Selected topics of the gradient flow in perturbation theory

RWTH Aachen University

Gradient Flow Workshop at ECT*

22 March 2023

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

- **Robert Harlander**

see also talks by Janosch Borgulat and Fabian Lange

 $\mathscr{L} = \mathscr{L}_{\text{QCD}} + \mathscr{L}_{B}$ $\mathscr{L}_B \sim \int_0^\infty dt \, L_\mu \left(\partial_t B_\mu - \mathscr{D}_\nu G_{\nu\mu} \right)$ L_{μ} Lagrange multiplier field

Lüscher, Weisz 2011

 $\mathscr{L} = \mathscr{L}_{\text{QCD}} + \mathscr{L}_{B}$ $\mathscr{L}_B \sim \int_0^\infty dt \, L_\mu \left(\partial_t B_\mu - \mathscr{D}_\nu G_{\nu\mu} \right)$ L_{μ} Lagrange multiplier field

Lüscher, Weisz 2011

 $\mathscr{L} = \mathscr{L}_{\text{QCD}} + \mathscr{L}_{B}$ $\mathscr{L}_B \sim \int_0^\infty dt \, L_\mu \left(\partial_t B_\mu - \mathscr{D}_\nu G_{\nu\mu} \right)$ L_{μ} Lagrange multiplier field

Lüscher, Weisz 2011

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$\begin{array}{ccc}
& & & & & & \\
\mu, a, t & & & \nu, b, s \\
\end{array}$$

$$\frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

"gluon flow line"

$$\mathcal{L} = \mathcal{L}_{\text{QCD}} + \mathcal{L}_{B}$$
$$\mathcal{L}_{B} \sim \int_{0}^{\infty} dt \, L_{\mu} \left(\partial_{t} B_{\mu} - \mathcal{D}_{\nu} G_{\nu \mu} \right)$$
$$L_{\mu} \text{ Lagrange multiplier field}$$
Lüscher, Weisz 2011

analogously for quarks:

 $\mathscr{L}_{\chi} \sim \int^{\infty} dt \, \bar{\lambda} \left(\partial_t - \Delta \right) \chi + \mathrm{h.c.}$ **J**0

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$\frac{00000000}{\mu, a, t} \qquad \nu, b, s$$

$$\frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

"gluon flow line"

Lüscher 2013

$$\begin{split} \mathscr{L} &= \mathscr{L}_{\text{QCD}} + \mathscr{L}_{B} + \mathscr{L}_{\chi} \\ \mathscr{L}_{B} \sim \int_{0}^{\infty} dt \, L_{\mu} \left(\partial_{t} B_{\mu} - \mathscr{D}_{\nu} G_{\nu \mu} \right) \\ L_{\mu} \text{ Lagrange multiplier field} \end{split}$$

Lüscher, Weisz 2011

analogously for quarks:

 $\mathscr{L}_{\chi} \sim \int^{\infty} dt \, \bar{\lambda} \, (\partial_t - \Delta) \, \chi + \mathrm{h.c.}$ **J**0

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$\frac{00000000}{\mu, a, t} \qquad \nu, b, s$$

$$\frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

"gluon flow line"

Lüscher 2013

Vertices

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

regular 3-gluon vertex

Vertices

$$-q)_{\mu} + 2\delta_{\mu\nu}q_{\rho} - 2\delta_{\mu\rho}r_{\nu}$$
$$-1)(\delta_{\mu\rho}q_{\nu} - \delta_{\mu\nu}r_{\rho}))$$

Vertices

analogously for 4-gluon vertex and quarks

$$-q)_{\mu} + 2\delta_{\mu\nu}q_{\rho} - 2\delta_{\mu\rho}r_{\nu}$$
$$-1)(\delta_{\mu\rho}q_{\nu} - \delta_{\mu\nu}r_{\rho}))$$

 $\langle E(t) \rangle \equiv \frac{1}{4} \langle G^a_{\mu\nu}(t) G^{a,\mu\nu}(t) \rangle$

 $\langle E(t) \rangle \equiv \frac{1}{4} \langle G^a_{\mu\nu}(t) G^{a,\mu\nu}(t) \rangle$

 $\langle E(t) \rangle \equiv \frac{1}{4} \langle G^a_{\mu\nu}(t) G^{a,\mu\nu}(t) \rangle$ LO: t $\bigcirc 000000000 \bigcirc$ $\nu, b,$ μ, a, t

$$s \quad \frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

$$e^{-2tp^2} \sim t^{-2+\epsilon} \neq 0$$

$$\sum_{b,s} \frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

$$e^{-2tp^2} \sim t^{-2+\epsilon} \neq 0$$

$$b, s = \frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

+
$$\mathcal{O}(\alpha_s^2)$$

$$e^{-2tp^2} \sim t^{-2+\epsilon} \neq 0$$

$$b, s \qquad \frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

+
$$\mathcal{O}(\alpha_s^2)$$

$$e^{-2tp^2} \sim t^{-2+\epsilon} \neq 0$$

$$b, s \qquad \frac{\delta^{ab}}{p^2} \left(\delta_{\mu\nu} - \xi \frac{p_{\mu}p_{\nu}}{p^2} \right) e^{-(t+s)p^2}$$

+
$$\mathcal{O}(\alpha_s^2)$$

$$e? \qquad \alpha_s = \alpha_s(\mu)$$

 $\int_{0}^{t} ds \int_{p} \int_{k} \frac{e^{-(2t-s)p^{2}}}{p^{2}k^{2}(p-k)^{2}}$

generalized loop integrals

 $\int_{0}^{t} ds \int_{p} \int_{k} \frac{e^{-(2t-s)p^{2}}}{p^{2}k^{2}(p-k)^{2}}$

 generalized loop integrals integration over flow-time parameters

- generalized loop integrals
- integration over flow-time parameters
- renormalization: same as fundamental QCD!

 $\left\langle t^2 E(t) \right\rangle = \frac{3\alpha_s(\mu)}{4\pi} \left[1 + k_1(t,\mu) \,\alpha_s(\mu) \right] \quad \text{[Lüscher '10]}$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$k_1 = \left(\frac{52}{9} + \frac{22}{3}\ln 2 - 3\ln 3 - \frac{11}{3}L_{t\mu}\right)C_A - \frac{8}{9}n_f T_R$$

$$L_{t\mu} = \ln 2\mu^2 t + \gamma_{\rm E}$$
$$\mu_0 = \frac{1}{\sqrt{8t}}$$

resulting perturbative accuracy on α_s : ± 3-5%

PDG: ± 1%

The usual problems:

- many diagrams (NLO: 20; NNLO: 3651)
- many integrals
- complicated integrals

The usual problems:

- many diagrams (NLO: 20; NNLO: 3651)
- many integrals
- complicated integrals

$$I(t, \mathbf{n}, \mathbf{a}, D) = \left(\prod_{f=1}^{N} \int_{0}^{t_{f}^{up}} \mathrm{d}t_{f}\right) \int_{T}^{t_{f}^{up}} \mathrm{d}t_{f}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 $\int_{p_1, p_2, p_3} \frac{\exp[\sum_{k, i, j} a_{kij} t_k p_i p_j]}{p_1^{2n_1} p_2^{2n_2} p_3^{2n_3} p_4^{2n_4} p_5^{2n_5} p_6^{2n_6}}$

The usual problems:

- many diagrams (NLO: 20; NNLO: 3651)
- many integrals
- complicated integrals

$$I(t, \mathbf{n}, \mathbf{a}, D) = \left(\prod_{f=1}^{N} \int_{0}^{t_{f}^{up}} \mathrm{d}t_{f}\right) \int_{0}^{t_{f}^{up}} \mathrm{d}t_{f}$$

The usual solutions:

- automatic diagram generation
- reduce to master integrals
- evaluate master integrals

 $\int_{p_1, p_2, p_3} \frac{\exp[\sum_{k, i, j} a_{kij} t_k p_i p_j]}{p_1^{2n_1} p_2^{2n_2} p_3^{2n_3} p_4^{2n_4} p_5^{2n_5} p_6^{2n_6}}$

Artz, RH, Lange, Neumann, Prausa '19

 $\langle t^2 E(t) \rangle = \frac{3\alpha_s(\mu)}{4\pi} \left[1 + k_1(t,\mu) \,\alpha_s(\mu) + k_2(t,\mu) \,\alpha_s^2(\mu) \right]$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

RH, Neumann 2016

PDG: ± 1%

Derive a_s(mz)

	$t^2 \langle E(t) \rangle \cdot 10^4$							
q_8	$2{ m GeV}$		$10\mathrm{GeV}$			m_Z		
$\alpha_s(m_Z)$	$n_f = 3$	$n_f = 4$	$n_f = 3$	$n_f = 4$	$n_f = 5$	$n_f = 3$	$n_f = 4$	$n_f = 5$
0.113	744	755	424	446	456	267	285	299
0.1135	753	764	426	449	459	268	286	301
0.114	762	773	429	452	462	269	287	302
0.1145	771	782	432	455	466	270	289	303
0.115	780	792	435	458	469	272	290	305
0.1155	789	802	438	461	472	273	291	306
0.116	798	811	440	465	476	274	292	308
0.1165	808	821	443	468	479	275	294	309
0.117	818	832	446	471	483	276	295	311
0.1175	827	842	449	474	486	277	296	312
0.118	837	852	452	478	490	278	298	314
0.1185	847	863	455	481	493	279	299	315
0.119	858	874	457	484	497	280	300	316
0.1195	868	885	460	488	500	281	301	318
0.12	879	896	463	491	504	282	303	319

