The Chromomagnetic Dipole Operator in the Gradient Flow

Janosch Borgulat

RWTH Aachen University
In collaboration with Robert Harlander, Andrea Shindler, Matthew Rizik

The Gradient Flow in QCD and other Strongly Coupled Field Theories
March 20, 2023

Introduction

Relavance

- CP-Violation required for baryon asymmetry
- Neutron EDM violates P- and T-symmetry \Rightarrow CP-Violation

Current status

■ Experimental bound on neutron EDM: [Abel et al. 2020]

$$
d_{n}=\left(0.0 \pm 1.1_{\text {stat }} \pm 0.2_{\text {sys }}\right) \times 10^{-26} \mathrm{ecm}
$$

Future experiments (PSI, TRIUMF, ...) may improve sensitivity even further [nEDM collaboration 2021; TUCAN collaboration 2022]

- SM estimates from CKM matrix: [Seng 2015]

$$
d_{n} \sim 10^{-32} \mathrm{ecm}
$$

\Rightarrow Large window for BSM contributions [Gavela et al. 1994]

Describe BSM effects with effective theory:

$$
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{SU}(\mathrm{~N})}+\sum_{n \geq 5} \frac{C_{n}}{\Lambda^{n}} \mathcal{O}^{(n)}
$$

- CP-odd dimension-five operator:

$$
\mathcal{O}_{\mathrm{CE}}=\bar{\psi} \sigma_{\mu \nu} \gamma_{5} G_{\mu \nu} \psi
$$

- γ_{5} complicated in dimensional regularization \Rightarrow CP-even analogue:

$$
\mathcal{O}_{\mathrm{CM}}=\bar{\psi} \sigma_{\mu \nu} G_{\mu \nu} \psi
$$

$\mathcal{O}_{\text {CM }}$ relevant on its own: [D'Ambrosio, Isidori, Martinelli 1999]

- Strangeness-changing CM operators contribute to CP-violating kaon decays
- Neutral kaon mixing

Applying the Gradient Flow

Lattice calculations \Rightarrow Flowed operators:

■ Flow equations + initial conditions [Lüscher 2010; Lüscher 2013; Narayanan, Neuberger 2006]
■ 4+1-dimensional field theory [Lüscher, Weisz 2011]

- Replace fields by flowed fields:

$$
\mathcal{O}_{\mathrm{CM}}(\bar{\psi}, \psi, A) \rightarrow \tilde{\mathcal{O}}_{\mathrm{CM}}(\bar{\chi}(t), \chi(t), B(t))
$$

Relate to physical operators \Rightarrow Small- t expansion (SFTE): [Lüscher, Weisz 2011]

$$
\tilde{\mathcal{O}}_{\mathrm{CM}}(t, x)=\sum_{n} c_{n}(t) \mathcal{O}_{n}(x)+\ldots
$$

- $\tilde{\mathcal{O}}_{\mathrm{CM}}$ gets contributions from operators of smaller mass dimension:

$$
c_{n}(t) \sim \log t, \quad c_{n}(t) \sim \frac{1}{t^{n}}
$$

- Other contributions vanish as $t \rightarrow 0$

$\tilde{\mathcal{O}}_{\text {CM }}$ mixes with

- 6 dimension-5 operators:

$$
\begin{array}{ll}
\mathcal{O}_{\mathrm{CM}}=\bar{\psi} \sigma_{\mu \nu} G_{\mu \nu} \psi, & \mathcal{O}_{\mathrm{m}^{5}}=m^{5}, \\
\mathcal{O}_{\mathrm{mD}}=m \bar{\psi} \not \square \psi, & \mathcal{O}_{\mathrm{mG}}=m G_{\mu \nu} G_{\mu \nu}, \\
\mathcal{O}_{\mathrm{mE}}=m \bar{\psi}(D+m) \psi, & \mathcal{O}_{\mathrm{DE}}=\bar{\psi} \not D(\not D+m) \psi
\end{array}
$$

