{0}}=c
\end{gathered}
$$

## Scale setting



## Renormalized anisotropy

## Plaquette energy contributions

$$
\begin{gathered}
E(\tau)=2 \sum_{x} \sum_{\mu>\nu} \operatorname{Re} \operatorname{Tr}\left[1-P_{\mu \nu}(x, \tau)\right] . \\
E_{t s} \sim a_{t}^{2} a_{s}^{2} \sum_{x} \sum_{i} F_{0 i}^{2}(x, \tau)=a_{t}^{2} a_{s}^{2} V(d-1) \tilde{E}_{t s}, \\
E_{s s} \sim a_{s}^{4} \sum_{x} \sum_{i \neq j} F_{i j}^{2}(x, \tau)=a_{s}^{4} V \frac{(d-1)(d-2)}{2} \tilde{E}_{s s},
\end{gathered}
$$

$$
\zeta(\tau)=\sqrt{\frac{d-2}{2} \frac{E_{t s}(\tau)}{E_{s s}(\tau)}}
$$

Note: this is analogous to what done for QCD in [4]

## $\xi_{R}$ from the flow



## Wilson flow VS static potential


(1) Theory, motivation and main ideas
(2) Hamiltonian limit

- Hamiltonian limit from anisotropic lattices
- $\xi_{R}$ from the Gradient Flow
(3) $\beta^{H}-\beta^{L}$ point-by-point matching

4. Running coupling and $\Lambda$ parameter
(5) Backup

## plot $\langle P\rangle$ VS $\beta$

Plaquette as a function of $\beta$

colour

- Hamiltonian: $\mathrm{I}=9$
- Lagrangian
(1) Theory, motivation and main ideas
(2) Hamiltonian limit
- Hamiltonian limit from anisotropic lattices
- $\xi_{R}$ from the Gradient Flow
(3) $\beta^{H}-\beta^{L}$ point-by-point matching
(4) Running coupling and $\Lambda$ parameter
(5) Backup


## Step scaling function

## Goal

Find the $\Lambda$ parameter of QED $2+1$ by matching to 1 -loop lattice perturbation theory.
Be build numerically the step scaling function:

$$
\sigma(\alpha(r))=\alpha(s r)
$$

where $s$ is the scaling factor.
We match in the weak coupling region:

$$
V(r) \approx \frac{\alpha}{r}
$$

## Step scaling function

## Steps

(1) Start at small $g$ in the Hamiltonian simulations and compute:

$$
\alpha\left(r_{0}\right)=u
$$

Note: on th lattice we find $\alpha\left(r_{0} / a_{0}, g_{0}\right)$.
(2) Go to $r_{1}=s r_{0}$, and adjust $g$ such that:

$$
\alpha\left(r_{1} / a_{1}, g_{1}\right)=\alpha\left(s r_{0} / a_{0}, g_{0}\right)
$$

and $r_{1} / a_{1}=r_{0} / a_{0}$.

## Step scaling function

## Steps

(1) Start at small $g$ in the Hamiltonian simulations and compute:

$$
\alpha\left(r_{0}\right)=u
$$

Note: on th lattice we find $\alpha\left(r_{0} / a_{0}, g_{0}\right)$.
(2) Go to $r_{1}=s r_{0}$, and adjust $g$ such that:

$$
\alpha\left(r_{1} / a_{1}, g_{1}\right)=\alpha\left(s r_{0} / a_{0}, g_{0}\right)
$$

and $r_{1} / a_{1}=r_{0} / a_{0}$.
(3) By construction, $\alpha\left(s r_{0}\right)=\alpha\left(r_{1}\right)$.

In the perturbative regime the running coupling function is invertible $\Longrightarrow r_{1}=s r_{0}$ in physical units.
(9) Continue until one can match to the Lagrangian simulations and make contact to phenomenology.

## Step scaling function

$$
\begin{array}{ccccc} 
& g_{0} & g_{1} & g_{2} & \cdots \\
r_{0}: & \alpha\left(r_{0}, g_{0}^{2}\right) & & \\
2 r_{0}: & \alpha\left(2 r_{0}, g_{0}^{2}\right)= & \alpha\left(r_{1}, g_{1}^{2}\right) \\
4 r_{0}: & & \alpha\left(2 r_{1}, g_{1}^{2}\right)= & \alpha\left(r_{2}, g_{2}^{2}\right) &
\end{array}
$$

## Step scaling function

$$
\begin{array}{cccc} 
& g_{0} & g_{1} & g_{2} \\
r_{0}: & \alpha\left(r_{0}, g_{0}^{2}\right) & & \\
2 r_{0}: & \alpha\left(2 r_{0}, g_{0}^{2}\right)= & \alpha\left(r_{1}, g_{1}^{2}\right) \\
4 r_{0}: & & \alpha\left(2 r_{1}, g_{1}^{2}\right)= & \\
\alpha\left(r_{2}, g_{2}^{2}\right)
\end{array}
$$

At this point (say in step p ), we can determine $r_{p}$ in physical units:
(1) Go to large $L$ on the Lagrangian simulation $\rightarrow$ neglect FVEs.
(2) Find $a_{p}$ with the gradient flow.
(3) Find $r_{p}$ in physical units and each $r_{i}=r_{p} / s^{p-i}$
$\Longrightarrow$ we have determined the running of the coupling $\alpha$.

## Conclusion

- We can connect $\beta$ in the Lagrangian with the $\beta$ in the Hamiltonian
- Support for both periodic and open boundary conditions
- We have the setup for finding the $\Lambda$ parameter of QED $2+1$


## Next steps

- Include fermions on the Hamiltonian sector:
- Account for $O\left(a_{s}\right)$ corrections in $\xi_{R}$ from the Wilson flow


## Topics for discussion

- Value of $c$ in $\tau_{0}^{2} E\left(\tau_{0}\right)=c$ : we find $c=1.628(91) \cdot 10^{-3}$
- $\Lambda$ parameter (see yesterday talks): can we extract it from $\alpha(\tau)$ ?


## Thank you for your attention!

## Main references

[1] Lena Funcke et al. "Review on Quantum Computing for Lattice Field Theory". In: arXiv preprint arXiv:2302.00467 (2023) (cit. on p. 6).
[2] Angus Kan et al. "Investigating a $(3+1) \mathrm{D}$ topological $\theta$-term in the Hamiltonian formulation of lattice gauge theories for quantum and classical simulations". In: Phys. Rev. D 104 (3 Aug. 2021), p. 034504. DOI: 10.1103/PhysRevD.104.034504. URL: https://link.aps.org/doi/10.1103/PhysRevD.104.034504 (cit. on p. 7).
[3] Martin Lüscher. "Properties and uses of the Wilson flow in lattice QCD". In: Journal of High Energy Physics 2010.8 (2010), pp. 1-18 (cit. on p. 17).
[4] Szabolcs Borsányi et al. "Anisotropy tuning with the Wilson flow". In: arXiv preprint arXiv:1205.0781 (2012) (cit. on p. 19).

## plot $M_{0--}$ VS $\beta$

Mass for the glueball with $J^{\wedge} P C=m m$


## Effect of boundary conditions

## Overview plots

In this section are shown the FVEs on the plaquette energy for the different choices of boundary conditions.
FVEs on the plaquette energy at $\beta=1$


Boundary conditions

- pbc
- obc


## Effect of boundary conditions



Boundary conditions

- pbc
- obc

Figure 2: Volume dependence of the plaquette energy expectation value.

