Using Gradient Flow to Renormalise Matrix Elements for B Meson Mixing and Lifetimes

Matthew Black

In collaboration with:
R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel

March 20, 2023

Universität Siegen

> B-meson mixing and lifetimes are measured experimentally to high precision
\Rightarrow Key observables for probing New Physics \Rightarrow high precision in theory needed!

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
> B-meson mixing and lifetimes are measured experimentally to high precision
$\boldsymbol{\bullet}$ Key observables for probing New Physics $\boldsymbol{\boldsymbol { \sigma }}$ high precision in theory needed!

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
Matthew Black
> B-meson mixing and lifetimes are measured experimentally to high precision
\Leftrightarrow Key observables for probing New Physics $\boldsymbol{\Rightarrow}$ high precision in theory needed!

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

> B-meson mixing and lifetimes are measured experimentally to high precision
\Rightarrow Key observables for probing New Physics \Rightarrow high precision in theory needed!

- For lifetimes and decay rates, we use the Heavy Quark Expansion

$$
\Gamma_{B_{q}}=\Gamma_{3}\left\langle\mathcal{O}_{D=3}\right\rangle+\Gamma_{5} \frac{\left\langle\mathcal{O}_{D=5}\right\rangle}{m_{b}^{2}}+\Gamma_{6} \frac{\left\langle\mathcal{O}_{D=6}\right\rangle}{m_{b}^{3}}+\ldots+16 \pi^{2}\left[\tilde{\Gamma}^{\frac{\left\langle\tilde{\mathcal{O}}_{D=6}\right\rangle}{m_{b}^{3}}}+\tilde{\Gamma}_{7} \frac{\left\langle\tilde{\mathcal{O}}_{D=7}\right\rangle}{m_{b}^{4}}+\ldots\right]
$$

> Factorise observables into \Rightarrow perturbative QCD contributions
\Rightarrow Non-Perturbative Matrix Elements

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- Four-quark $\Delta B=0$ and $\Delta B=2$ matrix elements can be determined from lattice QCD simulations
> $\Delta B=2$ well-studied by several groups \Rightarrow precision increasing, but some tension
$\Rightarrow \Delta K=2$ for Kaon mixing already studied with gradient flow [Suzuki et al. '20]
> $\Delta B=0 \Rightarrow$ exploratory studies from ~ 20 years ago + new developments for lifetime ratios
\Rightarrow contributions from disconnected diagrams
\Rightarrow mixing with lower dimension operators in renormalisation

Using GF to Renormalise

- Four-quark $\Delta B=0$ and $\Delta B=2$ matrix elements can be determined from lattice QCD simulations
> $\Delta B=2$ well-studied by several groups \Rightarrow precision increasing, but some tension
$\Leftrightarrow \Delta K=2$ for Kaon mixing already studied with gradient flow [Suzuki et al. '20]
> $\Delta B=0 \Rightarrow$ exploratory studies from ~ 20 years ago + new developments for lifetime ratios
[Lin, Detmold, Meinel '22]
\Rightarrow contributions from disconnected diagrams
\Rightarrow mixing with lower dimension operators in renormalisation

1. Verify procedure with $\Delta B=2$ matrix elements against other calculations
2. Pioneer connected $\Delta B=0$ matrix element calculation with gradient flow renormalisation scheme
3. Resolve disconnected contributions

Using GF to Renormalise Matrix Elements for B Mixing and Lifetimes

> Mass difference of neutral mesons $\Delta M_{q}(q=d, s)$ governed by $\Delta B=2$ four-quark operators

