

Λ -parameter of SU(3) Yang-Mills theory from the continuous β-function

Curtis Taylor Peterson In collaboration with Anna Hasenfratz, Jake van Sickle, and Oliver Witzel arXiv:2303.00704

The renormalization group (RG) β -function

* The RG beta function describes the dependence of renormalized coupling $g^2(\mu)$ on some energy scale μ^2

 $\beta(g^2) \equiv \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} g^2(\mu)$

 Solution yields the famous Λ-parameter from dimensional transmutation

$$\Lambda^2/\mu^2 \sim \exp\left[-\int^{g^2(\mu)} \mathrm{d}x \frac{1}{\beta(x)}\right]$$

Requires connection to low-energy hadronic scale

 $\implies \text{Non-perturbative determination} \\ \text{of } \beta \text{-function is essential}$

RG β -function on the lattice

Gradient flow (GF) is a continuous smearing operation

- Describes a real-space RG transformation in infinite volume when combined with appropriately-defined coarse graining step
- Define a renormalized running coupling $(\mu^2 \propto 1/8t)^*$

 $g^2_{\rm GF}(t;g^2_0)\equiv \mathcal{N}\langle t^2 E(t)\rangle$

> Describes flow along renormalized trajectory with corresponding β -function

$$\beta_{\rm GF}(t;g_0^2) = -t\frac{\mathrm{d}}{\mathrm{d}t}g_{\rm GF}^2(t;g_0^2)$$

 $^*\mathcal{N}=128\pi^2/3(N^2-1)$ chosen such that the GF coupling matches $\overline{\mathrm{MS}}$ at tree level

[Lüscher, M., JHEP 08 (2010) 71] 🗞

$$\frac{\mathrm{d}}{\mathrm{d}t} V_t(x,\mu) = -g_0^2(\partial_{x,\mu}\mathcal{S}_F)V_t(x,\mu)$$
$$V_0(x,\mu) = U(x,\mu)$$

A parameter of the SU(3) Yang-Mills theory from the continuous β function

Anna Hasenfratz,^{1,*} Curtis T. Peterson,^{1,†} Jake van Sickle,¹ and Oliver Witzel^{2,‡} ¹Department of Physics, University of Colorado, Boulder, Colorado 80309, USA ²Center for Particle Physics Siegen, Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany

[Hasenfratz, A., Peterson, C.T., Witzel, O., van Sickle, J., arXiv:2303.00704, sub. to PRD] 🗞

The continuous β -function method (CBFM)

- 1. Calculate GF coupling & β -function
 - a. Tree-level normalization (tln) factor corrects for gauge zero-modes and tree-level cutoff effects

$$g_{
m GF}^2ig(t;L,g_0^2ig) = \mathcal{N} \; rac{1}{C(t,L)} ig\langle t^2 E(t)
angle$$

- b. d/dt discretized with 5-point stencil $\beta_{\rm GF}(t;L,g_0^2) = -t \frac{d}{dt} g_{\rm GF}^2(t;L,g_0^2)$
- 2. Infinite volume extrapolation $(a/L)^4 \rightarrow 0$ at fixed $\beta_b \equiv 6/g_0^2$ and t/a^2
- 3. Interpolate $\beta_{\rm GF}(t;g_0^2)$ in $g_{\rm GF}^2(t;g_0^2)$ at fixed t/a^2
- 4. Continuum extrapolation $a^2/t \rightarrow 0$ at fixed $g^2_{
 m GF}$

[Fodor, Z., Holland, K., Kuti, J., Mondal, S., Nogradi, D., *JHEP* (2014) 018] **%**

> [Hasenfratz, A., Witzel, O., PRD 101, 034514 (2019)] 🗞

[Kuti, J., Fodor, Z., Holland, K., Wong, K. H. PoS, LATTICE2021 (**2021**) 321] 🗞

