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Observables in flavor physics often computed with effective Hamiltonian of electroweak interactions

Heff = −
(

4GF√
2

)x

VCKM
∑

i

CiOi

with four-fermion operators like

O|∆S|=2 = (s̄γµ(1− γ5)d) (s̄γµ(1− γ5)d)

for K 0 − K̄ 0 mixing:

W−

W+

d

s̄

d̄

s

−→

d

s̄

d̄

s

Wilson coefficients Ci(µ) obtained from perturbative matching to Standard Model at µ = µW ∼ MW

VCKM: relevant entries of the CKM matrix, e.g. V∗
is Vid V∗

js Vjd with i, j = c, t
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The effective electroweak Hamiltonian



Flavor observables mostly at low energies

⇒ Use renormalization group equations to evolve down to appropriate scale to avoid large logarithms

Schematically for Kaon mixing:

⟨K̄ 0|H|∆S|=2
eff |K 0⟩ ≈ C(µW )U(µW , µK )⟨K̄ 0|O|∆S|=2(µK )|K 0⟩

Running with U(µW , µK ) determined by anomalous dimension γ of O|∆S|=2

Matrix element ⟨K̄ 0|O|∆S|=2(µK )|K 0⟩ nonperturbative

⇒ Compute on lattice
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Computing observables



Heff = −
(

4GF√
2

)x

VCKM
∑

i

CiOi

While Heff is scheme independent, Ci and Oi are not:
Perturbative Ci :

Dimensional regularization with D = 4 − 2ϵ

Operators mix through renormalization, also with
evanescent operators (vanish in D = 4):

OR = ZOOO + ZOEE

Ci scheme dependent:
1 Explicit dependence on µ
2 Scheme for γ5
3 Choice of evanescent operators

Lattice ⟨Oi⟩:
Lattice spacing a as UV regulator

Have to take continuum limit a → 0 in the end

Operators mix through renormalization:

OR = Z11O1 + Z12O2

⟨Oi⟩ scheme dependent

⇒ Scheme matching between lattice and perturbative results additional source of uncertainty
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Complications



Introduce parameter flow time t ≥ 0 [Narayanan, Neuberger 2006; Lüscher 2009; Lüscher 2010]

Flowed fields in D + 1 dimensions obey differential flow equations:

Gluon flow equation [Narayanan, Neuberger 2006; Lüscher 2010]

∂tBa
µ = Dab

ν Gb
νµ with Ba

µ(t, x)
∣∣
t=0

= Aa
µ(x)

Dab
µ = δab∂µ − f abcBc

µ, Ga
µν = ∂µBa

ν − ∂νBa
µ + f abcBb

µBc
ν

Quark flow equation [Lüscher 2013]

∂tχ = ∆χ with χ(t, x)|t=0 = ψ(x) ,

∂t χ̄ = χ̄
←−
∆ with χ(t, x)|t=0 = ψ(x)

∆ = (∂µ + Ba
µT a)(∂µ + Bb

µT b),
←−
∆ = (

←−
∂µ − Ba

µT a)(
←−
∂µ − Bb

µT b)
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Gradient flow



Flowed composite operators Õi(t, x) finite [Lüscher, Weisz 2011]

Small flow-time expansion [Lüscher, Weisz 2011]:

Õi(t, x) =
∑

j

ζij(t)Oj(x) + O(t)

Invert to express operators through flowed operators [Suzuki 2013; Makino, Suzuki 2014; Monahan, Orginos 2015]:

Flowed OPE

T =
∑

i

CiOi =
∑

i,j

Ciζ
−1
ij (t)Õj(t) ≡

∑
j

C̃j(t)Õj(t)

T defined in regular QCD expressed through finite flowed operators Õj(t)

Gradient-flow definition of T valid both on the lattice and perturbatively
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Flowed operator product expansion



Write electroweak Hamiltonian as

Heff = −
(

4GF√
2

)x

VCKM
∑

i

CiOi = −
(

4GF√
2

)x

VCKM
∑

i,j

Ciζ
−1
ij Õj ≡ −

(
4GF√

2

)x

VCKM
∑

i

C̃iÕi

Gradient-flow scheme valid both on the lattice and perturbatively:
Perturbative C̃j :