- 2 dimension-3 operators:

$$
\mathcal{O}_{S}=\bar{\psi} \psi, \quad \mathcal{O}_{\mathrm{m}^{3}}=m^{3}
$$

- 1 dimension-1 operator:

$$
\mathcal{O}_{\mathrm{m}}=m
$$

$\tilde{\mathcal{O}}_{\text {CM }}$ mixes with

- 6 dimension-5 operators:

$$
\begin{array}{ll}
\mathcal{O}_{\mathrm{CM}}=\bar{\psi} \sigma_{\mu \nu} G_{\mu \nu} \psi, & \mathcal{O}_{\mathrm{m}^{5}}=m^{5}, \\
\mathcal{O}_{\mathrm{mD}}=m \bar{\psi} \not \square \psi, & \mathcal{O}_{\mathrm{mG}}=m G_{\mu \nu} G_{\mu \nu}, \\
\mathcal{O}_{\mathrm{mE}}=m \bar{\psi}(D+m) \psi, & \mathcal{O}_{\mathrm{DE}}=\bar{\psi} \not D(\not D+m) \psi
\end{array}
$$

- 2 dimension-3 operators:

$$
\mathcal{O}_{S}=\bar{\psi} \psi, \quad \mathcal{O}_{\mathrm{m}^{3}}=m^{3}
$$

- 1 dimension-1 operator:

$$
\mathcal{O}_{\mathrm{m}}=m
$$

$\tilde{\mathcal{O}}_{\text {CM }}$ mixes with

- 6 dimension-5 operators:

$$
\begin{array}{rlrl}
\mathcal{O}_{\mathrm{CM}} & =\bar{\psi} \sigma_{\mu \nu} G_{\mu \nu} \psi, & \mathcal{O}_{\mathrm{m}^{5}}=m^{5} \\
\mathcal{O}_{\mathrm{mD}} & =m \bar{\psi} \not \square \psi, & \mathcal{O}_{\mathrm{mG}}=m G_{\mu \nu} G_{\mu \nu}, \\
\mathcal{O}_{\mathrm{mE}} & =m \bar{\psi}(\not D+m) \psi, & & \mathcal{O}_{\mathrm{DE}}=\bar{\psi} \not D(\not D+m) \psi
\end{array}
$$

- 2 dimension-3 operators:

$$
\mathcal{O}_{S}=\bar{\psi} \psi, \quad \mathcal{O}_{\mathrm{m}^{3}}=m^{3}
$$

- 1 dimension-1 operator:

$$
\mathcal{O}_{\mathrm{m}}=m
$$

$\tilde{\mathcal{O}}_{\text {CM }}$ mixes with

- 6 dimension-5 operators:

$$
\begin{array}{rlrl}
\mathcal{O}_{\mathrm{CM}} & =\bar{\psi} \sigma_{\mu \nu} G_{\mu \nu} \psi, & \mathcal{O}_{\mathrm{m}^{5}}=m^{5} \\
\mathcal{O}_{\mathrm{mD}} & =m \bar{\psi} \not D \psi, & \mathcal{O}_{\mathrm{mG}}=m G_{\mu \nu} G_{\mu \nu}, \\
\mathcal{O}_{\mathrm{mE}} & =m \bar{\psi}(\not D+m) \psi, & & \mathcal{O}_{\mathrm{DE}}=\bar{\psi} \not D(D D+m) \psi
\end{array}
$$

- 2 dimension-3 operators:

$$
\mathcal{O}_{S}=\bar{\psi} \psi, \quad \mathcal{O}_{\mathrm{m}^{3}}=m^{3}
$$

- 1 dimension-1 operator:

$$
\mathcal{O}_{\mathrm{m}}=m
$$

Invert $\mathrm{SFTE} \Rightarrow$ Need full matching matrix:

$$
\tilde{\mathcal{O}}_{i}(t, x)=\sum_{j} \zeta_{i j}(t) \mathcal{O}_{j}(x)
$$

Now express regular in terms of flowed operators:

$$
\mathcal{O}_{\mathrm{CM}}(x)=\sum_{i} \zeta_{\mathrm{CM}, i}^{-1}(t) \tilde{\mathcal{O}}_{i}(t, x)
$$

How do we obtain $\zeta_{i j}$?

