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The conformal window

Take SU(N,) color with Nfundamental flavors
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Opening the conformal window

Conformality could emerge at finite gf coupling Kaplan et al PRD80,125005 (2009)
N L. Vecchi PRD82, 045013 (2010)
plga)=(@—a:) —(g—g)" + ... Gorbenko et al JHEP10, 108 (2018)

Conformality lost at @ = a :

(a) (b)

B(g, @) IR fuv

8« ﬁ

t
Kaplan et al PRD80,125005 (2009)

18UV

- conformity is lost due to fixed point merger
- there is a new relevant operator at g, g«

Possible numerical signals:
« Continuous phase transition at g_, g

o BKT scaling at g, 2nd order scaling at g,



Phase diagram in extended parameter space

G conformal
NUL A broken - What is the new relevant operator?
UVFP - what is the chirally broken phase?
y xsym
Yy TN N ™
waiecto”y : .
GE T ~_ - |s @ a continuous phase transition?
bare action &,_ - Can we define a continuum theory

on the strong coupling side?

G conformal sill

brok
NJL po At the moment of FP merger, we have

merged FP a BKT “walking scaling” phase transition
- What kind of scaling is in the
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generation (SMG) Catterall et al Phys.Rev.D 104 (2021)



Qu#tine Summary of this talk AH. 2204.0480°

| study SU(3) with NV, = 2 staggered flavors
« Staggered fermions are Dirac-Kaehler fermions
- equivalent to ]\9 8 Dirac flavors at the GF, could be different at g2 * 0

- In the chiral limit N, = 2 is t’Hooft anomaly free, allowing symmetric mass
generation (SMG) Catterall et al Phys.Rev.D 104 (2021)

Prior studies of ]\9 8 showed strong first order bulk phase transitions

- The bulk transition appears to be a lattice artifact
- Adding heavy Pauli-Villars regulator bosons reduces cutoff effects,
the bulk transition weakens and eventually disappears
AH, Shamir, Svetitsky, PRD104, 074509 (2021)



Qu#tine Summary of this talk AH. 2204.0480°
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- equivalent to ]\9 8 Dirac flavors at the GF, could be different at g2 * 0

- In the chiral limit N, = 2 is t’Hooft anomaly free, allowing symmetric mass
generation (SMG) Catterall et al Phys.Rev.D 104 (2021)

Prior studies of ]\Gc 8 showed strong first order bulk phase transitions

- The bulk transition appears to be a lattice artifact
- Adding heavy Pauli-Villars regulator bosons reduces cutoff effects,
the bulk transition weakens and eventually disappears
AH, Shamir, Svetitsky, PRD104, 074509 (2021)

Two distinct phases are observed: conformal and SMG
* Test the order of the phase transition using finite size scaling
- | use the GF coupling here -this is a new application
- The phase transition is consistent with BKT scaling,
Inconsistent with 1st or 2nd order phase transition
- The strong coupling phase is gapped but symmetric: SMG
- is it a topological phase driven by instant condensation?



Staggered fermions

are Kaehler-Dirac fermions distributed in a 2* hypercube Becher, Joos 1982

] Y. — no+-...1
S = 5%} ()(naﬂ(n)Uﬂ(n))(n+/4 + CC) +m Zn:)(n)(n ; a,u(n) — (_ 1) 0T+

¥ : 1-component fermion

1 set of staggered fermions = 4 Dirac flavors in flat space, gg =0

2 sets of massless staggered fermions = 4 sets of reduced staggered
= 16 Weyl fermions

Catterall et al 2101.01026

Massless staggered fermions suffer from Z, gauge anomaly - cancelled when 2

staggered species are present
—> 2 staggered species could exhibit symmetric mass generation : mass

without spontaneous symmetry breaking



What do we know about Nf g

Very close to the conformal sill. But no direct evidence if it is below

- Spectrum is well described by dilation ChPT : close to the sill
- All prior studies found a 1st order bulk transition preventing strong couplings

- No finite T phase transition atam = 0on N, < 24
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4.2 a4 46 48 5 52 Br
Br
1506.08791 FIG. 4. : Finit&;;amp;Batu:leQZran_siflicl)ps from latt':ic&e v.vith
. . . temporal extents V¢ = 20 an with lines connecting points
AH,Schaich, Rinaldi :

to guide the eye. The region above these lines is confined and
chirally broken, while the region below is deconfined and chi-
rally symmetric. The left edge of the plot indicates the bulk
transition into the $¥ lattice phase. The finite-temperature
transitions merge with this bulk transition at am > 0, pre-
venting a direct confirmation of spontaneous chiral symmetry

breaking.
LSD PRD99,014509



PV boson improved actions

Fermions induce an effective gauge interaction
« bare gauge coupling forced to strong coupling
« UV fluctuation are large

