The Gradient Flow in QCD and OTHER S.C. Field Theories Trento 2023

Fixed point and anomalous dimensions in a Composite Higgs theory

Benjamin Svetitsky Tel Aviv University

Collaboration: A. Hasenfratz, E. Neil, Y. Shamir, BS, O. Witzel

PRELIMINARY

- Composite Higgs and (especially) partially composite top quark
- Fairly economical model M6 discussed by Ferretti (1404.7137,1604.06467)
 - SU(4) gauge theory, quartet fermions and sextet fermions
- Variant model: Add fermions, look for large anomalous dimensions near the conformal sill

COMPOSITE HIGGS + PARTIALLY COMPOSITE top

- SU(4) gauge theory hypercolor new strong sector with scale $\Lambda_{HC} \sim 5$ TeV
- N_6 Majorana fermions Q in sextet |-| rep \implies composite Higgs field in Goldstone sector
- N_4 Dirac fermions q in quartet \square rep $\implies B = Qqq$ is a chimera baryon of HC

Partial compositeness: Mix massless t quark with B via

$$V_{\text{top}}^{\text{HC}} = G_R \bar{t}_L B_R + G_L \bar{t}_R B_L + \text{h.c.} \quad -t \equiv \text{top quark}, B \equiv Q q q$$

tB is really tQqq — a four-Fermi interaction from a gauge theory — EHC — at a much higher scale Λ_{EHC} :

$$G_{L,R} \sim g_{\rm EHC}^2 / \Lambda_{\rm EHC}^2$$

THE PROBLEM: Λ_{EHC} is large (*flavor violations!*) $\implies G_{L,R}$ are much too small unless Qqq has a large anomalous dimension γ , and then

$$\Lambda_{\rm EHC}^{-2} \longrightarrow \Lambda_{\rm EHC}^{-(2-\gamma)}$$

THE HOPE: Large γ appears near the sill of the conformal window \implies Choose N_4 , N_6 appropriately.

THE MODEL:

SU(4) gauge theory with massless Wilson fermions ($\kappa_r = \kappa_r^{(c)}$) — 4×sextet (Dirac) and 4×quartet THE (gauge) FLOW:

$$\frac{\partial B_{\mu}}{\partial t} = -\frac{\partial S_g}{\partial B_{\mu}}, \qquad B_{\mu}|_{t=0} = A_{\mu}$$
$$g^2(t) = Ct^2 \langle E(t) \rangle$$

FLOW as RG:

 $g^2(t)$ is the running coupling at scale $\mu^2=1/t,$ and

$$\beta(g^2) = -t\frac{dg^2}{dt}$$

DISCRETIZATIONS:

$$S_g = c_p S_p + c_r S_r , \qquad c_p + 8c_r = 1$$

Wilson flow: $c_r = 0$ Symanzik flow: $c_r = -1/12$ "C13" flow: $c_r = +1/12$

E(t) operators: Wilson, Symanzik, Clover

RAW FLOWS – Wilson vs. C13 flow

RAW β functions (slopes) – Wilson vs. C13 flow

Continuum limit: Take $a^2/t \to 0$ at fixed g^2 — same as $t/a^2 \to \infty$ \implies we need continuous $\beta(g^2)$ at arbitrary $t \dots$ Interpolations for $\beta(g^2)$ at arbitrary t

 \implies giving $\beta(g^2)$ at any g^2 as a fn of t. Now extrapolate $t/a^2 \rightarrow \infty \ldots$

CONTINUUM EXTRAPOLATION $a^2/t \rightarrow 0$

Consistent continuum limit: For given g^2 , demand that S and W extrapolations agree. (Clover op always has large slope in continuum extrap)

${\rm CONTINUUM\ LIMIT\ OF}\ \beta(g^2)\ \ --\ \ {\rm IRFP\ at}\ g^2\simeq 16$

Now for ANOMALOUS DIMENSIONS:

GAUGE FLOW — as before

FERMION FLOW

$$\frac{\partial \chi}{\partial t} = \Delta \chi , \qquad \chi|_{t=0} = \psi$$

FLOWED MESON CORRELATORS

$$C_X(x_4,t) = \langle X(0)X'(x_4,t) \rangle$$

source $X = \overline{\psi} \Gamma \psi$ (not flowed; Gaussian point-split) sink $X' = \overline{\chi} \Gamma \chi$ (flowed; point operator)

Correct for η of ψ field — divide by conserved current

$$R(x_4, t) = \frac{\langle X(0)X'(x_4, t)\rangle}{\langle V(0)V'(x_4, t)\rangle}$$

ANOMALOUS DIMENSION

$$\gamma_X = -2\frac{t}{R}\frac{\partial R}{\partial t}$$

 x_4 : look for plateau in x_4 -dependence

t: take limit $a^2/t \rightarrow 0$ at fixed g^2 , as for $\beta(g^2)$

 x_4 PLATEAU of $\gamma_P(x_4, t)$ — pseudoscalar operator in each fermion rep

Sextet rep

ANOMALOUS DIMENSION $\gamma_m(t)$ — raw data and extrapolation $a^2/t \rightarrow 0$

Recall fixed point at $g^2 \simeq 16$: γ_m is large in both reps

Finally, the CHIMERA (showing two of the three operators)

NOT large — trouble for partial compositeness, at least in this model. *Keep looking?*

Epilogue: HOW DO WE REACH SUCH STRONG COUPLINGS?

- 1. Improved action: clover + nHYP smearing (and dislocation suppression by new gauge term)
- 2. Comparison of different flows \Rightarrow C13 flow
- 3. Pauli–Villars fields
 - N_{PV} scalar fields with fermion action

$$S_{PV} = \Phi^{\dagger} (D_W + M) \Phi$$

with Ma = 1 (we choose $N_{PV} = 3 \times N_f$ for each fermion species)

- speeds up running of coupling at short distances $L \rightarrow a$ and decouples at $L \gg a$
 - \Rightarrow weakens bare coupling for given IR coupling
 - \Rightarrow allows strong IR coupling with smaller cutoff effects

Epilogue: THE CONFORMAL WINDOW

(from B. S. Kim, D. K. Hong and J. W. Lee, 2001.02690)