$\langle t^2 E(t) \rangle = \frac{3\alpha_s(\mu)}{4\pi} \left[1 + k_1(t,\mu) \,\alpha_s(\mu) + k_2(t,\mu) \,\alpha_s^2(\mu) \right]$

$$\langle t^2 E(t) \rangle = \frac{3\alpha_s(\mu)}{4\pi} \left[1 + k_1(t,\mu) \,\alpha_s(\mu) + k_2(t,\mu) \,\alpha_s^2(\mu) \right]$$
$$\equiv \frac{3}{4\pi} \hat{\alpha}_s(t) = \frac{3}{4\pi} \hat{\alpha}_s(t)$$

$$\langle t^2 E(t) \rangle = \frac{3\alpha_s(\mu)}{4\pi} \left[1 + k_1(t,\mu) \,\alpha_s(\mu) + k_2(t,\mu) \,\alpha_s^2(\mu) \right]$$

$$\equiv \frac{3}{4\pi}\hat{\alpha}_s(t) = \frac{3}{4}\hat{a}_s(t)$$

$$\mu^2 \frac{d}{d\mu^2} \hat{a}_s(\mu^2) = \hat{\beta}(\hat{a}_s)$$

$$\langle t^{2}E(t) \rangle = \frac{3\alpha_{s}(\mu)}{4\pi} \left[1 + k_{1}(t,\mu) \,\alpha_{s}(\mu) + k_{2}(t,\mu) \,\alpha_{s}^{2}(\mu) \right]$$

$$\equiv \frac{3}{4\pi} \hat{\alpha}_{s}(t) = \frac{3}{4} \hat{a}_{s}(t)$$

$$\mu^{2} \frac{d}{d\mu^{2}} \hat{a}_{s}(\mu^{2}) = \hat{\beta}(\hat{a}_{s})$$

$$= - \hat{a}_{s}^{2} \left[\hat{\beta}_{0} + \hat{a}_{s} \hat{\beta}_{1} + \hat{a}_{s}^{2} \hat{\beta}_{2} + \dots \right]$$

$$\langle t^{2}E(t) \rangle = \frac{3\alpha_{s}(\mu)}{4\pi} \left[1 + k_{1}(t,\mu) \,\alpha_{s}(\mu) + k_{2}(t,\mu) \,\alpha_{s}^{2}(\mu) \right]$$

$$\equiv \frac{3}{4\pi} \hat{\alpha}_{s}(t) = \frac{3}{4} \hat{a}_{s}(t)$$

$$\mu^{2} \frac{d}{d\mu^{2}} \hat{a}_{s}(\mu^{2}) = \hat{\beta}(\hat{a}_{s})$$

$$= - \hat{a}_{s}^{2} \left[\hat{\beta}_{0} + \hat{a}_{s} \hat{\beta}_{1} + \hat{a}_{s}^{2} \hat{\beta}_{2} + \dots \right]$$

Small-flow-time expansion [Lüscher, Weisz '13]

Small-flow-time expansion [Lüscher, Weisz '13]

Small-flow-time expansion [Lüscher, Weisz '13]

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

т

Small-flow-time expansion [Lüscher, Weisz '13]

т

n

Small-flow-time expansion [Lüscher, Weisz '13]

 $\tilde{C}_n(t) = C_m \zeta_{mn}^{-1}(t)$

 \mathcal{M}

n

Small-flow-time expansion [Lüscher, Weisz '13]

 $\tilde{C}_n(t) = C_m \zeta_{mn}^{-1}(t)$

 $\zeta_{mn}(t) = P_n[\tilde{\mathcal{O}}_m(t)]$

 \mathcal{M}

n

Hadronic vacuum polarization

dim 0: 1 dim 2: $m^2 1$ dim 4: $\mathscr{O}_1 = G^a_{\mu\nu} G^a_{\mu\nu}$ $\mathcal{O}_2 = m\bar{\psi}\psi$ $O_3 = m^4$

Hadronic vacuum polarization

$\int d^4x \, e^{iQx} \langle Tj(x)j(0)\rangle \to \sum_n C_n(Q) \langle \mathcal{O}_n \rangle = \sum_n \tilde{C}_n(Q, t) \langle \tilde{\mathcal{O}}_n(t)\rangle$ n RH, Lange, Neumann '20

dim 0: 1 dim 2: $m^2 1$ dim 4: $\mathscr{O}_1 = G^a_{\mu\nu} G^a_{\mu\nu}$ $\mathcal{O}_2 = m\bar{\psi}\psi$ $O_{3} = m^{4}$

Hadronic vacuum polarization

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$\int d^4x \, e^{iQx} \langle Tj(x)j(0)\rangle \to \sum C_n(Q) \langle \mathcal{O}_n \rangle = \sum \tilde{C}_n(Q,t) \langle \tilde{\mathcal{O}}_n(t)\rangle$ n RH, Lange, Neumann '20

dim 0: dim 2: $m^2 1$ dim 4: $\mathscr{O}_1 = G^a_{\mu\nu} G^a_{\mu\nu}$ $\mathcal{O}_2 = m\bar{\psi}\psi$ $O_{3} = m^{4}$

all scales except t can be set to zero [Gorishnii, Larin, Tkachov '83]

QCD energy-momentum tensor

$$\begin{split} T_{\mu\nu} &= \sum_{n} C_{n} \mathcal{O}_{n,\mu\nu} \\ \mathcal{O}_{1,\mu\nu} &= \frac{1}{g_{0}^{2}} F_{\mu\rho}^{a} F_{\nu\rho}^{a} \\ \mathcal{O}_{2,\mu\nu} &= \frac{\delta_{\mu\nu}}{g_{0}^{2}} F_{\rho\sigma}^{a} F_{\rho\sigma}^{a} \\ \mathcal{O}_{3,\mu\nu} &= \bar{\psi} \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu} \right) \psi \\ \mathcal{O}_{4,\mu\nu} &= \delta_{\mu\nu} \bar{\psi} \overleftrightarrow{D} \psi \\ \end{split}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

Suzuki, Makino '13, '14

$T_{\mu\nu} = \sum_{n} \tilde{C}_{n}(t) \tilde{\mathcal{O}}_{n,\mu\nu}(t)$

TIK Institute for Theoretical Particle Physics and Cosmology

NNLO result

$$\begin{split} c_1(t) &= \frac{1}{g^2} \Biggl\{ 1 + \frac{g^2}{(4\pi)^2} \left[-\frac{7}{3} C_A + \frac{3}{2} T_F - \beta_0 L(\mu, t) \right] \\ &+ \frac{g^4}{(4\pi)^4} \Biggl[-\beta_1 L(\mu, t) + C_A^2 \left(-\frac{14482}{405} - \frac{16546}{135} \ln 2 + \frac{1187}{10} \ln 3 \right) \\ &+ C_A T_F \left(\frac{59}{9} \text{Li}_2 \left(\frac{1}{4} \right) + \frac{10873}{810} + \frac{73}{54} \pi^2 - \frac{2773}{135} \ln 2 + \frac{302}{45} \ln 3 \right) \\ &+ C_F T_F \left(-\frac{256}{9} \text{Li}_2 \left(\frac{1}{4} \right) + \frac{2587}{108} - \frac{7}{9} \pi^2 - \frac{106}{9} \ln 2 - \frac{161}{18} \ln 3 \right) \Biggr] \\ &+ \mathcal{O}(g^6) \Biggr\}, \qquad L(\mu, t) \equiv \ln \left(2\mu^2 t \right) + \gamma_{\text{E}} \end{split}$$

etc.