[Hasenfratz, A., Peterson, C.T., Witzel, O., van Sickle, J., arXiv:2303.00704, sub. to PRD] 🗞

Simulation details

- Simulations are performed with a pure gauge Symanzik action using GRID S
 - ► $4.3 \le \beta_b \le 7.5$ (15 overall)
 - Symmetric volumes with periodic boundary conditions in all four directions
 - $\bullet \quad L/a = 20, 24, 28, 32, 48$
- Gradient flow performed with Wilson flow and Zeuthen flow using QLUA S
 - Flow (F) and operator (O) combinations abbreviated
 - FO for no tln (e.g. ZS)
 - nFO with tln (e.g. nZS)

Flowed Polyakov loop

Infinite volume extrapolation (weak coupling)

Extrapolate both $g_{GF}^2(t; L, g_0^2)$ and $\beta_{GF}(t; L, g_0^2)$ linearly in $(a/L)^4 \rightarrow 0$ at fixed β_b and t/a^2

 $24 \leq L/a \leq 48$ for $\beta_b \geq 5.5$

Infinite volume extrapolation (strong coupling)

CRFP

Confinement introduces infrared scale μ_{conf} \implies Finite-volume effects suppressed

 $20 \leq L/a \leq 32$ for $\beta_b \leq 4.9$

T

0000

Tree-level normalization (weak coupling)

Tree-level normalization (strong coupling)

G

Interpolation

- Must interpolate $\beta_{\rm GF}(t;g_0^2)$ in $g_{\rm GF}^2(t;g_0^2)$ at fixed t/a^2 before performing continuum extrapolation.
 - Interpolation should accommodate weak/strong coupling asymptotics.

$$\mathcal{I}_{N}(g_{\rm GF}^{2}) = \frac{-p_{0}g_{\rm GF}^{4}(1+p_{1}g_{\rm GF}^{2}+...+p_{N}g_{\rm GF}^{2N})}{1+q_{1}g_{\rm GF}^{2}+...+q_{N+1}g_{\rm GF}^{2N+2}}$$

$$\propto g_{\rm GF}^{4} \propto g_{\rm GF}^{2}$$

> Interpolation stable for $N \ge 4$

Interpolation

Continuum limit can now be taken at fixed $g^2_{
m GF}$

Continuum limit (extrapolation)

- Linear extrapolation in a^2/t at fixed $g_{\rm GF}^2$ > $t_{\rm min}/a^2 = 2.0, t_{\rm max}/a^2 = 4.0$
 - Not sensitive to t_{\min}/a^2 , t_{\max}/a^2
- tln flattens continuum extrapolation
 - Also little operator dependence

G

Continuum limit (errors)

- Dominant sources of systematic error
 - Variations in continuum fit range
 - Finite-volume effects
 - \succ Exclusion of $\beta_b \sim 5.30$
 - Other flow/operator combinations

G

Continuum limit (result)

- Systematic error estimated from largest systematic effect at each $g_{\rm GF}^2$
- Total error estimated by adding systematic and statistical errors in quadrature
- Linear behavior at strong coupling

$$\beta_{\rm GF}(g_{\rm GF}^2) \approx c_0 + c_1 g_{\rm GF}^2$$

$$c_0 = 5.91(30) \quad c_1 = -1.326(12)$$

• Implies scaling relation between $\langle t^2 E(t) \rangle$ and GF flow time

$$\langle t^2 E(t) \rangle \sim a_0 + a_1 \left(t/\tilde{t} \right)^{-c_1}$$

*[Artz, Harlander, Lange, Neumann, Prausa JHEP **06** (2019) 121] **%**

Effective β -function

- Need $\beta_{\rm GF}(g_{\rm GF}^2)$ down to $g_{\rm GF}^2=0$ for Λ -parameter
- Extend our β-function below weakest coupling by parameterization

$$eta_4(g_{
m GF}^2) \equiv -g_{
m GF}^4 \Big(b_0 + b_1 g_{
m GF}^2 + b_2 g_{
m GF}^4 + b_p g_{
m GF}^6 \Big)$$