- Standard 'SUSY' operator basis

$$
\begin{array}{ll}
\mathcal{O}_{1}^{q}=\bar{b}^{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{\beta}, & \left\langle\mathcal{O}_{1}^{q}\right\rangle=\left\langle\bar{B}_{q}\right| \mathcal{O}_{1}^{q}\left|B_{q}\right\rangle=\frac{8}{3} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{1}^{q} \\
\mathcal{O}_{2}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta}\left(1-\gamma_{5}\right) q^{\beta}, & \left\langle\mathcal{O}_{2}^{q}\right\rangle=\left\langle\bar{B}_{q}\right| \mathcal{O}_{2}^{q}\left|B_{q}\right\rangle=\frac{-5 M_{B_{q}}^{2}}{3\left(m_{b}+m_{q}\right)^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{2}^{q}, \\
\mathcal{O}_{3}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\beta} \bar{b}^{\beta}\left(1-\gamma_{5}\right) q^{\alpha}, & \left\langle\mathcal{O}_{3}^{q}\right\rangle=\left\langle\bar{B}_{q}\right| \mathcal{O}_{3}^{q}\left|B_{q}\right\rangle=\frac{M_{B_{q}}^{2}}{3\left(m_{b}+m_{q}\right)^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{3}^{q}, \\
\mathcal{O}_{4}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta}\left(1+\gamma_{5}\right) q^{\beta}, & \left\langle\mathcal{O}_{4}^{q}\right\rangle=\left\langle\bar{B}_{q}\right| \mathcal{O}_{4}^{q}\left|B_{q}\right\rangle=\left[\frac{2 M_{B_{q}}^{2}}{\left(m_{b}+m_{q}\right)^{2}}+\frac{1}{3}\right] f_{B_{q}}^{2} M_{B_{q}}^{2} B_{4}^{q} \\
\mathcal{O}_{5}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\beta} \bar{b}^{\beta}\left(1+\gamma_{5}\right) q^{\alpha}, & \left\langle\mathcal{O}_{5}^{q}\right\rangle=\left\langle\bar{B}_{q}\right| \mathcal{O}_{5}^{q}\left|B_{q}\right\rangle=\left[\frac{2 M_{B_{q}}^{2}}{3\left(m_{b}+m_{q}\right)^{2}}+1\right] f_{B_{q}}^{2} M_{B_{q}}^{2} B_{5}^{q}
\end{array}
$$

> Matrix elements parameterised in terms of decay constant $f_{B_{q}}$ and bag parameters B_{i}^{q}

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- HPQCD and FNAL/MILC choose perturbative renormalisation + matching schemes
$>$ RBC/UKQCD set up a non-perturbative renormalisation (NPR) \Rightarrow transform operator basis

$$
\begin{aligned}
& \mathcal{Q}_{1}^{q}=\bar{b}^{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{\beta}, \\
& \mathcal{Q}_{2}^{q}=\bar{b}^{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta} \gamma_{\mu}\left(1+\gamma_{5}\right) q^{\beta}, \\
& \mathcal{Q}_{3}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta}\left(1+\gamma_{5}\right) q^{\beta}, \\
& \mathcal{Q}_{4}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta}\left(1-\gamma_{5}\right) q^{\beta}, \\
& \mathcal{Q}_{5}^{q}=\frac{1}{4} \bar{b}^{\alpha} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) q^{\alpha} \bar{b}^{\beta} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) q^{\beta}
\end{aligned} \quad\left(\begin{array}{c}
\mathcal{O}_{1}^{+} \\
\mathcal{O}_{2}^{+} \\
\mathcal{O}_{3}^{+} \\
\mathcal{O}_{4}^{+} \\
\mathcal{O}_{5}^{+}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathcal{Q}_{1}^{+} \\
\mathcal{Q}_{2}^{+} \\
\mathcal{Q}_{3}^{+} \\
\mathcal{Q}_{4}^{+} \\
\mathcal{Q}_{5}^{+}
\end{array}\right)
$$

- Advantages for both lattice calculation and the NPR procedure
> Only colour-singlet operators now appear
- We are only concerned with parity-even components which then can be transformed back to SUSY basis

Using GF to Renormalise Matrix Elements for B Mixing and Lifetimes

Current Status: $\Delta B=2$ Matrix Elements (Lattice)

Matrix elements are calculated directly from lattice simulations

$$
\left\langle\mathcal{O}_{i}^{q}\right\rangle \Rightarrow f_{B_{q}}^{2} B_{i}^{q} \Rightarrow B_{i}^{q}
$$

$>\left[\right.$ FLAG '21] reports on $\left\langle\mathcal{O}_{1}^{q}\right\rangle \Rightarrow$ tension between most recent $2+1$ and $2+1+1$ calculations:

$$
\begin{aligned}
N_{f}=2+1: & f_{B_{s}} \sqrt{\hat{B}_{1}^{s}}=274(8) \mathrm{MeV},[\text { FNAL/MILC '16] } \\
N_{f}=2+1+1: & f_{B_{s}} \sqrt{\hat{B}_{1}^{s}}=256.1(5.7) \mathrm{MeV}[\mathrm{HPQCD}
\end{aligned}
$$