If the 1st order bulk transition is due to UV fluctuations, an improved action could
open up the parameter space:



PV boson improved actions

Fermions induce an effective gauge interaction
« bare gauge coupling forced to strong coupling
« UV fluctuation are large

If the 1st order bulk transition is due to UV fluctuations, an improved action could
open up the parameter space:

Add a set of Pauli-Villars bosons with heavy mass to the action:
- heavy bosons integrate out, do not influence the IR dynamics
- the PV bosons induce an effective gauge action, countering the fermions.
- At leading order just a (smeared) plaquette

NSNPV

(Zampv)4

- the bare gauge coupling increases to compensate for f, ;

- the PV action has smaller UV fluctuations
AH, Y. Shamir, B. Svetitsky PRD104, 074509 (2021) (1\9 = 12)



Numerical detalil

- SU(3) gauge with plaquette and adjoint plaguette gauge action
- nHYP smeared fermions
- PV fields :

- OPV : no PV bosons : . =~ 4.6
- 8PV-m0.75 : 8 PV per staggered flavors, ampy, = 0.75: . ~ 8.8
- 4PV-m0.5 : 4 PV per staggered flavors, ampy, = 0.5 :f. =~ 8.1

The fermions are in the chiral limit am; = 0

Simulations are still OK as neither phases are chirally broken

- Gradient flow observable:
8B, L;1) = /Vt2<E(t)>/)’,L

géF Is dimensionless (both canonical and anomalous); It measures the RG flow
along the renormalized trajectory



Phase structure - plaquette
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Phase structure -topological susceptibility

N 0PV
_+_ =8
8 L=10
< | ...... + | =12
S e ey =16 o .
% In the chiral limit topology is
S T— | a suppressed both in conformal and
= 3.
2 ++ A4 chirally broken systems
(The massless Dirac operator has
_ B .
) o T T S S S : a zero mode on instantons)
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B
10 8PV-mO0.75
i ‘ T _+._ =8 _
6 * L=10 The new strongly coupled phase is
w1 -4 =12  full with unpaired instantons
?3 6 | L=16 - do they condense to avoid the
X *H - L=20  suppression?
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Phase structure - géF
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Finite size scaling

GF renormalized coupling géF(ﬁ, L;t) = /Vtz(E(t))ﬁ’L has zero anomalous, zero
canonical dimension; it measures the flow along the renormalized trajectory

Finite size scaling:
fix c = \/S_t/L and vary the bare coupling
- 2nd order scaling: & o |f/f — 1|7
8er (B Lyc) =39 (L|pIp—11")

- BKT scaling: E eSIPIp—11 (v = 1 is expected)
§24(B. Li) = figy (L e

Find the exponents by standard curve-collapse analysis ;

Any ¢ =4/ 81/L can be used, the predicted f5., v, { must be independent of c

LU must be independent of the action as well



Curve collapse - 2nd order scaling, OPV
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Sanity check : OPV
- P1>(p) is the solution of the scaling relation

LY(BIB. — 1) = Ly(Byp/ < — 1), Ly = 12
- Good y?/dof , v ~ 0.27 — consistent with first order transition
- Only filled symbols are included in the FSS fit; no change if L=8 is added



Curve collapse - 2nd order scaling, 8PV
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Curve collapse - BKT scaling, v = 1.0, 8PV

8PV, mpy,=0.75
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BKT scaling, vary c

Repeat with different c, different volumes - consistent

1.0 Ahg 8PV mp\/=0.75 1.0 A
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0.4 A< 0.4
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The strong coupling phase. (S4)

Both PV actions show a continuous phase transition that is
- iInconsistent with 1st or 2nd order scaling
- consistent with BKT or “walking” scaling

|s there indeed a phase transition?
- S4 phase, with an order parameter Cheng et al,Phys.Rev.D 85 (2012) 094509

- phase extends to finite mass

Properties of S4 phase

- confining a
- chirally symmetric > symmetric mass generation
- gapped

J

- topological
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S4 phase gapped, chiral symmetric