> b_p determined by matching $\beta_{\rm GF}$ to β_4 between $g_i^2 = 1.8, g_f^2 = 2.1$

Effective β -function

Final result for $\sqrt{8t_0}\Lambda_{\overline{\mathrm{MS}}}$ from pure Yang-Mills

- We obtain for our final result
 - $\sqrt{8t_0}\Lambda_{\overline{\mathrm{MS}}} = 0.632(12)$
 - Siven t_0 , predicts $\Lambda_{\overline{\mathrm{MS}}}$ (and vice-versa)
- Agrees with recent GF determinations
- Considerable spread amongst different determinations
 - > Warrants further scrutiny
 - > Is the culprit $r_0/\sqrt{t_0}$?

[Wong, C.H., Borsanyi, S., Fodor, Z., Holland, K., Kuti, J., arXiv:2301.06611 (2023)] & *[Dalla Brida, M., Ramos, A. *EPJC* **79**, 720 (2019)] & [FLAG 2021, arXiv:2111.09849 (2021)] & *[Lüscher, M., JHEP **08** (2010) 71] &

The con

Conclusions

- The continuous β -function method (CBFM) is well-suited to study RG properties in confining regime
 - Infinite volume extrapolation is controlled
 - > Should choose interpolating function that reproduces β -function asymptotics
 - Small cutoff effects with tln
- CBFM allows for a direct determination of the Λ -parameter from the t_0 scale
 - In agreement with recent GF determinations

[Hasenfratz, A., Peterson, C.T., Witzel, O., van Sickle, J., arXiv:2303.00704, sub. to PRD] 🗞

 Λ parameter of the SU(3) Yang-Mills theory from the continuous β function

Anna Hasenfratz, $^{1,\,\ast}$ Curtis T. Peterson, $^{1,\,\dagger}$ Jake van Sickle, 1 and Oliver Witzel $^{2,\,\ddagger}$

¹Department of Physics, University of Colorado, Boulder, Colorado 80309, USA ²Center for Particle Physics Siegen, Theoretische Physik I, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany

Y.

Acknowledgements

U. Colorado: RMACC Summit

USQCD: BNL SDCC

U. Siegen: OMNI

NSF Graduate Research Fellowship

Special thanks to the organizers for getting us all together

Supplemental Slides

$\Lambda\text{-}\mathsf{parameter}$ calculation

-/-

$$\frac{\Lambda^2}{\mu^2} = \left(b_0 g^2(\mu)\right)^{-\frac{b_1}{b_0^2}} \exp\left(-\frac{1}{b_0 g(\mu)^2}\right)$$

$$\times \exp\left[-\int_0^{g^2(\mu)} dx \left(\frac{1}{\beta(x)} + \frac{1}{b_0 x^2} - \frac{b_1}{b_0^2 x}\right)\right]$$

$$g_Y^2(\mu) = g_X^2(\mu) + c_1 g_X^4(\mu) + \mathcal{O}\left(g_X^6(\mu)\right)$$

$$\Longrightarrow \Lambda_Y^2/\Lambda_X^2 = \exp\left[c_1/b_0\right]$$

Ð

A proposal for non-perturbative matching

 β -functions in different schemes "X" and "Y" are related by...

-/-

$$\partial_{Y}(g_{Y}^{2}) = \frac{\partial g_{Y}^{2}}{\partial g_{X}^{2}} \beta_{X}(g_{X}^{2})$$
Parameterize...
$$g_{Y}^{2} = \phi(g_{X}^{2}) = g_{X}^{2} + g_{X}^{2} \sum_{i=1}^{N} k_{i}g_{X}^{2i}$$
Fit!
$$\beta_{Y}(\phi(g_{X}^{2}))/\phi'(g_{X}^{2}) = \beta_{X}(g_{X}^{2})$$