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

RH, Kluth, Lange '18

Application

Application

Application

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 $\varepsilon + p = -\frac{4}{3} \left\langle T_{00}(x) - \frac{1}{4} T_{\mu\mu}(x) \right\rangle$

Iritani, Kitazawa, Suzuki, Takaura 2019

The usual problems:

- many diagrams (NLO: 20; NNLO: 3651)
- many integrals
- complicated integrals

The usual problems:

- many diagrams (NLO: 20; NNLO: 3651)
- many integrals
- complicated integrals

$$I(t, \mathbf{n}, \mathbf{a}, D) = \left(\prod_{f=1}^{N} \int_{0}^{t_{f}^{up}} \mathrm{d}t_{f}\right) \int_{T}^{t_{f}^{up}} \mathrm{d}t_{f}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 $\int_{p_1, p_2, p_3} \frac{\exp[\sum_{k, i, j} a_{kij} t_k p_i p_j]}{p_1^{2n_1} p_2^{2n_2} p_3^{2n_3} p_4^{2n_4} p_5^{2n_5} p_6^{2n_6}}$

The usual problems:

- many diagrams (NLO: 20; NNLO: 3651)
- many integrals
- complicated integrals

$$I(t, \mathbf{n}, \mathbf{a}, D) = \left(\prod_{f=1}^{N} \int_{0}^{t_{f}^{up}} \mathrm{d}t_{f}\right) \int_{0}^{t_{f}^{up}} \mathrm{d}t_{f}$$

The usual solutions:

- automatic diagram generation
- reduce to master integrals
- evaluate master integrals

 $\int_{p_1, p_2, p_3} \frac{\exp[\sum_{k, i, j} a_{kij} t_k p_i p_j]}{p_1^{2n_1} p_2^{2n_2} p_3^{2n_3} p_4^{2n_4} p_5^{2n_5} p_6^{2n_6}}$

Artz, RH, Lange, Neumann, Prausa '19

Integration-by-parts relations

After tensor reduction, we end up with many scalar integrals of the form

$$I(\{t_f^{up}\},\{T_i\},\{a_i\}) = \left(\prod_{f=1}^F \int_0^{t_f^{up}} dt_f\right) \int_{k_1,\dots,k_L} \frac{\exp[-(T_1q_1^2 + \dots + T_Nq_N^2)]}{q_1^{2a_1}\cdots q_N^{2a_N}}$$

Chetyrkin and Tkachov observed [Tkachov 1981; Chetyrkin, Tkachov 1981]

$$\int_{k_1,\ldots,k_L} \frac{\partial}{\partial k_j^{\mu}} \left(\tilde{q}_j^{\mu} \frac{1}{P_1^{a_1} \ldots P_N^{a_N}} \right) = 0$$

- \Rightarrow Linear relations between Feynman integrals
- Can easily be adopted to gradient-flow integrals
- Additional new relations for gradient-flow integrals: [Artz, RH, Lange, Neumann, Prausa '19]

$$\int_{0}^{t_{f}^{up}} \mathrm{d}t_{f} \frac{\partial_{t_{f}}}{\partial_{t_{f}}} F(t_{f}, \ldots)$$

March 20, 2023 15/33

with q_i linear combinations of k_i and T_i linear combinations of t_i , e.g. $q_1 = k_1 - k_2$ and $T_1 = t + 2t_1 - t_3$

$$(.) = F(t_f^{up}, ...) - F(0, ...)$$

Laporta algorithm

Schematically integration-by-parts read

Rarely possible to find general solution like

$$l(a_1, a_2, a_3) = a_1 l(a_1 - 1, a_2, a_3) + (d + a_1 - a_2) l(a_1, a_2 - 1, a_3) + 2a_3 l(a_1, a_2, a_3 - 1)$$

Instead set up system of equations and solve it [Laporta 2000] : Insert seeds $\{a_1 = 1, a_2 = 1, a_3 = 1\}, \{a_1 = 1\}$ 0 = (d - 1)/(d - 1)0 = (d - 2)

Solve with Gaussian elimination

Express integrals through significantly smaller number of master integrals \Rightarrow

March 20, 2023 Fabian Lange: The gradient flow formulation of the electroweak Hamiltonian 16/33

•

$0 = (d - a_1) I(a_1, a_2, a_3) + (a_1 - a_2) I(a_1 + 1, a_2 - 1, a_3) + (2a_3 + a_1 - a_2) I(a_1 + 1, a_2, a_3 - 1)$

$$I(1, 1, 1) + I(2, 1, 0),$$

 $I(2, 1, 1) + I(3, 0, 1) - I(3, 1, 0),$

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

Laporta algorithm

Schematically integration-by-parts read

Rarely possible to find general solution like

$$l(a_1, a_2, a_3) = a_1 l(a_1 - 1, a_2, a_3) + (d + a_1 - a_2) l(a_1, a_2 - 1, a_3) + 2a_3 l(a_1, a_2, a_3 - 1)$$

Instead set up system of equations and solve it [Laporta 2000]: Insert seeds $\{a_1 = 1, a_2 = 1, a_3 = 1\}, \{a_1 = 2, a_2 = 1, a_3 = 1\}, \ldots$

> 0 = (d-1)/(1, 1, 1) + l(2, 1, 0),0 = (d-2)I(2,1,1) + I(3,0,1) - I(3,1,0),

e.g. NNLO chromo-magnetic dipole operator: Solve with Gaussian elimination
O(4000) integrals reduced to 13 master integrals

Express integrals through significantly smaller number of master integrals

March 20, 2023 Fabian Lange: The gradient flow formulation of the electroweak Hamiltonian 16/33

$0 = (d - a_1) I(a_1, a_2, a_3) + (a_1 - a_2) I(a_1 + 1, a_2 - 1, a_3) + (2a_3 + a_1 - a_2) I(a_1 + 1, a_2, a_3 - 1)$

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

$$\int_{0}^{1} \mathrm{d}u_{1} \, u_{1}^{c_{1}} \, \cdots \, \int_{0}^{1} \mathrm{d}u_{f} \, u_{f}^{c_{f}} \, \iint_{p_{1}, p_{2}, p_{3}} \, \frac{\exp\left(-\mathbf{p}^{T}A(u_{1}, \dots, u_{f})\,\mathbf{p}\right)}{p_{1}^{2} \, p_{2}^{2} \, p_{3}^{2} \, (p_{1} - p_{2})^{2} \, (p_{1} - p_{3})^{2} \, (p_{2} - p_{3})^{2}}$$

$$\int_{0}^{1} \mathrm{d}u_{1} \, u_{1}^{c_{1}} \, \cdots \, \int_{0}^{1} \mathrm{d}u_{f} \, u_{f}^{c_{f}} \, \iint_{p_{1}, p_{2}, p_{3}} \, \frac{\exp\left(-\mathbf{p}^{T}A(u_{1}, \dots, u_{f})\,\mathbf{p}\right)}{p_{1}^{2} \, p_{2}^{2} \, p_{3}^{2} \, (p_{1} - p_{2})^{2} \, (p_{1} - p_{3})^{2} \, (p_{2} - p_{3})^{2}}$$

Schwinger parameters:

$$\int_{0}^{1} \mathrm{d}u_{1} \, u_{1}^{c_{1}} \, \cdots \, \int_{0}^{1} \mathrm{d}u_{f} \, u_{f}^{c_{f}} \, \iint_{p_{1}, p_{2}, p_{3}} \, \frac{\exp\left(-\mathbf{p}^{T}A(u_{1}, \dots, u_{f})\,\mathbf{p}\right)}{p_{1}^{2} \, p_{2}^{2} \, p_{3}^{2} \, (p_{1} - p_{2})^{2} \, (p_{1} - p_{3})^{2} \, (p_{2} - p_{3})^{2}}$$

$$\int_0^\infty \mathrm{d}x_6 \, \iint_{p_1,p_2,p_3} \exp\left(-\mathbf{p}^T B(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_f,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_6)\,\mathbf{p}\right)$$

$$\int_{0}^{1} \mathrm{d}u_{1} \, u_{1}^{c_{1}} \, \cdots \, \int_{0}^{1} \mathrm{d}u_{f} \, u_{f}^{c_{f}} \, \iint_{p_{1}, p_{2}, p_{3}} \, \frac{\exp\left(-\mathbf{p}^{T}A(u_{1}, \dots, u_{f})\,\mathbf{p}\right)}{p_{1}^{2} \, p_{2}^{2} \, p_{3}^{2} \, (p_{1} - p_{2})^{2} \, (p_{1} - p_{3})^{2} \, (p_{2} - p_{3})^{2}}$$

$$\int_0^\infty \mathrm{d}x_6 \, \iint_{p_1,p_2,p_3} \exp\left(-\mathbf{p}^T B(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_f,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_6)\,\mathbf{p}\right)$$

$$\int_{0}^{\infty} dx_{6} \left[\det B(u_{1}, \dots, u_{f}, x_{1}, \dots, x_{6}) \right]^{-D/2}$$

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2})p_{2}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2})p_{3}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})}$$

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}}^{1} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2})p_{2}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})}$$

$$\int_0^1 \mathrm{d}u_1 \int_0^1 \mathrm{d}u_2 \int_0^\infty \mathrm{d}x_1 \int_0^\infty \mathrm{d}x_2 \int_0^\infty \mathrm{d}x_3 \int_0^\infty \mathrm{d}x_4 \int_0^\infty \mathrm{d}x_5 \int_0^\infty \mathrm{d}x_6$$