Zero momentum correlators C(¢) = Z (O4(x,t = 0)Oq4(y, 1))

X,y
“Pion states” : spin @ taste In terms of 1-component fields
pseudoscalar: P1 =y @ v : O¢ = Z g(x) g(x) (= 1)+
X
scalar : 51 = Yors @ Yols - @S — Z g(x) g(x)

pseudoscalar : P2 = Ys @ VY5 @S = Z q(x) Ul-()'c)q()_c + i)(— 1)x1+x2+x3

scalar : S2=ysQ@rs5:  Og= Y qOUM@q(E + i)

(all four operators couple to scalar and pseudoscalar, but mostly to one only)



S4 phase chiral symmetric

“Pion” correlators

B=8.05 am=0.0 L=16 | B=83 am=0.0 L=16
[ Pl # ysoys N P1 % ysovs
K P2 & ysoyys (xV2) | | ® P2 & vsovys (xV2)
® S1 YoVs ® YoVs (X2) S1 YoYs ® Yovs (X2)
® SZ + Y5 ® ViV, (x\/E) 3 82 + Ys ®YiY; (X\/E)
® 0
3 ®
%10 *
®
® *
* ¢
®
* ~ @ ,
. Te s ¢
10— 4 6 8 10 12 14 7 4 6 8 10 12 14
Xy Xa
S4 phase Conformal phase
- chirally symmetric(P=S5) - chirally symmetric (P =S )
- P1-P2, S1-S2 are broken - P1,P2, $1,S2 are nearly degenerate

( good taste symmetry)



S4 phase gapped

“Pion” masses

- B=8.0
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S4 phase :mesons are massive
- nearly constant in fermion mass
- nearly independent of volume
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Conformal phase :mesons are massive
- due to finite volume!
- all masses vanish in

the infinite volume chiral limit




S4 phase topological

Topological susceptibility:

8PV-mO0.75
10
3 ‘ T _.+_ L=8
g ‘ * L=10
i} * _+_ | =12
|C_ID 6 l =16
8 *|I+ _+_ =20
o 4 —u
=~ i b
o«t‘
LR
0 *+ ......... .&"ui‘ ..... = WP R
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
B
S4 phase : Conformal phase :
Large topological susceptibility Topology is suppressed, as expected

- are these surface modes?



Summary

The action with two sets of staggered fermions (1\9 = &) shows a continuous phase

transition (when simulated with PV improved action)
The transition is at stronger couplings than what is accessible without PV improvement

Finite size scaling
— Is not consistent with 1st order transition, or with 2nd order

— consistent with “walking scaling” transition (slight preference forv = 1)

The strong coupling phase (S4):
— Chirally symmetric and confining
— Strong topology
— Shows symmetric mass generation

If]\/} = 8 is the sill of the conformal window, there has to be a symmetry driving this

— Is it specific to staggered or would it be the same with DWF?
— Could this FP introduce a new paradigm for BSM models?



This Is a new work, with quite surprising, provocative results.

t Independent verification would be great.

{If proven correct

o N; = 8 is the sill of the conformal window

e SMG phase could provide a new beyond-standard model mechanism






S4 phase

Cheng et al, PRD85, 094509
- Breaks single site translational symmetry
- Confining, all hadrons are heavy in the chiral limit
- Chirally symmetric
- Has a local order parameter that measures staggered symmetry breaking

AP, = (ReTr, — Re Tt 4 . )n cven (3)

AL, =(a,(n)x(n)U,(n)x(n+ )
—a,n+p)x(n+p)U,(n+ p)x(n+21)), cven

(4)

0014 T T T T T T T UVedd
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0
_0.02 ] ] ] ] | ] ] _0.05 ] ] ] ] ] ] ]
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Molecular dynamics time units Molecular dynamics time units



Symmetric mass generation

- Systems where the fermions are gapped but there is no spontaneous
symmetry breaking

- Simon Catterall, David Tong, etc... : there is a U(1) symmetry that is
anomalous unless the number of (Dirac) flavors equal to 8

- If there is no anomaly t'Hooft anomaly matching is not needed and
confinement can occur without chiral symmetry breaking

+All examples rely on strong 4-fermion interaction generated by
scalars via Yukawa coupling

4+ Gauge interactions generate 4-fermion interactions as well — could
gauge+fermion systems have symmetric mass phases?



S4 phase gapped

“Pion” masses
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