Method of Projectors

Method of Projectors [Gorishny, Larin, Tkachov 1983; Gorishny, Larin 1987]

- Define orthonormal set of projectors P_{k} such that

$$
P_{k}\left[\mathcal{O}_{j}\right]=\delta_{k j}
$$

- Apply on both sides of the SFTE:

$$
P_{k}\left[\tilde{\mathcal{O}}_{i}(t)\right]=\sum_{j} \zeta_{i j}(t) \underbrace{P_{k}\left[\mathcal{O}_{j}\right]}_{\delta_{k j}}=\zeta_{i k}(t)
$$

- How to define the P_{k} ?

Example: P_{mD}

■ Find a simple Feynman rule of $\mathcal{O}_{\mathrm{mD}}=m \bar{\psi} \not D \psi$:

[All diagrams created with FeynGame]
■ Take expectation value with corresponding external states:

$$
P_{\mathrm{mD}}[X]=\ldots\langle 0| X\left|\bar{\psi}_{i}(p) \psi_{j}(k)\right\rangle+\ldots
$$

\Rightarrow tree-level + loop diagrams

- Apply derivatives, set all massive scales except t to 0

■ If X unflowed, loops become massless tadpoles and vanish

Only need tree level diagram (i.e., the Feyman rule):

Now project ...

- ... in Dirac space: $\operatorname{Tr} \gamma_{\mu} \mathscr{\phi}=4 p_{\mu}$
- ... onto momenta and mass: $\frac{\partial}{\partial p_{\mu}} p_{\mu}=D=4-2 \epsilon, \quad \frac{\partial}{\partial m} m=1$

■ ... in color space: $\delta_{i j} \delta_{i j}=N_{C}$

$$
\Rightarrow \quad P_{\mathrm{mD}}[X]=\left.\frac{-\mathrm{i} \delta_{i j}}{4 D N_{C}} \frac{\partial^{2}}{\partial m \partial p_{\mu}} \operatorname{Tr} \gamma_{\mu}\langle 0| X\left|\bar{\psi}_{i}(p) \psi_{j}(k)\right\rangle\right|_{p, k, m_{B}=0}+\ldots
$$

Apply to flowed operators:

$$
\left.P_{\mathrm{mD}}\left[\tilde{\mathcal{O}}_{\mathrm{CM}}\right] \ni \frac{-\mathrm{i} \delta_{i j}}{4 D N_{C}} \frac{\partial^{2}}{\partial m \partial p_{\mu}} \operatorname{Tr} \gamma_{\mu}\binom{j, k \rightarrow \infty}{i, p \rightarrow \sigma_{0}^{\infty}}\right|_{p, k, m_{B}=0}
$$

\Rightarrow Left with scalar integrals depending only on t , e.g.

$$
P_{\mathrm{mD}}\left[\tilde{\mathcal{O}}_{\mathrm{CM}}\right] \stackrel{\mathrm{NNLO}}{\ni} t \int_{0}^{1} d u u \int_{p, k} \frac{e^{\left[2 u p^{2}+2 k^{2}\right] t}}{p^{4} k^{2}}(p+k)^{2}
$$

Then: integrals $\xrightarrow{\text { IBP relations }}$ master integrals $\xrightarrow{\text { evaluation }}$ result

Plan:

■ Find projector for every operator: $\mathcal{O}_{i} \rightarrow P_{i}$

- Ensure that $P_{i}\left[\mathcal{O}_{j}\right]=\delta_{i j}$

■ Calculate $\zeta_{i j}=P_{j}\left[\tilde{\mathcal{O}}_{i}\right]$

Problem:

■ Equations of Motion (EoM) \Rightarrow Relations between operators

- Basis not linearly independent

■ Have to get rid of redundant operators

Equations of Motion

Equations of Motion:

$$
\begin{aligned}
& \mathcal{O}_{\mathrm{mE}}=m \bar{\psi}(\not D+m) \psi=\mathcal{O}_{\mathrm{mD}}+\underbrace{m^{2} \bar{\psi} \psi}_{\mathcal{O}_{\mathrm{m}^{2} \mathrm{~S}}}=0, \\
& \mathcal{O}_{\mathrm{DE}}=\bar{\psi} \not D(\not D+m) \psi=\underbrace{\bar{\psi} D^{2} \psi}_{\mathcal{O}_{\mathrm{D}^{2}}}-\frac{i}{2} \mathcal{O}_{\mathrm{CM}}+\mathcal{O}_{\mathrm{mD}}=0 .
\end{aligned}
$$

SFTE coefficients ill-defined on-shell: [Harlander, Kluth, Lange 2019]

$$
\begin{aligned}
\tilde{\mathcal{O}}_{\mathrm{CM}} & =c_{\mathrm{m}^{2} \mathrm{~S}} \mathcal{O}_{\mathrm{m}^{2} \mathrm{~S}}+c_{\mathrm{mD}} \mathcal{O}_{\mathrm{mD}}+\ldots \\
& =\left(c_{\mathrm{m}^{2} \mathrm{~S}}-c_{\mathrm{mD}}\right) \mathcal{O}_{\mathrm{m}^{2} \mathrm{~S}}+\ldots \\
& =\left(\left(c_{\mathrm{m}^{2} \mathrm{~S}}^{\prime}+\frac{1}{\epsilon}\right)-\left(c_{\mathrm{mD}}^{\prime}+\frac{1}{\epsilon}\right)\right) \mathcal{O}_{\mathrm{m}^{2} \mathrm{~S}}+\ldots
\end{aligned}
$$

\Rightarrow Remove EoM-redundant operators from the basis

This affects P_{CM} and P_{mD} :

- Projectors can still project on EoM operators
- With

$$
P_{\mathrm{mD}}^{\prime}[X]=\left.\frac{-\mathrm{i} \delta_{i j}}{4 D N_{C}} \frac{\partial^{2}}{\partial m \partial p_{\mu}} \operatorname{Tr} \gamma_{\mu}\langle 0| X\left|\bar{\psi}_{i}(p) \psi_{j}(k)\right\rangle\right|_{p, k, m_{B}=0}
$$

we get

$$
\begin{gathered}
P_{\mathrm{mD}}^{\prime}[\bar{\psi} \not D(\not D+m) \psi]=1, \quad P_{\mathrm{mD}}^{\prime}[m \bar{\psi}(\not D+m) \psi]=1, \\
\Rightarrow \quad P_{\mathrm{mD}}:=P_{\mathrm{mD}}^{\prime}-P_{\mathrm{m}^{2} \mathrm{~S}}-P_{\mathrm{D}^{2}}
\end{gathered}
$$

Analogously:

$$
P_{\mathrm{CM}}^{\prime}[\bar{\psi} \not \subset(\not D+m) \psi]=-\frac{\mathrm{i}}{2} \quad \Rightarrow \quad P_{\mathrm{CM}}=P_{\mathrm{CM}}^{\prime}+\frac{\mathrm{i}}{2} P_{\mathrm{D}^{2}}
$$

Automation

There is much to calculate at NNLO:

Known (4-dim. subset \rightarrow check) [Harlander, Lange, Neumann 2020], New

	P_{m}	$P_{\mathrm{m}^{3}}$	P_{S}	$P_{\mathrm{m}^{5}}$	P_{mD}	P_{mG}	P_{CM}
$\tilde{\mathcal{O}}_{\mathrm{S}}$	S_{m} / t	$S_{\mathrm{m}^{3}}$	S_{S}	$\mathcal{O}(t)$	$\mathcal{O}(t)$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
$\tilde{\mathcal{O}}_{\mathrm{mD}}$	D_{m} / t^{2}	$D_{\mathrm{m}^{3}} / t$	$\mathcal{O}(\mathrm{~m})$	$D_{\mathrm{m}^{5}}$	D_{mD}	D_{mG}	$\mathcal{O}(\mathrm{m})$
$\tilde{\mathcal{O}}_{\mathrm{mG}}$	G_{m} / t^{2}	$G_{\mathrm{m}^{3}} / t$	$\mathcal{O}(\mathrm{~m})$	$G_{\mathrm{m}^{5}}$	G_{mD}	G_{mG}	$\mathcal{O}(m)$
$\tilde{\mathcal{O}}_{\mathrm{CM}}$	C_{m} / t^{2}	$C_{\mathrm{m}^{3}} / t$	C_{S} / t	$C_{\mathrm{m}^{5}}$	C_{mD}	C_{mG}	C_{CM}