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}}^{1} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2})p_{2}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})}$$

$$\int_{0}^{1} \mathrm{d}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{0}^{\infty} \mathrm{d}x_{1} \int_{0}^{\infty} \mathrm{d}x_{2} \int_{0}^{\infty} \mathrm{d}x_{3} \int_{0}^{\infty} \mathrm{d}x_{4} \int_{0}^{\infty} \mathrm{d}x_{5} \int_{0}^{\infty} \mathrm{d}x_{6} \quad u_{1} = \int_{0}^{1} \mathrm{d}u_{1} \int_{0}^{\infty} \mathrm{d}x_{5} \int_{0}^{\infty} \mathrm{d}x_{6} \quad u_{1} = \int_{0}^{1} \mathrm{d}u_{1} \int_{0}^{\infty} \mathrm{d}x_{5} \int_{0}^{\infty} \mathrm{d}x_{6} \quad u_{1} = \int_{0}^{1} \mathrm{d}u_{1} \int_{0}^{\infty} \mathrm{d}x_{5} \int_{0}^{\infty} \mathrm{d}x_{6} \quad u_{1} = \int_{0}^{1} \mathrm{d}u_{1} \int_{0}^{\infty} \mathrm{d}x_{6} \int_{0}^{\infty} \mathrm{d}x_{6} \quad u_{1} = \int_{0}^{1} \mathrm{d}u_{1} \int_{0}^{\infty} \mathrm{d}x_{6} \int_{0}^{\infty} \mathrm{d}x_{6} \int_{0}^{\infty} \mathrm{d}x_{6} \int_{0}^{\infty} \mathrm{d}x_{6} \int_{0}^{\infty} \mathrm{d}x_{6} \int_{0}^{\infty} \mathrm{d}x_{7} \int_{0}^{\infty} \mathrm{d}x_{7} \int_{0}^{\infty} \mathrm{d}x_{8} \int_{0}^{\infty} \mathrm{d}$$

 $u_1 x_1^{-\epsilon} x_2^{-\epsilon} x_3^{-\epsilon} x_4^{-\epsilon} x_5^{-\epsilon} x_6^{-\epsilon} (3 u_1^2 u_2 x_1 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_1 x_2 x_3 x_4 x$ $+ u_1^2 u_2 x_1 x_2 x_3 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_1 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_2 x_3 x_4 x_5 x_6 + u_$ $+ 3 u_1 u_2 x_1 x_2 x_3 x_4 x_5 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_6 + u_1 u_2 x_1 x_2 x_3 x_4 +$ $+ u_1 u_2 x_1 x_2 x_3 x_5 x_6 + u_1 u_2 x_1 x_2 x_3 x_5 + u_1 u_2 x_1 x_2 x_3 x_6 +$ $+ 3 u_1 u_2 x_1 x_3 x_4 x_5 x_6 + u_1 u_2 x_1 x_3 x_4 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_5 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_5 + u_1 u_2$ $+ 2 u_1 u_2 x_2 x_3 x_4 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 +$ $+ u_1 u_2 x_3 x_4 x_5 x_6 + 3 u_1 x_1 x_2 x_3 x_4 x_5 + 3 u_1 x_1 x_2 x_3 x_4 x_6 +$ $+ u_1 x_1 x_2 x_3 x_4 + u_1 x_1 x_2 x_3 x_5 + u_1 x_1 x_2 x_3 x_6 + 3 u_1 x_1 x_2 x_4 x_5 x_6 +$ $+ u_1 x_1 x_2 x_4 x_6 + u_1 x_1 x_2 x_5 x_6 + u_1 x_2 x_3 x_4 x_5 + u_1 x_2 x_3 x_4 x_6 + u_1 x_2 x_3 x_4 x_$ $+ u_1 x_2 x_4 x_5 x_6 + 2 x_1 x_2 x_3 x_4 x_5 + 2 x_1 x_2 x_3 x_4 x_6 + x_1 x_2 x_3 x_4 +$ $+ x_1 x_2 x_3 x_5 + x_1 x_2 x_3 x_6 + 2 x_1 x_2 x_4 x_5 x_6 + 3 x_1 x_2 x_4 x_5 +$ $+2x_1x_2x_4x_6+x_1x_2x_4+x_1x_2x_5x_6+x_1x_2x_5+x_1x_2x_6+$ $+ 3 x_1 x_3 x_4 x_5 + 3 x_1 x_3 x_4 x_6 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_3 x_6 +$ $+ 3 x_1 x_4 x_5 x_6 + x_1 x_4 x_6 + x_1 x_5 x_6 + 2 x_2 x_3 x_4 x_5 + 2 x_2 x_3 x_4 x_6 +$ $+ x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_3 x_6 + 2 x_2 x_4 x_5 x_6 +$ $+ x_2 x_4 x_5 + x_2 x_5 x_6 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_4 x_5 x_6)^{\epsilon - 2}$

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2}))}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2}))}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})}$$

$$\int_{0}^{1} du_{1} \int_{0}^{1} du_{2} \int_{0}^{\infty} dx_{1} \int_{0}^{\infty} dx_{2} \int_{0}^{\infty} dx_{3} \int_{0}^{\infty} dx_{4} \int_{0}^{\infty} dx_{5} \int_{0}^{\infty} dx_{6} \quad u_{1} + \frac{1}{1+x} + \frac{$$

 $_{1}x_{1}^{-\epsilon}x_{2}^{-\epsilon}x_{3}^{-\epsilon}x_{4}^{-\epsilon}x_{5}^{-\epsilon}x_{6}^{-\epsilon}(3\,u_{1}^{2}\,u_{2}\,x_{1}\,x_{2}\,x_{3}\,x_{4}\,x_{5}\,x_{6}+u_{1}^{2}\,u_{2}\,x_{1}\,x_{2}\,x_{3}\,x_{4}\,x_{6}+u_{1}^{2}\,u_{2}\,x_{1}\,x_{2}\,x_{3}\,x_{6}$ $-u_1^2 u_2 x_1 x_2 x_3 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_5 x_6 +$ $-3 u_1 u_2 x_1 x_2 x_3 x_4 x_5 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_6 + u_1 u_2 x_1 x_2 x_3 x_4 +$ $- u_1 u_2 x_1 x_2 x_3 x_5 x_6 + u_1 u_2 x_1 x_2 x_3 x_5 + u_1 u_2 x_1 x_2 x_3 x_6 + u_1 u_2 x_1 x_2 x_2 + u_1 x_2 x_1 x_2 x_2 + u_1 x_2 x_1 x_2 x_2 + u_1 x_2 x_1 x_2 + u_1$ $-3 u_1 u_2 x_1 x_3 x_4 x_5 x_6 + u_1 u_2 x_1 x_3 x_4 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_5 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_5 x_6 + u_1 u_2$ $-2 u_1 u_2 x_2 x_3 x_4 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_5 + u_1$ $+ u_1 u_2 x_3 x_4 x_5 x_6 + 3 u_1 x_1 x_2 x_3 x_4 x_5 + 3 u_1 x_1 x_2 x_3 x_4 x_6 + 3 u_1 x_1 x_2 x_2 x_3 x_4 x_6 + 3 u_1 x_1 x_2 x_2 x_3 x_4 x_6 + 3 u_1 x_1 x_2 x_2 x_3 x_4 x_6 + 3 u_1 x_1 x_2 x_$ $+ u_1 x_1 x_2 x_3 x_4 + u_1 x_1 x_2 x_3 x_5 + u_1 x_1 x_2 x_3 x_6 + 3 u_1 x_1 x_2 x_4 x_5 x_6 +$ $+ u_1 x_1 x_2 x_4 x_6 + u_1 x_1 x_2 x_5 x_6 + u_1 x_2 x_3 x_4 x_5 + u_1 x_2 x_3 x_4 x_6 + u_1 x_2 x_3 x_4 x_$ $+ u_1 x_2 x_4 x_5 x_6 + 2 x_1 x_2 x_3 x_4 x_5 + 2 x_1 x_2 x_3 x_4 x_6 + x_1 x_2 x_3 x_4 +$ $+ x_1 x_2 x_3 x_5 + x_1 x_2 x_3 x_6 + 2 x_1 x_2 x_4 x_5 x_6 + 3 x_1 x_2 x_4 x_5 +$ $+2x_1x_2x_4x_6+x_1x_2x_4+x_1x_2x_5x_6+x_1x_2x_5+x_1x_2x_6+$ $+ 3 x_1 x_3 x_4 x_5 + 3 x_1 x_3 x_4 x_6 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_3 x_6 +$ $+ 3 x_1 x_4 x_5 x_6 + x_1 x_4 x_6 + x_1 x_5 x_6 + 2 x_2 x_3 x_4 x_5 + 2 x_2 x_3 x_4 x_6 +$ $+ x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_3 x_6 + 2 x_2 x_4 x_5 x_6 +$ $+ x_2 x_4 x_5 + x_2 x_5 x_6 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_4 x_5 x_6)^{\epsilon - 2}$