Dimensional regularization with D = 4 − 2ϵ

Finite and scheme independent:
1 No explicit dependence on µ
2 No dependence on scheme for γ5
3 Independent of evanescent operators

Lattice ⟨Õj⟩:
Lattice spacing a as UV regulator

Finite for a → 0

No operator mixing

Three ingredients:
Ci known perturbatively through (N)NLO (depending on process)
ζ−1

ij has to be computed, some first results in [Suzuki, Taniguchi, Suzuki, Kanaya 2020; Harlander, FL 2022] ⇒ this talk

⟨Õj⟩ to be computed on the lattice ⇒ Matthew Black’s talk
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Flowed OPE for the electroweak Hamiltonian



Write electroweak Hamiltonian as

Heff = −
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4GF√
2
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4GF√
2
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Ciζ
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4GF√

2
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2 No dependence on scheme for γ5
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Finite for a → 0
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Ci known perturbatively through (N)NLO (depending on process)
ζ−1
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Flowed OPE for the electroweak Hamiltonian



Write Lagrangian for the gradient flow as [Lüscher, Weisz 2011; Lüscher 2013]

L = LQCD + LB + Lχ,

LQCD =
1

4g2 F a
µνF a

µν +
nf∑

f=1

ψ̄f ( /D
F
+ mf )ψf + . . .

Construct flowed Lagrangian using Lagrange multiplier fields La
µ(t, x) and λf (t, x):

LB = −2
∫ ∞

0
dt Tr

[
La
µT a (∂tBb

µT b −Dbc
ν Gc

νµT b)] , ∂tBa
µ = Dab

ν Gb
νµ

Lχ =
nf∑

f=1

∫ ∞

0
dt
(
λ̄f (∂t −∆)χf + χ̄f

(←−
∂t −

←−
∆
)
λf

)
, ∂tχ = ∆χ, ∂t χ̄ = χ̄

←−
∆

⇒ Flow equations automatically fulfilled
⇒ QCD Feynman rules + gradient-flow Feynman rules (complete list in [Artz, Harlander, FL, Neumann, Prausa 2019])
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Lagrangian



Split flow equation into linear part and remainder [Lüscher 2010]

∂tBa
µ = ∂ν∂νBa

µ + Ra
µ with Ba

µ(t, x)
∣∣
t=0

= Aa
µ(x)

Solved by

Ba
µ(t, x) =

∫
y

Kµν(t, x − y)Aa
ν(y) +

∫
y

∫ t

0
ds Kµν(t − s, x − y)Ra

ν(s, y)

with integration kernel

Kµν(t, x) =
∫

p
eip·xδµνe−tp2 ≡

∫
p

eip·x K̃µν(t, p)
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Solving the flow equations



Ba
µ(t, x) =

∫
y

Kµν(t, x − y)Aa
ν(y) +

∫
y

∫ t

0
ds Kµν(t − s, x − y)Ra

ν(s, y)

Kµν(t, x) =
∫

p
eip·xδµνe−tp2 ≡

∫
p

eip·x K̃µν(t, p)

Flowed gluon propagator contains fundamental gluon propagator:〈
B̃a
µ(t, p)B̃

b
ν(s, q)

〉 ∣∣∣
LO

= K̃µρ(t, p)K̃νσ(s, q)
〈

Ãa
ρ(p)Ã

b
σ(q)

〉
⇒ Can express both by same Feynman rule

s, ν, b t, µ, a
p

= δab 1
p2 δµν e−(t+s)p2
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Propagators



Flowed gluon Lagrangian:

LB = −2
∫ ∞

0
dt Tr

[
La
µT a (∂tBb

µT b −Dbc
ν Gc

νµT b)]
⇒ No squared La

µ in LB ⇒ no propagator

Instead mixed propagator
〈

B̃a
µ(t, p)L̃

b
ν(s, q)

〉
called flow line:

s, ν, b t, µ, a
p

= δab θ(t − s)δµν e−(t−s)p2

Directed towards increasing flow time
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Flow lines



LB = −2
∫ ∞

0
dt Tr

[
La
µT a (∂tBb

µT b −Dbc
ν Gc

νµT b)]
Example:

q

r

s
µ, a

ν, b

ρ, c

= −igf abc
∫ ∞

0
ds
(
δνρ(r − q)µ + 2δµνqρ − 2δµρrν

)