$>\left\langle\mathcal{O}_{2-5}^{d, s}\right\rangle$ determined for $N_{f}=2\left[\right.$ ETM '13] and $N_{f}=2+1[$ FNAL/MILC '16]
\Rightarrow Work in progress by RBC/UKQCD + JLQCD at $N_{f}=2+1$ [Boyle et al. '18], [Boyle et al. '21]
\Rightarrow we use same setup as RBC/UKQCD for comparisons later

- First lattice calculations for $\operatorname{dim}-7\left\langle R_{2,3}^{q}\right\rangle$ and $\left\langle\widetilde{R}_{2,3}\right\rangle$ from [HPQCD '19B]
\Rightarrow Suffers from large uncertainties e.g. from matching to continuum regularisation scheme

Using GF to Renormalise Matrix Elements for B Mixing and Lifetimes

> Formulated by [Lüscher '10], [Lüscher '13] \Rightarrow scale setting, RG β-function, renormalisation...

- Introduce auxiliary dimension, flow time t as a way to regularise the UV
- Extend gauge and fermion fields in flow time and express dependence with first-order differential equations:

$$
\begin{aligned}
\partial_{t} B_{\mu}(t, x) & =\mathcal{D}_{\nu}(t) G_{\nu \mu}(t, x), & B_{\mu}(0, x) & =A_{\mu}(x), \\
\partial_{t} \chi(t, x) & =\mathcal{D}^{2}(t) \chi(t, x), & \chi(0, x) & =q(x)
\end{aligned}
$$

> Re-express effective Hamiltonian in terms of 'flowed' operators:

$$
\mathcal{H}_{\text {eff }}=\sum_{n} C_{n} \mathcal{O}_{n}=\sum_{n} \tilde{C}_{n}(t) \tilde{\mathcal{O}}_{n}(t)
$$

- Relate to regular operators in 'small-flow-time expansion':

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

For a set of lattice ensembles with varying bare parameters

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

For a set of lattice ensembles with varying bare parameters

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
> We will consider RBC/UKQCD's $2+1$ flavour DWF + Iwasaki gauge action ensembles

	L	T	a^{-1} / GeV	$a m_{l}^{\text {sea }}$	$a m_{s}^{\text {sea }}$	M_{π} / MeV	srcs $\times \mathrm{N}_{\text {conf }}$
C1	24	64	1.785	0.005	0.040	340	32×101
C2	24	64	1.785	0.010	0.040	433	
M1	32	64	2.383	0.004	0.030	302	
M2	32	64	2.383	0.006	0.030	362	
M3	32	64	2.383	0.008	0.030	411	
F1S	48	96	2.785	0.002144	0.02144	267	

[Allton et al. '08] [Aoki et al. '10]
[Blum et al. '14] [Boyle et al. '17]
> Exploratory simulations only on C1 with single set of valence parameters so far

Using GF to Renormalise Matrix Elements for B Mixing and Lifetimes

- We will consider RBC/UKQCD's $2+1$ flavour DWF + Iwasaki gauge action ensembles
- Fully-relativistic DWF for all valence quarks [Shamir '93] [Iwasaki, Yoshie '84] [lwasaki '85]

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- We will consider RBC/UKQCD's $2+1$ flavour DWF + Iwasaki gauge action ensembles
- Fully-relativistic DWF for all valence quarks [Shamir '93] [lwasaki, Yoshie '84] [lwasaki '85]

Fully-relativistic DWF for all valence quarks

- For strange quarks tuned to physical value, $a m_{q} \ll 1 \checkmark$
- For heavy b quarks, $a m_{q}>1 \Rightarrow$ large discretisation effects \boldsymbol{X}
> To simulate b quarks on current lattices:

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- We will consider RBC/UKQCD's $2+1$ flavour DWF + Iwasaki gauge action ensembles
- Fully-relativistic DWF for all valence quarks [Shamir '93] [lwasaki, Yoshie '84] [lwasaki '85]
- For strange quarks tuned to physical value, $a m_{q} \ll 1$
\rightarrow For heavy b quarks, $a m_{q}>1 \Rightarrow$ large discretisation effects X
- To simulate b quarks on current lattices:
\Leftrightarrow Extrapolate from multiple charm-like masses
$\Rightarrow a m_{h} \sim 0.3-0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- We will consider RBC/UKQCD's $2+1$ flavour DWF + Iwasaki gauge action ensembles
- Fully-relativistic DWF for all valence quarks [Shamir '93] [Iwasaki, Yoshie '84] [Iwasaki '85]
- For strange quarks tuned to physical value, $a m_{q} \ll 1$
> For heavy b quarks, $a m_{q}>1 \Rightarrow$ large discretisation effects \boldsymbol{X}
> To simulate b quarks on current lattices:
\Rightarrow Extrapolate from multiple charm-like masses
$\Rightarrow a m_{h} \sim 0.3-0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]
- Z2 wall sources for all quark propagators [Boyle et al. '08]
\Rightarrow Sources for strange propagators are also Gaussian smeared [Allton et al. '93]
- Calculate non-eye weak 3-point functions

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

- We will consider RBC/UKQCD's $2+1$ flavour DWF + Iwasaki gauge action ensembles
- Fully-relativistic DWF for all valence quarks
> For strange quarks tuned to physical value, $a m_{q} \ll 1$
> For heavy b quarks, $a m_{q}>1 \Rightarrow$ large discretisation effects \boldsymbol{X}
> To simulate b quarks on current lattices:
\Rightarrow Extrapolate from multiple charm-like masses

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
> Valence simulations carried out using Hadrons [Portelli et al. '22]
> Gauge Flow
\Leftrightarrow Runge-Kutta scheme for small step size ϵ
\Leftrightarrow Pre-existing implementation of Wilson action gauge flow in Grid [Boyle et al. '15]
\Leftrightarrow Re-implemented into Hadrons also with Symanzik and Zeuthen actions

- Fermion Flow
\Leftrightarrow Uses gauge flow implementation with Wilson action
\Rightarrow Evolve propagators with 4D Laplacian in Runge-Kutta scheme
- Gauge and fermion fields evolved with $\epsilon=0.01$
> Measurements taken every 10 steps for $t / a^{2}<5$

Using GF to Renormalise Matrix Elements for B Mixing and Lifetimes

> We want to find suitable window in flow time
\Rightarrow May be different for different quantities
> Look at different quantities and their behaviour with the flow
\Rightarrow 2-point functions \Rightarrow effective mass, decay amplitude

$$
M^{\mathrm{eff}}(t)=\cosh ^{-1}\left(\frac{C_{P P}(t)+C_{P P}(t+2)}{2 C_{P P}(t+1)}\right) \quad \Phi^{\mathrm{eff}}(t)=\sqrt{2} \frac{\left|C_{A P}(t)\right|}{\sqrt{C_{P P}(t) e^{-M t}}}
$$

\Rightarrow 3-point functions
\Rightarrow 3-point/2-point ratios \Rightarrow approximate to Bag parameters

$$
R_{1}=\frac{C_{\mathcal{O}_{1}}^{3 \mathrm{pt}}(t, \Delta t)}{C_{A P}^{2 \mathrm{pt}}(t) C_{P A}^{2 \mathrm{pt}}(\Delta T-t)} \quad R_{i}=\frac{C_{\mathcal{O}_{i}}^{3 \mathrm{pt}}(t, \Delta t)}{C_{P P}^{2 \mathrm{pt}}(t) C_{P P}^{2 \mathrm{pt}}(\Delta T-t)}, i=2 \rightarrow 5
$$

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- Flow acts on effective mass as sink smearing
> Excited states suppressed at earlier time slices
- Ground state effective mass should not change
- Large flow time will destroy the ground state

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

- Expect similar behaviour to effective mass
- Value of ground state decay amplitude will change

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
Matthew Black

- Ground state should change but how?
> At large flow time, smearing of sources overlaps with 3pt ground state
> Different ΔT will have different windows

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
Matthew Black

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise
 Matrix Elements for B Mixing and Lifetimes