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2}^{2}-p_{3}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2}^{2})^{2}(p_{1}-p_{3}^{2})^{2}(p_{2}-p_{3}^{2}-p_{3}^{2}-p_{3}^{2})} du_{2} \int_{p_{1},p_{2},p_{3}} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2}^{2}-p_{3}^{2}-p_$$

$$\int_{0}^{1} du_{1} \int_{0}^{1} du_{2} \int_{0}^{\infty} dx_{1} \int_{0}^{\infty} dx_{2} \int_{0}^{\infty} dx_{3} \int_{0}^{\infty} dx_{4} \int_{0}^{\infty} dx_{5} \int_{0}^{\infty} dx_{6} \quad u_{1} + \frac{1}{1+x} + \frac{$$

overlapping singularities as $x_i, u_j \rightarrow 0$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 $_{1}x_{1}^{-\epsilon}x_{2}^{-\epsilon}x_{3}^{-\epsilon}x_{4}^{-\epsilon}x_{5}^{-\epsilon}x_{6}^{-\epsilon}(3\,u_{1}^{2}\,u_{2}\,x_{1}\,x_{2}\,x_{3}\,x_{4}\,x_{5}\,x_{6}+u_{1}^{2}\,u_{2}\,x_{1}\,x_{2}\,x_{3}\,x_{4}\,x_{6}+u_{1}^{2}\,u_{2}\,x_{1}\,x_{2}\,x_{3}\,x_{6}$ $-u_1^2 u_2 x_1 x_2 x_3 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_1 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_1 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_2 x_3 x_4 x_5 x_6 + u_1$ $-3 u_1 u_2 x_1 x_2 x_3 x_4 x_5 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_6 + u_1 u_2 x_1 x_2 x_3 x_4 +$ $-u_1 u_2 x_1 x_2 x_3 x_5 x_6 + u_1 u_2 x_1 x_2 x_3 x_5 + u_1 u_2 x_1 x_2 x_3 x_6 + u_1 u_2 x_1$ $-3\,u_1\,u_2\,x_1\,x_3\,x_4\,x_5\,x_6+u_1\,u_2\,x_1\,x_3\,x_4\,x_6+u_1\,u_2\,x_1\,x_3\,x_5\,x_6+u_1\,u_2\,x_1\,x_5\,x_6+u_1\,u_2\,x_5\,x_6+u_1\,u_2\,x_5\,x_6+u_1\,u_2\,x_5\,x_6+u_1\,u_2\,x_5\,x_6+u_1\,u_2\,x_5\,x_6+u_1\,u$ $-2 u_1 u_2 x_2 x_3 x_4 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_5 + u_1$ $- u_1 u_2 x_3 x_4 x_5 x_6 + 3 u_1 x_1 x_2 x_3 x_4 x_5 + 3 u_1 x_1 x_2 x_3 x_4 x_6 +$ $+ u_1 x_1 x_2 x_3 x_4 + u_1 x_1 x_2 x_3 x_5 + u_1 x_1 x_2 x_3 x_6 + 3 u_1 x_1 x_2 x_4 x_5 x_6 +$ $+ u_1 x_1 x_2 x_4 x_6 + u_1 x_1 x_2 x_5 x_6 + u_1 x_2 x_3 x_4 x_5 + u_1 x_2 x_3 x_4 x_6 +$ $+ u_1 x_2 x_4 x_5 x_6 + 2 x_1 x_2 x_3 x_4 x_5 + 2 x_1 x_2 x_3 x_4 x_6 + x_1 x_2 x_3 x_4 +$ $+ x_1 x_2 x_3 x_5 + x_1 x_2 x_3 x_6 + 2 x_1 x_2 x_4 x_5 x_6 + 3 x_1 x_2 x_4 x_5 +$ $+2x_1x_2x_4x_6+x_1x_2x_4+x_1x_2x_5x_6+x_1x_2x_5+x_1x_2x_6+$ $+ 3 x_1 x_3 x_4 x_5 + 3 x_1 x_3 x_4 x_6 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_3 x_6 +$ $+ 3 x_1 x_4 x_5 x_6 + x_1 x_4 x_6 + x_1 x_5 x_6 + 2 x_2 x_3 x_4 x_5 + 2 x_2 x_3 x_4 x_6 +$ $+ x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_3 x_6 + 2 x_2 x_4 x_5 x_6 +$ $+ x_2 x_4 x_5 + x_2 x_5 x_6 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_4 x_5 x_6)^{\epsilon - 2}$

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2}^{2}-p_{3}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2}^{2})^{2}(p_{1}-p_{3}^{2})^{2}(p_{2}-p_{3}^{2}-p_{3}^{2})} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2}^{2}-p_{3}^{2}-p_{3}^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2}^{2})^{2}(p_{1}-p_{3}^{2})^{2}(p_{2}-p_{3}^{2}-p_{$$

$$\int_{0}^{1} du_{1} \int_{0}^{1} du_{2} \int_{0}^{\infty} dx_{1} \int_{0}^{\infty} dx_{2} \int_{0}^{\infty} dx_{3} \int_{0}^{\infty} dx_{4} \int_{0}^{\infty} dx_{5} \int_{0}^{\infty} dx_{6} \quad u_{1} + \frac{1}{1+x} + \frac{$$

overlapping singularities as $x_i, u_j \rightarrow 0$

→ sector decomposition

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 $x_1^{-\epsilon}x_2^{-\epsilon}x_3^{-\epsilon}x_4^{-\epsilon}x_5^{-\epsilon}x_6^{-\epsilon}(3\,u_1^2\,u_2\,x_1\,x_2\,x_3\,x_4\,x_5\,x_6+u_1^2\,u_2\,x_1\,x_2\,x_3\,x_4\,x_6+u_1^2\,x_2\,x_3\,x_4\,x_6+u_1^2\,x_2\,x_3\,x_4\,x_6+u_1^2\,x_2\,x_3\,x_4\,x_6+u_1^2\,x_2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_4\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u_1^2\,x_6+u$ $-u_1^2 u_2 x_1 x_2 x_3 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_1 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_2 x_3 x_4 x_5 x_6 + u_1^2 u_2 x_2 x_2 x_3 x_4 x_5 x_6 + u_1$ $3 u_1 u_2 x_1 x_2 x_3 x_4 x_5 + 2 u_1 u_2 x_1 x_2 x_3 x_4 x_6 + u_1 u_2 x_1 x_2 x_3 x_4 +$ $-u_1 u_2 x_1 x_2 x_3 x_5 x_6 + u_1 u_2 x_1 x_2 x_3 x_5 + u_1 u_2 x_1 x_2 x_3 x_6 + u_1 u_2 x_1$ $3 u_1 u_2 x_1 x_3 x_4 x_5 x_6 + u_1 u_2 x_1 x_3 x_4 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_5 x_6 + u_1 u_2 x_1 x_5 x_6 + u_1 u_2 x_1 x_3 x_5 x_6 + u_1 u_2 x_1 x_5 + u_1 u_2 x_1 x_5 x_6 + u_1 u_2 x_1 x_5 + u_1 u_2 x_1$ $2 u_1 u_2 x_2 x_3 x_4 x_5 x_6 + u_1 u_2 x_2 x_3 x_4 x_5 + u_1 u_2 x_2 x_3 x_5 x_6 + u_1 u_2 x_2 x_3 x_5 +$ $- u_1 u_2 x_3 x_4 x_5 x_6 + 3 u_1 x_1 x_2 x_3 x_4 x_5 + 3 u_1 x_1 x_2 x_3 x_4 x_6 +$ $+ u_1 x_1 x_2 x_3 x_4 + u_1 x_1 x_2 x_3 x_5 + u_1 x_1 x_2 x_3 x_6 + 3 u_1 x_1 x_2 x_4 x_5 x_6 +$ $+ u_1 x_1 x_2 x_4 x_6 + u_1 x_1 x_2 x_5 x_6 + u_1 x_2 x_3 x_4 x_5 + u_1 x_2 x_3 x_4 x_6 + u_1 x_2 x_3 x_4 x_$ $+ u_1 x_2 x_4 x_5 x_6 + 2 x_1 x_2 x_3 x_4 x_5 + 2 x_1 x_2 x_3 x_4 x_6 + x_1 x_2 x_3 x_4 +$ $+ x_1 x_2 x_3 x_5 + x_1 x_2 x_3 x_6 + 2 x_1 x_2 x_4 x_5 x_6 + 3 x_1 x_2 x_4 x_5 +$ $+2x_1x_2x_4x_6+x_1x_2x_4+x_1x_2x_5x_6+x_1x_2x_5+x_1x_2x_6+$ $+ 3 x_1 x_3 x_4 x_5 + 3 x_1 x_3 x_4 x_6 + x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_3 x_6 +$ $+ 3 x_1 x_4 x_5 x_6 + x_1 x_4 x_6 + x_1 x_5 x_6 + 2 x_2 x_3 x_4 x_5 + 2 x_2 x_3 x_4 x_6 +$ $+ x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_3 x_6 + 2 x_2 x_4 x_5 x_6 +$ $+ x_2 x_4 x_5 + x_2 x_5 x_6 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_4 x_5 x_6)^{\epsilon - 2}$

$$^{-a\epsilon}y^{-b\epsilon}\left(x+\left(1-x
ight)y
ight)^{-1}$$

example: $I = \int_0^1 dx \int_0^1 dy \, x^{-1-}$ [Heinrich '08]

singularity as $x \rightarrow 0$ and

$$^{-a\epsilon}y^{-b\epsilon}\left(x+\left(1-x\right)y
ight)^{-1}$$

$$d \quad (x \to 0) \land (y \to 0)$$

example:
$$I = \int_0^1 dx \int_0^1 dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1}$$

[Heinrich '08]

singularity as $x \rightarrow 0$ and

sector decomposition: [Binoth, Heinrich '00]

$$(x \to 0) \land (y \to 0)$$

example:
$$I = \int_0^1 dx \int_0^1 dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1}$$