Integral restricted by θ(t − s) from outgoing flow line
Incoming lines can be both flow lines and flowed propagators
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Flow vertices



QCD renormalization of QCD parameters like αs and quark masses

Flowed gluon fields do not require renormalization [Lüscher 2010; Lüscher, Weisz 2011]

Flowed quark fields have to be renormalized: χR = Z 1/2
χ χB [Lüscher 2013]

⇒ χ acquire anomalous dimension and not scheme independent

“Physical” scheme: Ringed fermions χ̊ = Z̊ 1/2
χ χB [Makino, Suzuki 2014]:

Z̊χ = − 2Nc

(4πt)2 ⟨χ̄B
←→
/D χB⟩

∣∣
m=0

⇒ χ̊ formally independent of renormalization scale µ

Z̊χ available through NNLO [Artz, Harlander, FL, Neumann, Prausa 2019]

Composite operators do not require renormalization [Lüscher, Weisz 2011]

⇒ Gradient-flow scheme without operator mixing
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Renormalization



Simple first observable: vacuum expectation value of gluon action density

E(t, x) ≡ 1
4

Ga
µν(t, x)G

a
µν(t, x),

Ga
µν(t, x) = ∂µBa

ν(t, x)− ∂νBa
µ(t, x) + f abcBb

µ(t, x)B
c
ν(t, x)

Feynman rules like

µ, a ν, b
qp t

= −g2δab(δµνp · q − pµqν

)

⟨E(t)⟩|LO =

t

=
3αs

4πt2

NA

8
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Gluon action density



t t
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Sample Feynman diagrams for ⟨E(t)⟩ at higher orders



After tensor reduction, we end up with many scalar integrals of the form

I({tup
f }, {Ti}, {ai}) =

(
F∏

f=1

∫ tup
f

0
dtf

)∫
k1,...,kL

exp[−(T1q2
1 + · · ·+ TNq2

N)]

q2a1
1 · · · q2aN

N

with qi linear combinations of kj and Ti linear combinations of tj , e.g. q1 = k1 − k2 and T1 = t + 2t1 − t3

Chetyrkin and Tkachov observed [Tkachov 1981; Chetyrkin, Tkachov 1981]∫
k1,...kL

∂

∂kµ
i

(
q̃µ

j
1

Pa1
1 . . .PaN

N

)
= 0

⇒ Linear relations between Feynman integrals
Can easily be adopted to gradient-flow integrals
Additional new relations for gradient-flow integrals:∫ tup

f

0
dtf∂tf F(tf , . . .) = F(tup

f , . . .)− F(0, . . .)
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Integration-by-parts relations



After tensor reduction, we end up with many scalar integrals of the form

I({tup
f }, {Ti}, {ai}) =

(
F∏

f=1

∫ tup
f

0
dtf

)∫
k1,...,kL

exp[−(T1q2
1 + · · ·+ TNq2

N)]
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1 · · · q2aN

N
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k1,...kL

∂

∂kµ
i

(
q̃µ

j
1

Pa1
1 . . .PaN

N

)
= 0
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Integration-by-parts relations



Schematically integration-by-parts read

0 = (d − a1)I(a1, a2, a3) + (a1 − a2)I(a1 + 1, a2 − 1, a3) + (2a3 + a1 − a2)I(a1 + 1, a2, a3 − 1)

Rarely possible to find general solution like

I(a1, a2, a3) = a1I(a1 − 1, a2, a3) + (d + a1 − a2)I(a1, a2 − 1, a3) + 2a3I(a1, a2, a3 − 1)

Instead set up system of equations and solve it [Laporta 2000] :
Insert seeds {a1 = 1, a2 = 1, a3 = 1}, {a1 = 2, a2 = 1, a3 = 1}, . . . :

0 = (d − 1)I(1, 1, 1) + I(2, 1, 0),

0 = (d − 2)I(2, 1, 1) + I(3, 0, 1)− I(3, 1, 0),

...