Using GF to Renormalise

Matrix Elements for B Mixing and Lifetimes
Matthew Black
$>\Delta B=0$ four-quark matrix elements are strongly-desired quantities needed in predictions of B meson lifetimes
\Leftrightarrow Standard renormalisation introduces mixing with operators of lower mass dimension
\Leftrightarrow We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure
> Testing method first with well-studied $\Delta B=2$ matrix elements for B meson mixing and decay constants

- Implemented the fermionic flow in Hadrons, plus gauge flow for Symanzik and Zeuthen actions
> Shown first simulations for $\Delta B=2$

Next Steps:

> Simulate at multiple heavy quark masses on all ensembles

- Extrapolate to physical heavy mesons + continuum limits at each t in 'small-flow-time' region
> Combine with perturbative matching matrix \Rightarrow final results at $t=0$ in $\overline{\mathrm{MS}}$
> Repeat analysis for quark-line connected $\Delta B=0$ matrix elements
Consider disconnected contributions

Using GF to Renormalise Matrix Elements for B Mixing and Lifetimes

- For lifetimes, the dimension-6 $\Delta B=0$ operators are:

$$
\begin{array}{ll}
Q_{1}^{q}=\bar{b}^{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) q^{\alpha} \bar{q}^{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) b^{\beta}, & \left\langle Q_{1}^{q}\right\rangle=\left\langle B_{q}\right| Q_{1}^{q}\left|B_{q}\right\rangle=f_{B_{q}}^{2} M_{B_{q}}^{2} \mathcal{B}_{1}^{q}, \\
Q_{2}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\alpha} \bar{q}^{\beta}\left(1-\gamma_{5}\right) b^{\beta}, & \left\langle Q_{2}^{q}\right\rangle=\left\langle B_{q}\right| Q_{2}^{q}\left|B_{q}\right\rangle=\frac{M_{B_{q}}^{2}}{\left(m_{b}+m_{q}\right)^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \mathcal{B}_{2}^{q}, \\
T_{1}^{q}=\bar{b}^{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right)\left(T^{a}\right)^{\alpha \beta} q^{\beta} \bar{q}^{\gamma} \gamma_{\mu}\left(1-\gamma_{5}\right)\left(T^{a}\right)^{\gamma \delta} b^{\delta}, & \left\langle T_{1}^{q}\right\rangle=\left\langle B_{q}\right| T_{1}^{q}\left|B_{q}\right\rangle=f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{1}^{q} \\
T_{2}^{q}=\bar{b}^{\alpha}\left(1-\gamma_{5}\right)\left(T^{a}\right)^{\alpha \beta} q^{\beta} \bar{q}^{\gamma}\left(1-\gamma_{5}\right)\left(T^{a}\right)^{\gamma \delta} b^{\delta}, & \left\langle T_{2}^{q}\right\rangle=\left\langle B_{q}\right| T_{2}^{q}\left|B_{q}\right\rangle=\frac{M_{B_{q}}^{2}}{\left(m_{b}+m_{q}\right)^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{2}^{q}
\end{array}
$$

> For simplicity of computation, we again want these all to be colour-singlet operators:

$$
\begin{aligned}
\mathcal{Q}_{1} & =\bar{b}^{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{\alpha} \bar{q}^{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) b^{\beta} \\
\mathcal{Q}_{2} & \left.=\bar{b}^{\alpha}\left(1-\gamma_{5}\right) q^{\alpha} \bar{q}^{\beta}\left(1+\gamma_{5}\right) b^{\beta}\right) \\
\tau_{1} & =\bar{b}^{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b^{\alpha} \bar{q}^{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{\beta} \\
\tau_{2} & =\bar{b}^{\alpha} \gamma_{\mu}\left(1+\gamma_{5}\right) b^{\alpha} \bar{q}^{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{\beta}
\end{aligned} \quad\left(\begin{array}{c}
Q_{1}^{+} \\
Q_{2}^{+} \\
T_{1}^{+} \\
T_{2}^{+}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & 1 & 0 \\
0 \\
-\frac{1}{2 N_{c}} & 0 & -\frac{1}{2} \\
0 & -\frac{1}{2 N_{c}} & 0 \\
\frac{1}{4}
\end{array}\right)\left(\begin{array}{c}
\mathcal{Q}_{1}^{+} \\
\mathcal{Q}_{2}^{+} \\
\tau_{1}^{+} \\
\tau_{2}^{+}
\end{array}\right)
$$

Using GF to Renormalise