[Heinrich '08]

singularity as $x \to 0$ and

sector decomposition: [Binoth, Heinrich '00]

$$I = \int_{0}^{1} dx \int_{0}^{1} dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1} \left[\underbrace{\Theta(x-y)}_{(1)} + \underbrace{\Theta(y-x)}_{(2)} \right]$$

$$(x \to 0) \land (y \to 0)$$

example:
$$I = \int_0^1 dx \int_0^1 dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1}$$

[Heinrich '08]

singularity as $x \rightarrow 0$ and

sector decomposition: [Binoth, Heinrich '00]

$$I = \int_{0}^{1} dx \int_{0}^{1} dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1} \left[\underbrace{\Theta(x-y)}_{(1)} + \underbrace{\Theta(y-x)}_{(2)} \right]$$

$$(x \to 0) \land (y \to 0)$$

example:
$$I = \int_{0}^{1} dx \int_{0}^{1} dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1}$$

[Heinrich '08]

singularity as $x \to 0$ and

sector decomposition: [Binoth, Heinrich '00]

$$I = \int_{0}^{1} dx \int_{0}^{1} dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1} \left[\underbrace{\Theta(x-y)}_{(1)} + \underbrace{\Theta(y-x)}_{(2)} \right]$$

$$I = \int_0^1 dx \, x^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1}$$

$$(x \to 0) \land (y \to 0)$$

$$+ \int_0^1 dy \, y^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-1-a\epsilon} \left(1 + (1-y) \, t\right)^{-1}$$

$$I = \int_0^1 dx \, x^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, dt$$

$$+ \int_0^1 dy \, y^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-1-a\epsilon} \left(1 + (1-y) \, t\right)^{-1}$$

$$I = \int_0^1 dx \, x^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t^$$

$$= -\frac{1}{(a+b)\epsilon} \int_0^1 dt \, \frac{t^{-b\epsilon}}{1+t}$$

$$+ \int_0^1 dy \, y^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-1-a\epsilon} \left(1 + (1-y) \, t\right)^{-1}$$

$$I = \int_0^1 dx \, x^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dy \, y^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-1-a\epsilon} \left(1 + (1-y) \, t\right)^{-1}$$

$$= -\frac{1}{(a+b)\epsilon} \int_0^1 dt \, \frac{t^{-b\epsilon}}{1+t} \qquad -\frac{1}{(a+b)\epsilon} \int_0^1 \frac{dt}{1+t} \left[-\frac{1}{a\epsilon} \delta(t) - \left(\frac{1}{t}\right)_+ + a\epsilon \left(\frac{\ln t}{t}\right)_+ + \cdots \right]$$

$$I = \int_0^1 dx \, x^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-b\epsilon} \left(1 + (1-x) \, t\right)^{-1} + \int_0^1 dy \, y^{-1-(a+b)\epsilon} \int_0^1 dt \, t^{-1-a\epsilon} \left(1 + (1-y) \, t\right)^{-1}$$

$$= -\frac{1}{(a+b)\epsilon} \int_0^1 dt \, \frac{t^{-b\epsilon}}{1+t} \qquad -\frac{1}{(a+b)\epsilon} \int_0^1 \frac{dt}{1+t} \left[-\frac{1}{a\epsilon} \delta(t) - \left(\frac{1}{t}\right)_+ + a\epsilon \left(\frac{\ln t}{t}\right)_+ + \cdots \right]$$

$$\int_{0}^{1} dt \, \left(\frac{\ln^{n} t}{t}\right)_{+} f(t) = \int_{0}^{1} dt \, \frac{\ln^{n} t}{t} \left[f(t) - f(0)\right]$$

pySecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '18]

$$\int_{0}^{1} \mathrm{d}u_{1}u_{1} \int_{0}^{1} \mathrm{d}u_{2} \int_{p_{1},p_{2},p_{3}} \frac{\exp(-p_{1}^{2}-u_{1}p_{2}^{2}-u_{1}u_{2}p_{3}^{2}-2(p_{1}-p_{2})^{2})}{p_{1}^{2}p_{2}^{2}p_{3}^{2}(p_{1}-p_{2})^{2}(p_{1}-p_{3})^{2}(p_{2}-p_{3})^{2}} = \frac{1}{(4\pi)^{3d/2}} \begin{bmatrix} + \exp^{(-1)*((-1.20205690407937649) + (-1)^{2})} \\ (-1)^{2}(-1$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

+ ep^(0)*((-11.4409624237256917) + (4.99888756503079786e-8)*numerr)]

[RH, Nellopoulos '22 (unpublished)] earlier work: [RH, Neumann '16]

Approximate solution of gradient flow integrals

example: $\langle G_{\mu\nu}(t)G_{\mu\nu}(t)\rangle$

result for $m \neq 0$?

example: $S(t) \equiv \langle \bar{\chi}(t)\chi(t) \rangle = -\frac{3m}{8\pi^2 t^2} f(m^2, t) \qquad [\text{RH '21}]$

example:

$$S(t) \equiv \langle \bar{\chi}(t)\chi(t) \rangle = -\frac{3m}{8\pi^2 t^2} f(m^2, t)$$
[RH

$$f(m^2, t) \equiv t \int_k \frac{e^{-tk^2}}{k^2 + m^2} = 1 - m^2 t e^{m^2 t} \Gamma(0, m^2)$$

example:

$$S(t) \equiv \langle \bar{\chi}(t)\chi(t) \rangle = -\frac{3m}{8\pi^2 t^2} f(m^2, t) \qquad [RH]$$

$$f(m^{2}, t) \equiv t \int_{k} \frac{e^{-tk^{2}}}{k^{2} + m^{2}} = 1 - m^{2}te^{m^{2}t}\Gamma(0, m)$$
$$\Gamma(s, x) = \int_{x}^{\infty} du \, u^{s-1}e^{-u}$$

example:

$$S(t) \equiv \langle \bar{\chi}(t)\chi(t) \rangle = -\frac{3m}{8\pi^2 t^2} f(m^2, t) \qquad [\text{RH '21}]$$

$$f(m^{2}, t) \equiv t \int_{k} \frac{e^{-tk^{2}}}{k^{2} + m^{2}} = 1 - m^{2}te^{m^{2}t}\Gamma(0, m)$$
$$\Gamma(s, x) = \int_{x}^{\infty} du \, u^{s-1}e^{-u}$$

 $m^{2}t) = 1 + m^{2}t \left(\gamma_{E} + \log m^{2}t\right) + \cdots$ $\uparrow^{2}t^{2} \ll 1 \iff 1/t \gg m^{2}$

$$f(m^2, t) \equiv t \int_k \frac{e^{-tk^2}}{k^2 + m^2} = 1 - m^2 t e^{m^2 t} \Gamma(0, m^2)$$

 ${}^{2}t) = 1 + m^{2}t \left(\gamma_{E} + \log m^{2}t\right) + \cdots$

$$f(m^2, t) \equiv t \int_k \frac{e^{-tk^2}}{k^2 + m^2} = 1 - m^2 t e^{m^2 t} \Gamma(0, m^2)$$

$$f^{(ii)}(m^2,t) = t \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} \int_k \frac{k^{2n}}{k^2 + m^2} = m^2 t \left[-\frac{1}{\epsilon} - 1 + \gamma_{\rm E} + \ln m^2 \right] e^{m^2 t}$$

 ${}^{2}t) = 1 + m^{2}t \left(\gamma_{E} + \log m^{2}t\right) + \cdots$

$$f(m^2, t) \equiv t \int_k \frac{e^{-tk^2}}{k^2 + m^2} = 1 - m^2 t e^{m^2 t} \Gamma(0, m^2)$$

$$f^{(ii)}(m^2,t) = t \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} \int_k \frac{k^{2n}}{k^2 + m^2} = m^2 t \left[-\frac{1}{\epsilon} - 1 + \gamma_{\rm E} + \ln m^2 \right] e^{m^2 t}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 ${}^{2}t) = 1 + m^{2}t \left(\gamma_{E} + \log m^{2}t\right) + \cdots$

assumes $k^2 t \ll 1$ $k^2 \ll 1/t$

$$f(m^2, t) \equiv t \int_k \frac{e^{-tk^2}}{k^2 + m^2} = 1 - m^2 t e^{m^2 t} \Gamma(0, m^2)$$

$$f^{(ii)}(m^2,t) = t \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} \int_k \frac{k^{2n}}{k^2 + m^2} = m^2 t \left[-\frac{1}{\epsilon} - 1 + \gamma_{\rm E} + \ln m^2 \right] e^{m^2 t}$$

also need to integrate over $k^2 \gtrsim 1/t$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 ${}^{2}t) = 1 + m^{2}t \left(\gamma_{E} + \log m^{2}t\right) + \cdots$

assumes $k^2 t \ll 1$ $k^2 \ll 1/t$

$$f(m^2, t) \equiv t \int_k \frac{e^{-tk^2}}{k^2 + m^2} = 1 - m^2 t e^{m^2 t} \Gamma(0, m^2)$$

$$f^{(ii)}(m^2,t) = t \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} \int_k \frac{k^{2n}}{k^2 + m^2} = m^2 t \left[\frac{1}{2} \int_{k=0}^{\infty} \frac{k^{2n}}{k^2 + m^2} \right]$$

also need to integrate over $k^2 \gtrsim 1/t$

$$f^{(i)}(m^2,t) = t \sum_{n=1}^{\infty} (-m^2)^{n-1} \int_k \frac{e^{-tk^2}}{k^{2n}} = \sum_{n=1}^{\infty} (-m^2)^{n-1} t^{n-1+\epsilon} \frac{\Gamma(D/2-n)}{\Gamma(D/2)}$$
$$= 1 + m^2 t \left(\frac{1}{\epsilon} + \ln t + 1\right) e^{m^2 t} - (m^2 t)^2 - \frac{3}{4} (m^2 t)^2 + \dots$$