Solve with Gaussian elimination

⇒ Express integrals through significantly smaller number of master integrals
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Laporta algorithm



qgraf [Nogueira 1991]: Generate Feynman diagrams
q2e and exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]: Assign diagrams to topologies and prepare
FORM code
FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013]: Insert Feynman rules, perform tensor reduction, Dirac
traces, color algebra, and expansions
Generate system of equations employing integration-by-parts-like relations [Tkachov 1981; Chetyrkin, Tkachov 1981]

with in-house Mathematica code
Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] ⊕ FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]:
Solve system to express all integrals through master integrals with Laporta algorithm [Laporta 2000]

Calculation of master integrals:
Direct integration with Mathematica
Expansion employing HyperInt [Panzer 2014]

Numerical integration with following sector decomposition strategy [Binoth, Heinrich 2000 + 2003] with FIESTA [Smirnov,

Tentyukov 2008; Smirnov, Smirnov, Tentyukov 2009; Smirnov 2013] and in-house integration routines [Harlander, Neumann 2016] or
pySecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke 2017; Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk 2018; Heinrich,

Jahn, Jones, Kerner, Langer, Magerya, Poldaru, Schlenk, Villa 2021]
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Automatized calculation



⟨E(t)⟩ = 3αs

4πt2

NA

8

[
1 +

αs

4π
e1 +

(αs

4π

)2
e2 + O(α3

s)

]
+ O(m2)

e1 = e1,0 + β0 L(µ2t)

e2 = e2,0 + (2β0 e1,0 + β1) L(µ2t) + β2
0 L2(µ2t)

L(z) ≡ ln(2z) + γE

⟨E(t)⟩ finite after QCD renormalization of αs only!
NLO [Lüscher 2010] :

e1,0 =

(
52
9

+
22
3

ln 2− 3 ln 3
)

CA −
8
9

nfTR

NNLO [Harlander, Neumann 2016; Artz, Harlander, FL, Neumann, Prausa 2019] :

e2,0 = 27.9786 C2
A − (31.5652 . . .) nfTRCA +

(
16ζ(3)− 43

3

)
nfTRCF +

(
8π2

27
− 80

81

)
n2

f T 2
R
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⟨E(t)⟩ through NNLO (I)



0.5 1.0 2.0

µ/µ0

0.024

0.026

0.028

0.030

0.032

t2
〈E

(t
)〉

µ0 = 130 GeV

LO

NLO

NNLO

0.5 1.0 2.0

µ/µ0

0.04

0.06

0.08

0.10

0.12

t2
〈E

(t
)〉

µ0 = 3 GeV

LO

NLO

NNLO

Uncertainty through scale variation reduces from 3.3% to 0.29% at 130 GeV and from 19% to 3.4% at
3 GeV
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⟨E(t)⟩ through NNLO (II)



Heff = −
(

4GF√
2

)x

VCKM
∑

i

CiOi = −
(

4GF√
2

)x

VCKM
∑

i,j

Ciζ
−1
ij Õj ≡ −

(
4GF√

2

)x

VCKM
∑

i

C̃iÕi

Operator basis depends on process
We focus on the current-current operators relevant for |∆F | = 2 processes
Operator basis not unique even for the same process, but different bases related by basis transformations
CMM basis [Chetyrkin, Misiak, Münz 1997]:

O1 = −
(
ψ̄1,LγµT aψ2,L

) (
ψ̄3,LγµT aψ4,L

)
,

O2 =
(
ψ̄1,Lγµψ2,L

) (
ψ̄3,Lγµψ4,L

)
with

ψR/L = P±ψ = 1
2 (1± γ5)ψ
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Operator basis



O2 =
(
ψ̄1,Lγµψ2,L

) (
ψ̄3,Lγµψ4,L

)
In dimensional regularization, loop corrections produce additional non-reducible γ structures:

⇒ (γµ1γµ2γµ3)⊗ (γµ1γµ2γµ3)

These contributions have to be attributed to evanescent operators like [Buras, Weisz 1990]

E (1)
2 =

(
ψ̄1,Lγµ1µ2µ3ψ2,L

) (
ψ̄3,Lγµ1µ2µ3ψ4,L

)
− 16O2 with γµ1···µn ≡ γµ1 · · · γµn

Algebraically they are of O(ϵ) and vanish for D → 4
Nonetheless required to renormalize the physical operators
Renormalization has to take care of finite pieces from 1