Many diagrams:
■ $C_{\mathrm{CM}}: 3375\left(P_{\mathrm{CM}}\right)+3375\left(P_{\mathrm{D}^{2}}\right)$
■ $C_{\mathrm{mD}}: 226\left(P_{\mathrm{mD}}\right)+226\left(P_{\mathrm{m}^{2} \mathrm{~S}}\right)+226\left(P_{\mathrm{D}^{2}}\right)$
\Rightarrow Automation with q2e-exp

Automatic computation with q2e-exp:

■ qgraf: Graphical rules [Nogueira 1991]
■ q2e: Abstract rules [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
■ exp: Topology, momentum conservation
[Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
■ form: Feynman rules, expansion, integral identification [Vermaseren 1991]

Integral reduction:

- Generate IBP relations
[Tkachov 1981; Chetyrkin, Tkachov 1981; Artz, Harlander, Lange, Neumann, Prausa 2019]
■ Reduce to master integrals with kira+FireFly [Maierhöfer, Usovitsch, Uwer 2018; Klappert,
Lange, Maierhöfer, Usovitsch 2021; Klappert, Lange 2020; Klappert, Klein, Lange 2021]
■ Evaluate master integrals analytically or with pySecDec [Borowka, Heinrich et all] $]_{\bar{\equiv}}$

Renormalization:

- Renormalize unflowed operators:

$$
\mathcal{O}_{i}=Z_{i j} \mathcal{O}_{j}^{R}
$$

■ Insert into SFTE:

$$
\tilde{\mathcal{O}}(t)=\zeta(t) \cdot \mathcal{O}=\zeta(t) Z^{-1} \cdot Z \mathcal{O}
$$

- Renormalized SFTE matrix:

$$
\zeta^{R}(t)=\zeta(t) Z^{-1}
$$

Check Z:
■ Z known [Spiridonov 1984; Chetyrkin, Spiridonov 1988; Gorbahn, Haisch, Misiak 2005]

Results for the massless case:

[Mereghetti, Monahan, Rizik, Shindler, Stoffer 2022; JB, Harlander, Rizik, Shindler 2022]
Single-flavor massless QCD, MS + ringed fermions, $a_{s}=\frac{\alpha_{s}}{\pi}$, $I_{\mu t}=\log \left(8 \pi \mu^{2} t\right)$

$$
\begin{aligned}
C_{\mathrm{CM}}=1 & +a_{s}\left(-4.023+0.166 I_{\mu t}\right) \\
& +a_{s}^{2}\left(-11.611-10.147 I_{\mu t}+0.229 I_{\mu t}^{2}\right) \\
C_{S} / \mathrm{i}=- & 2 a_{s}+a_{s}^{2}\left(6.136+3.167 I_{\mu t}\right) \\
S_{S}=1 & +a_{S}\left(-2.690-I_{\mu t}\right)+a_{s}^{2}\left(-4.546-8.328 I_{\mu t}-0.792 I_{\mu t}^{2}\right)
\end{aligned}
$$

Full NNLO massive case in preparation

Outlook：

■ Full NNLO massive case
－Projections onto dimension－4 times mass operators \rightarrow 2－loop
－NNLO VEVs \rightarrow 3－loop
－Massless case ready for combination with BSM Wilson coefficients
－Apply the same procedure to $\mathcal{O}_{\mathrm{CE}}=\bar{\psi} \gamma_{5} \sigma_{\mu \nu} G_{\mu \nu} \psi$
\Rightarrow Neutron EDM