 ${}^{2}t) = 1 + m^{2}t \left(\gamma_{E} + \log m^{2}t\right) + \cdots$

$$\left[\frac{1}{\epsilon} - 1 + \gamma_{\rm E} + \ln m^2\right] e^{m^2 t}$$

assumes
$$k^2 t \ll 1$$

 $k^2 \ll 1/t$

Application: QCD static force at finite *t*: [Brambilla, Chung, Vairo, Wang '21]

Application: QCD static force at finite *t*:

$$\begin{split} W_4 =& 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2} \\ &= g^4 C_A C_F \frac{e^{-2q^2t}}{16\pi^2 q^2} \left[3\left(\frac{1}{\epsilon_{\mathrm{UV}}} + \log(\mu^2/q^2)\right) + W_4^F(\bar{t}) + O(\epsilon) \right] \end{split}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

[Brambilla, Chung, Vairo, Wang '21]

$$\begin{split} W_4^F(\bar{t}) &= 3\log(2\bar{t}) + 3\gamma_{\rm E} + \frac{5}{2} \\ &+ \frac{1}{2} \int_0^1 dx_1 dx_2 dx_3 \bigg[\frac{8 \exp\left(\frac{x_2(x_1x_2-1)\bar{t}}{x_1(2x_2-1)-2}\right)}{x_2(-2x_2x_1+x_1+2)^2} + \frac{8e^{\frac{x_1^2(x_2-1)x_2\bar{t}}{2x_1(x_2-1)-1}}}{x_2(1-2x_1(x_2-1))^2} \\ &+ \frac{16x_2(x_3-1)(x_2x_3-1)\exp\left(\frac{x_2x_3(x_1^2x_2(x_3-1)(x_2x_3-1)-1)\bar{t}}{2x_1(x_3-1)x_3x_2^2-2x_1(x_3-1)x_2-2x_3x_2+x_2+1}\right)}{x_3(2x_1(x_3-1)x_3x_2^2-2x_1(x_3-1)x_2-2x_3x_2+x_2+1)^3} \\ &+ \frac{16x_2(x_1x_2x_3-1)(x_2x_3-1)\exp\left(\frac{x_3(-x_2x_3+x_1x_2(x_2(x_3^2-1)-x_3)+1)\bar{t}}{2x_1(x_3-1)x_3x_2^2-(x_1+1)(2x_3-1)x_2+2}\right)}{x_3(2x_1(x_3-1)x_3x_2^2-(x_1+1)(2x_3-1)x_2+2)^3} \\ &+ \frac{16x_2(x_3-1)(x_1x_2x_3-1)\exp\left(\frac{x_2x_3(-x_3x_2+x_2+x_1(x_2^2(x_3-1)x_3-1))\bar{t}}{2x_1(x_3-1)x_3x_2^2+(-2x_3x_1+x_1-2x_3+2)x_2+1}\right)}{x_3(2x_1(x_3-1)x_3x_2^2+(-2x_3x_1+x_1-2x_3+2)x_2+1)^3} \\ &- \frac{16x_2}{x_3(x_1x_2+x_2+2)^3} - \frac{16x_2}{x_3(2x_1x_2+x_2+1)^3} - \frac{16x_2}{x_3((x_1+2)x_2+1)^3} \\ &+ \frac{4\bar{t}\exp\left(\frac{((x_1-1)(x_2-1)x_3^2-x_1x_2)\bar{t}}{(-2x_2x_1+x_1+x_2+2(x_1-1)(x_2-1)x_3}\right)}\right)}{(-2x_2x_1+x_1+x_2+2(x_1-1)(x_2-1)x_3)^2} \\ &- \frac{8}{x_2(2x_1+1)^2} - \frac{8}{x_2(x_1+2)^2} - 2\log\left(\frac{81}{2}\right) \bigg], \end{split}$$

 $W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s}$

 $tq^2 \ll 1$

$$\frac{s(k^{2}+(q-k)^{2})}{k^{2}(q-k)^{2}}\frac{2(d-2)k_{0}^{2}+q^{2}+2k^{2}}{k^{2}(q-k)^{2}}$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 1:

 $tk^2 \ll 1$ $e^{sq^2} = 1 + sq^2 + \cdots$ $e^{-s(k^2 + (q-k)^2)} = 1 - s(k^2 + (q-k)^2)$

$$(k)^2 + \cdots$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 1:

 $tk^{2} \ll 1 \qquad e^{sq^{2}} = 1 + sq^{2} + \cdots$ $e^{-s(k^{2} + (q - k)^{2})} = 1 - s(k^{2} + (q - k)^{2}) = 1 - s(k^{2} + (q - k)^{2})$

$$\int_0^t \mathrm{d}s \, s^n \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{k^l \{1, \, k_0^2, \, k \cdot q, \, \dots\}}{k^2 (k-q)^2}$$

$$(k)^2 + \cdots$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 1:

 $tk^{2} \ll 1 \qquad e^{sq^{2}} = 1 + sq^{2} + \cdots$ $e^{-s(k^{2} + (q - k)^{2})} = 1 - s(k^{2} + (q - k)^{2}) = 1 - s(k^{2} + (q - k)^{2})$

$$\int_0^t \mathrm{d}s \, s^n \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{k^l \{1, \, k_0^2, \, k \cdot q, \, \dots\}}{k^2 (k-q)^2}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$(k)^{2}) + \cdots$$

power series in *t*

 $W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \, e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \, e^{-s}$

 $tq^2 \ll 1$

region 2: $k^2 \gtrsim 1/t$

 $e^{sq^2} = 1 + sq^2 + \cdots$

$$\frac{s(k^{2}+(q-k)^{2})}{k^{2}(q-k)^{2}}\frac{2(d-2)k_{0}^{2}+q^{2}+2k^{2}}{k^{2}(q-k)^{2}}$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 2: $k^2 \gtrsim 1/t$ $e^{sq^2} = 1 + sq^2 + \cdots$ $e^{-s(k^2 + (q-k)^2)} = e^{-2sk^2}e^{-2k\cdot q+q^2} =$

$$= e^{-2sk^2} \left(1 - 2sk \cdot q + sq^2 + \cdots \right)$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 2: $e^{sq^2} = 1 + sq^2 + \cdots$ $k^2 \gtrsim 1/t$ $e^{-s(k^2 + (q-k)^2)} = e^{-2sk^2}e^{-2k\cdot q+q^2} =$ $\int^{t} ds \, s^{a} \left[\frac{d^{d}k}{\sqrt{2} \times d} \, e^{-2sk^{2}} \frac{\{1, \, k_{0}^{2}, \, (k \cdot q)^{2}, \dots\}}{k^{2}b} \right]$

$$\int_0^{\infty} \mathrm{d}s \, s^a \int \frac{d^2 \pi k^2}{(2\pi)^d} \, e^{-2sk^2} \frac{\mathrm{d}r}{k^{2k}} \, k^{2k}$$

$$= e^{-2sk^2} \left(1 - 2sk \cdot q + sq^2 + \cdots \right)$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 2: $k^{2} \gtrsim 1/t$ $e^{sq^{2}} = 1 + sq^{2} + \cdots$ $e^{-s(k^{2} + (q - k)^{2})} = e^{-2sk^{2}}e^{-2k \cdot q + q^{2}} =$ $\int_{-2sk^{2}}^{t} \{1, k_{0}^{2}, (k \cdot q^{2})\}$

$$\int_{0}^{t} \mathrm{d}s \, s^{a} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} \, e^{-2sk^{2}} \frac{\{1, \, k_{0}^{2}, \, (k \cdot q)^{2}, \dots\}}{k^{2b}} \sim \int_{0}^{t} \mathrm{d}s \, s^{x+y\epsilon}$$

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 2: $k^{2} \gtrsim 1/t$ $e^{sq^{2}} = 1 + sq^{2} + \cdots$ $e^{-s(k^{2} + (q - k)^{2})} = e^{-2sk^{2}}e^{-2k \cdot q + q^{2}} =$ $\int_{-2sk^{2}}^{t} \{1, k_{0}^{2}, (k \cdot q^{2})\}$

$$\int_{0}^{t} \mathrm{d}s \, s^{a} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} \, e^{-2sk^{2}} \frac{\{1, \, k_{0}^{2}, \, (k \cdot q)^{2}, \ldots\}}{k^{2b}} \sim \int_{0}^{t} \mathrm{d}s \, s^{x+y\epsilon}$$
logarithmic in t