ϵ (poles)× ϵ (operators)
Every loop order introduces more evanescent operators
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Evanescent operators



Physical operators:

O1 = −
(
ψ̄1,LγµT aψ2,L

) (
ψ̄3,LγµT aψ4,L

)
,

O2 =
(
ψ̄1,Lγµψ2,L

) (
ψ̄3,Lγµψ4,L

)
Evanescent operators through NNLO:

E (1)
1 = −

(
ψ̄1,Lγµ1µ2µ3 T aψ2,L

) (
ψ̄3,Lγµ1µ2µ3 T aψ4,L

)
− 16O1,

E (1)
2 =

(
ψ̄1,Lγµ1µ2µ3ψ2,L

) (
ψ̄3,Lγµ1µ2µ3ψ4,L

)
− 16O2,

E (2)
1 = −

(
ψ̄1,Lγµ1µ2µ3µ4µ5 T aψ2,L

) (
ψ̄3,Lγµ1µ2µ3µ4µ5 T aψ4,L

)
− 20E (1)

1 − 256O1,

E (2)
2 =

(
ψ̄1,Lγµ1µ2µ3µ4µ5ψ2,L

) (
ψ̄3,Lγµ1µ2µ3µ4µ5ψ4,L

)
− 20E (1)

2 − 256O2
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Complete operator basis



Flowed physical operators:

O1 = −
(
ψ̄1,LγµT aψ2,L

) (
ψ̄3,LγµT aψ4,L

)
⇒ Õ1 = −Z̊ 2

χ (χ̄1,LγµT aχ2,L) (χ̄3,LγµT aχ4,L)

O2 =
(
ψ̄1,Lγµψ2,L

) (
ψ̄3,Lγµψ4,L

)
⇒ Õ2 = Z̊ 2

χ (χ̄1,Lγµχ2,L) (χ̄3,Lγµχ4,L)

Flowed evanescent operators:

Ẽ (1)
1 = −Z̊ 2

χ (χ̄1,Lγµ1µ2µ3 T aχ2,L) (χ̄3,Lγµ1µ2µ3 T aχ4,L)− 16Õ1,

Ẽ (1)
2 = Z̊ 2

χ (χ̄1,Lγµ1µ2µ3χ2,L) (χ̄3,Lγµ1µ2µ3χ4,L)− 16Õ2,

Ẽ (2)
1 = −Z̊ 2

χ (χ̄1,Lγµ1µ2µ3µ4µ5 T aχ2,L) (χ̄3,Lγµ1µ2µ3µ4µ5 T aχ4,L)− 20Ẽ (1)
1 − 256Õ1,

Ẽ (2)
2 = Z̊ 2

χ (χ̄1,Lγµ1µ2µ3µ4µ5χ2,L) (χ̄3,Lγµ1µ2µ3µ4µ5χ4,L)− 20Ẽ (1)
2 − 256Õ2

Since flowed operators do not have to be renormalized, the flowed evanescent operators actually vanish
and could be dropped
Keeping them allows us to check our results
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Flowed operator basis



Small-flow-time expansion for operators of electroweak Hamiltonian:(
Õ(t)
Ẽ(t)

)
≍ ζB(t)

(
O
E

)
with O = (O1,O2)

T, E = (E (1)
1 ,E (1)

2 ,E (2)
1 ,E (2)

2 )T

Since regular operators divergent, ζB(t) divergent as well
Regular operators renormalized through(

O
E

)R

= Z
(
O
E

)
≡
(

ZPP ZPE
ZEP ZEE

)(
O
E

)
Renormalized ζ(t):(

Õ(t)
Ẽ(t)

)
≍ ζB(t)Z−1

(
O
E

)R

≡ ζ(t)
(
O
E

)R

≡
(
ζPP(t) ζPE(t)
ζEP(t) ζEE(t)

)(
O
E

)R
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Renormalization matrix Z includes finite renormalization:

Zij = δij +
∞∑

k=1

(αs

4π

)k
Z (k)

ij with Z (k)
ij =

k∑
l=0

1
ϵl Z (k,l)

ij

Related to anomalous dimension of operators and Wilson coefficients:

µ
dOi(µ)

dµ
≡ γijOj(µ) and µ

dCi(µ)

dµ
≡ γjiCj(µ) ⇒ γij = 2αsβϵZik

∂Z−1
kj

∂αs

Block form [Buras, Weisz 1990; Dugan, Grinstein 1991; Herrlich, Nierste 1995]:

γ(k) =

(
γ
(k)
PP γ

(k)
PE

0 γ
(k)
EE

)
and Z (k,0) =

(
0 0

Z (k,0)
EP 0

)
Ensures that matrix elements of renormalized evanescent operators vanish:

⟨ER⟩ = ZEP⟨O⟩+ ZEE⟨E⟩ !
= O(ϵ)
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Define projectors [Gorishny, Larin, Tkachov 1983; Gorishny, Larin 1987]

Pk [Oi ] ≡ Dk⟨0|Oi |k⟩ !
= δik + O(αs)

Apply to small flow-time expansion:

Pk [Õi(t)] =
∑

j

ζij(t)Pk [Oj ]

ζij(t) only depend on t
⇒ Set all other scales to zero
⇒ No perturbative corrections to Pk [Oj ], because all loop integrals scaleless

“Master formula”

ζij(t) = Pj [Õi(t)]
∣∣∣
p=m=0
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Schematic projector for O2 =
(
ψ̄1,Lγµψ2,L

) (
ψ̄3,Lγµψ4,L

)
:

P2[O] =
1

16N2
c
Trline 1Trline 2 ⟨0|

(
ψ4,Lγνψ̄3,L

)(
ψ2,Lγνψ̄1,L

)
O|0⟩

∣∣
p=m=0

⇒ more detailed construction of projectors in Janosch Borgulat’s talk

Sample diagrams:
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Physical matching matrix (ζ−1)PP:

(ζ−1)11(t) = 1 + as

(
4.212 +

1
2

Lµt

)
+ a2

s

[
22.72− 0.7218 nf + Lµt (16.45− 0.7576 nf) + L2

µt

(
17
16
− 1

24
nf

)]
,

(ζ−1)12(t) = as

(
−5

6
− 1

3
Lµt

)
+ a2

s

[
− 4.531 + 0.1576 nf + Lµt

(
−3.133 +

5
54

nf

)
+ L2

µt

(
−13

24
+

1
36

nf

)]
,

(ζ−1)21(t) = as

(
−15

4
− 3

2
Lµt

)
+ a2

s

[
− 23.20 + 0.7091 nf + Lµt

(
−15.22 +

5
12

nf

)
+ L2

µt

(
−39

16
+

1
8

nf

)]
,

(ζ−1)22(t) = 1 + as 3.712 + a2
s

[
19.47− 0.4334 nf + Lµt (11.75− 0.6187 nf) +

1
4

L2
µt

]
as = αs(µ)/π renormalized in MS scheme and Lµt = ln 2µ2t + γE

Set Nc = 3, TR = 1
2 , and transcendental coefficients replaced by floating-point numbers
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ζ−1 = Z (ζB)−1 =

(
(ζ−1)PP (ζ−1)PE

(ζ−1)EP (ζ−1)EE

)

Finite after αs + field renormalization and with Z from [Chetyrkin, Misiak, Münz 1997; Gambino, Gorbahn, Haisch 2003; Gorbahn,

Haisch 2004]

(ζ−1)EP = O(ϵ)

Independent of QCD gauge parameter
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Different operator bases related by

O⃗′ = R(O⃗ + WE⃗) and E⃗ ′ = M(ϵUO⃗ + [1 + ϵV ]E⃗)

Not sufficient to simply rotate the physical submatrix with R: ζ ′PP ̸= RζPPR−1

1. possibility:
Transform whole ζB

Perform renormalization in the same way as before with a different Z

2. possibility:
Rotate renormalized ζPP

But: basis transformation also changes the scheme of Z !
⇒ Restore the scheme by an additional finite renormalization [Chetyrkin, Misiak, Münz 1997; Gambino, Gorbahn, Haisch 2003;

Gorbahn, Haisch 2004]:
ζ′PP = RζPPR−1(1 + Z−1

fin )
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Physical operators:

O± =
1
2

[(
ψ̄α

1 γ
L
µψ

α
2

)(
ψ̄β

3 γ
L
µψ

β
4

)
±
(
ψ̄α

1 γ
L
µψ

β
2

)(
ψ̄β

3 γ
L
µψ

α
4

)]
Evanescent operators and transformation matrices through NNLO defined in [Buras, Gorbahn, Haisch, Nierste 2006]

Anomalous dimension diagonal, i.e. operators do not mix under RGE running

We did the transformation in both ways and find agreement as well as diagonal form:

ζ−1
++ = 1 + as

(
2.796− 1

2
Lµt

)
+ a2

s

[
14.15− 0.1739 nf + Lµt (6.509− 0.4798 nf) + L2

µt

(
− 9

16
+

1
24

nf

)]
,

ζ−1
−− = 1 + as (5.546 + Lµt) + a2

s

[
32.01− 0.9524 nf + Lµt(21.23 − 0.8965 nf) + L2

µt

(
15
8
− 1

12
nf

)]
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Discussed automatized setup for perturbative calculations in gradient-flow formalism ⇒ further discussions and

applications in talks of Janosch Borgulat and Robert Harlander

Constructed gradient-flow version of electroweak Hamiltonian:

Heff = −
(

4GF√
2

)x

VCKM
∑

i

CiOi = −
(

4GF√
2

)x

VCKM
∑

i,j

Ciζ
−1
ij Õj ≡ −

(
4GF√

2

)x

VCKM
∑

i

C̃iÕi

Valid both on the lattice and perturbatively

⇒ C̃i and ⟨Õj⟩ can be computed in different regularization schemes, e.g. perturbatively and on the lattice

Perturbative ingredients Ci and ζ−1
ij required in exactly same scheme (operator basis, evanescent

operators, scheme for γ5), but no major problem
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Heff = −
(

4GF√
2

)x

VCKM
∑

i,j

Ciζ
−1
ij Õj :

Kaon mixing (|∆S| = 2):
Ci : NLO [Buchalla, Buras, Lautenbacher 1995 and references therein] with two of three contributions known through NNLO
[Brod, Gorbahn 2010 + 2012]

ζ−1
ij : NNLO [Harlander, FL 2022] (NLO in different basis and scheme in [Suzuki, Taniguchi, Suzuki, Kanaya 2020] )
⟨Õj⟩: ?

Non-leptonic |∆F | = 1 decays:
Ci : NNLO [Bobeth, Misiak, Urban 2000; Gorbahn, Haisch 2004]

ζ−1
ij : NNLO, but without penguin operators [Harlander, FL 2022], extension to QCD penguin operators planned
⟨Õj⟩: ?

Neutral B-meson mixing (|∆B| = 2):
Ci : NLO [Buchalla, Buras, Lautenbacher 1995 and references therein; Kirk, Lenz, Rauh 2017]

ζ−1
ij : NNLO for mass difference [Harlander, FL 2022], calculation of remaining matching matrix planned
⟨Õj⟩ ⇒ Matthew Black’s talk
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In dimensional regularization,
{γµ, γ5} = 0

is incompatible with the trace requirement

Tr(γµγνγργσγ5) ̸= 0 −→
D→4

4iϵµνρσ

Different prescriptions for γ5 (NDR, ’t Hooft-Veltmann, DREG) lead to different results for
scheme-dependent quantities like Wilson coefficients!
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Treatment of γ5 (I)



P2[O] =
1

16N2
c
Trline 1Trline 2 ⟨0|

(
ψ4,Lγνψ̄3,L

)(
ψ2,Lγνψ̄1,L

)
O|0⟩

∣∣
p=m=0

O2 =
(
ψ̄1,Lγµψ2,L

) (
ψ̄3,Lγµψ4,L

)
The quarks in our operators cannot annihilate due to different flavors

⇒ No γ5 in traces produced by loop corrections

Define external quarks in projectors to be left-handed, anticommute γ5 from operator, and use
P2

L = PL = 1
2 (1− γ5)

⇒ No traces with γ5, simply use naively anticommuting γ5

Note: CMM basis avoids γ5 in traces also for penguin operators (|∆F | = 1) [Chetyrkin, Misiak, Münz 1997]
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