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 2: $k^{2} \gtrsim 1/t$ $e^{sq^{2}} = 1 + sq^{2} + \cdots$ $e^{-s(k^{2} + (q - k)^{2})} = e^{-2sk^{2}}e^{-2k \cdot q + q^{2}} =$ $\int_{-2sk^{2}}^{t} \{1, k_{0}^{2}, (k \cdot q^{2})\}$

$$\int_{0}^{t} ds \, s^{a} \int \frac{d^{d}k}{(2\pi)^{d}} \, e^{-2sk^{2}} \frac{\{1, \, k_{0}^{2}, \, (k \cdot q)^{2}, \dots\}}{k^{2b}} \sim \int_{0}^{t} ds \, s^{x+y\epsilon}$$

$$\text{logarithmic in } t$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

[RH, Koller '22 (unpublished)]

$$W_4 = 2g^4 C_A C_F \frac{e^{-2tq^2}}{q^2} \int_0^t \mathrm{d}s \ e^{sq^2} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \ e^{-s\left(k^2 + (q-k)^2\right)} \frac{2\left(d-2\right)k_0^2 + q^2 + 2k^2}{k^2\left(q-k\right)^2}$$

 $tq^2 \ll 1$

region 2: $k^2 \gtrsim 1/t$ $e^{sq^2} = 1 + sq^2 + \cdots$ $e^{-s(k^2 + (q-k)^2)} = e^{-2sk^2}e^{-2k \cdot q + q^2} =$ $\int_0^t ds \, s^a \int \frac{d^d k}{(2\pi)^d} e^{-2sk^2} \frac{\{1, k_0^2, (k \cdot q)\}}{k^{2b}}$

→ two-loop accessible?

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$= e^{-2sk^{2}} \left(1 - 2sk \cdot q + sq^{2} + \cdots\right)$$

$$\frac{q)^{2}, \ldots}{q} \sim \int_{0}^{t} ds \, s^{x+y\epsilon}$$

$$\log arithmic in t$$

[RH, Koller '22 (unpublished)]

Gradient Flow anomalous dimension

- $\tilde{\mathcal{O}}_n(t) = \sum \zeta^{\mathrm{B}}_{nm}(t,\mu,\epsilon) \mathcal{O}_m + \cdots$ $t \rightarrow 0$: т $\tilde{\mathcal{O}}(t) = \zeta^{\mathrm{B}}(t, \mu, \epsilon) \mathcal{O} + \cdots$ matrix notation:
 - $\hat{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O}$ define

Gradient Flow anomalous dimension

- $t \to 0: \qquad \tilde{\mathcal{O}}_n(t) = \sum_m \zeta^{\rm B}_{nm}(t,\mu,\epsilon) \mathcal{O}_m + \cdots$ matrix notation: $\tilde{\mathcal{O}}(t) = \zeta^{\rm B}(t,\mu,\epsilon) \mathcal{O} + \cdots$
 - define

$$\hat{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\boldsymbol{\epsilon}) \, \mathcal{O}$$

$$t\frac{\partial}{\partial t}\hat{\mathcal{O}}(t) = \left(t\frac{\partial}{\partial t}\zeta^{\mathrm{B}}(t,\mu,\epsilon)\right)$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$\mathcal{O} = \left(t\frac{\partial}{\partial t}\zeta^{\mathrm{B}}(t,\mu,\boldsymbol{\epsilon})\right)\zeta^{\mathrm{B},-1}(t,\mu,\boldsymbol{\epsilon})\,\hat{\mathcal{O}}(t)$

Gradient Flow anomalous dimension

$$t \to 0: \qquad \tilde{\mathcal{O}}_n(t) = \sum_m \zeta^{\mathrm{B}}_{nm}(t,\mu,\epsilon) \mathcal{O}_m$$

matrix notation: $\tilde{\mathcal{O}}(t) = \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O} + \cdots$

define

$$\hat{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O}$$

$$t\frac{\partial}{\partial t}\hat{\mathcal{O}}(t) = \left(t\frac{\partial}{\partial t}\zeta^{\mathrm{B}}(t,\mu,\boldsymbol{\epsilon})\right)$$

$$t\frac{\partial}{\partial t}\hat{\mathcal{O}}(t) = \hat{\gamma}(\mu, t)\,\hat{\mathcal{O}}(t)$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

 $\mathcal{O} = \left(t\frac{\partial}{\partial t}\zeta^{\mathrm{B}}(t,\mu,\boldsymbol{\epsilon})\right)\zeta^{\mathrm{B},-1}(t,\mu,\boldsymbol{\epsilon})\,\hat{\mathcal{O}}(t)$

$$\hat{\gamma}(\mu, t) = t \frac{\partial}{\partial t} \ln \zeta^{B}(t, \mu, \epsilon)$$

RH, Lange, Neumann '20

 $+\cdots$

originally: $\tilde{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O} + t\xi(t,\mu,\epsilon) \mathcal{O}^{+2} + \cdots$ $H_{\text{eff}} = C(\epsilon) \cdot \mathcal{O} = C(\epsilon) \cdot \zeta^{\text{B},-1}(t,\mu,\epsilon) \cdot \hat{\mathcal{O}}(t) + \cdots = \hat{C}(t) \cdot \hat{\mathcal{O}}(t) + \cdots$

originally: $\tilde{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O} + t\xi(t,\mu,\epsilon) \mathcal{O}^{+2} + \cdots$ $H_{\text{eff}} = C(\epsilon) \cdot \mathcal{O} = C(\epsilon) \cdot \zeta^{B,-1}(t,\mu,\epsilon) \cdot \hat{\mathcal{O}}(t) + \cdots = \hat{C}(t) \cdot \hat{\mathcal{O}}(t) + \cdots$ here: $\hat{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O}$ exact by definition

originally: $\tilde{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O} + t\xi(t,\mu,\epsilon) \mathcal{O}^{+2} + \cdots$ $H_{\text{eff}} = C(\epsilon) \cdot \mathcal{O} = C(\epsilon) \cdot \zeta^{B,-1}(t,\mu,\epsilon) \cdot \hat{\mathcal{O}}(t) + \cdots = \hat{C}(t) \cdot \hat{\mathcal{O}}(t) + \cdots$ here: $\hat{\mathcal{O}}(t) \equiv \zeta^{B}(t, \mu, \epsilon) \mathcal{O}$ exact by definition $H_{\text{eff}} = C(\epsilon) \cdot \mathcal{O} \equiv C(\epsilon) \cdot \zeta^{B,-1}(t,\mu,\epsilon) \cdot \hat{\mathcal{O}}(t) \equiv \hat{C}(t) \cdot \hat{\mathcal{O}}(t)$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

exact!

originally: $\tilde{\mathcal{O}}(t) \equiv \zeta^{\mathrm{B}}(t,\mu,\epsilon) \mathcal{O} + t\xi(t,\mu,\epsilon) \mathcal{O}^{+2} + \cdots$ $H_{\text{eff}} = C(\epsilon) \cdot \mathcal{O} = C(\epsilon) \cdot \zeta^{B,-1}(t,\mu,\epsilon) \cdot \hat{\mathcal{O}}(t) + \cdots = \hat{C}(t) \cdot \hat{\mathcal{O}}(t) + \cdots$ here: $\hat{\mathcal{O}}(t) \equiv \zeta^{B}(t,\mu,\epsilon) \mathcal{O}$ exact by definition $H_{\text{eff}} = C(\epsilon) \cdot \mathcal{O} \equiv C(\epsilon) \cdot \zeta^{B,-1}(t,\mu,\epsilon) \cdot \hat{\mathcal{O}}(t) \equiv \hat{C}(t) \cdot \hat{\mathcal{O}}(t)$ Require a definition of $\hat{O}(t)$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

exact!

[Hasenfratz, Monahan, Rizik, Shindler, Witzel '22] $G_O(x_4; t/a^2, \beta) = a^3 \sum_{\mathbf{x}} \left\langle O(\mathbf{x}, x_4; t/a^2) \widetilde{O}(0) \right\rangle_{\beta}$

$$R_O(x_4; t/a^2, \beta) = \frac{G_O(x_4; t/a^2, \beta)}{G_V(x_4; t/a^2, \beta)}$$

$$\gamma_{O}(t/a^{2},\beta) = -2t \frac{d \log R_{O}(x_{4};t/a^{2},\beta)}{d t} = t\partial_{t} \ln G_{O} - t\partial_{t} \ln G_{V}$$

$$\hat{\gamma}_{O}$$

R. Harlander, Aspects of the perturbative gradient flow, ECT* 2023

$$\sim P_{\tilde{O}}[\mathcal{O}] = \zeta^{\mathrm{B}}_{\mathcal{O}\tilde{\mathcal{O}}}(t, \epsilon)$$

$$G_V(x_4; t/a^2, \beta) = \frac{1}{3} \sum_{k=1}^3 a^3 \sum_{\mathbf{x}} \left\langle V_k(\mathbf{x}, x_4; t/a^2) \widetilde{V}_k(0) \right\rangle_{\beta}$$

Conclusions and Outlook

- perturbative approach provides important input for $t \rightarrow 0$ many methods available: learn from decades of experience • open questions: gradient flow β function vs. MSbar?

- many other applications: gradient flow as UV regulator?

