The gradient flow formulation of the electroweak Hamiltonian

The Gradient Flow in QCD and Other Strongly-Coupled Field Theories
Fabian Lange
in collaboration with Robert V. Harlander | March 20, 2023

The effective electroweak Hamiltonian

- Observables in flavor physics often computed with effective Hamiltonian of electroweak interactions

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} C_{i} \mathcal{O}_{i}
$$

with four-fermion operators like

$$
\mathcal{O}^{|\Delta S|=2}=\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)
$$

for $K^{0}-\bar{K}^{0}$ mixing:

- Wilson coefficients $C_{i}(\mu)$ obtained from perturbative matching to Standard Model at $\mu=\mu_{W} \sim M_{W}$
- $V_{\text {СКм }}$: relevant entries of the CKM matrix, e.g. $V_{i s}^{*} V_{i d} V_{j s}^{*} V_{j d}$ with $i, j=c, t$

Computing observables

- Flavor observables mostly at low energies
\Rightarrow Use renormalization group equations to evolve down to appropriate scale to avoid large logarithms
- Schematically for Kaon mixing:

$$
\left\langle\bar{K}^{0}\right| \mathcal{H}_{\mathrm{eff}}^{|\Delta S|=2}\left|K^{0}\right\rangle \approx C\left(\mu_{W}\right) U\left(\mu_{W}, \mu_{K}\right)\left\langle\bar{K}^{0}\right| \mathcal{O}^{|\Delta S|=2}\left(\mu_{K}\right)\left|K^{0}\right\rangle
$$

- Running with $U\left(\mu_{W}, \mu_{K}\right)$ determined by anomalous dimension γ of $\mathcal{O}^{|\Delta S|=2}$
- Matrix element $\left\langle\bar{K}^{0}\right| \mathcal{O}^{|\Delta S|=2}\left(\mu_{K}\right)\left|K^{0}\right\rangle$ nonperturbative
\Rightarrow Compute on lattice

Complications

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} c_{i} \mathcal{O}_{i}
$$

- While $\mathcal{H}_{\text {eff }}$ is scheme independent, C_{i} and \mathcal{O}_{i} are not:

Perturbative C_{i} :

- Dimensional regularization with $D=4-2 \epsilon$
- Operators mix through renormalization, also with evanescent operators (vanish in $D=4$):

$$
\mathcal{O}^{\mathrm{R}}=Z_{\mathcal{O O} \mathcal{O}}+Z_{\mathcal{O E}} E
$$

- C_{i} scheme dependent:
(1) Explicit dependence on μ
(2) Scheme for γ_{5}
(3) Choice of evanescent operators
\Rightarrow Scheme matching between lattice and perturbative results additional source of uncertainty
Institute for Theoretical Particle Physics and

Gradient flow

- Introduce parameter flow time $t \geq 0$ [Narayanan, Neuberger 2006; Lüscher 2009; Lüscher 2010]
- Flowed fields in $D+1$ dimensions obey differential flow equations:

Gluon flow equation [Narayanan, Neuberger 2006; Lüscher 2010]

$$
\begin{gathered}
\partial_{t} B_{\mu}^{a}=\mathcal{D}_{\nu}^{a b} G_{\nu \mu}^{b} \quad \text { with }\left.\quad B_{\mu}^{a}(t, x)\right|_{t=0}=A_{\mu}^{a}(x) \\
\mathcal{D}_{\mu}^{a b}=\delta^{a b} \partial_{\mu}-f^{a b c} B_{\mu}^{c}, \quad G_{\mu \nu}^{a}=\partial_{\mu} B_{\nu}^{a}-\partial_{\nu} B_{\mu}^{a}+f^{a b c} B_{\mu}^{b} B_{\nu}^{c}
\end{gathered}
$$

Quark flow equation [Lüscher 2013]

$$
\begin{gathered}
\partial_{t} \chi=\Delta \chi \quad \text { with }\left.\quad \chi(t, x)\right|_{t=0}=\psi(x), \\
\partial_{t} \bar{\chi}=\bar{\chi} \overleftarrow{\Delta} \quad \text { with }\left.\quad \bar{\chi}(t, x)\right|_{t=0}=\bar{\psi}(x) \\
\Delta=\left(\partial_{\mu}+B_{\mu}^{a} T^{a}\right)\left(\partial_{\mu}+B_{\mu}^{b} T^{b}\right), \quad \overleftarrow{\Delta}=\left(\overleftarrow{\partial}_{\mu}-B_{\mu}^{a} T^{a}\right)\left(\overleftarrow{\partial}_{\mu}-B_{\mu}^{b} T^{b}\right)
\end{gathered}
$$

Flowed operator product expansion

- Flowed composite operators $\tilde{\mathcal{O}}_{i}(t, x)$ finite [Lüscher, Weisz 2011]
- Small flow-time expansion [Lüscher, Weisz 2011]:

$$
\tilde{\mathcal{O}}_{i}(t, x)=\sum_{j} \zeta_{i j}(t) \mathcal{O}_{j}(x)+O(t)
$$

- Invert to express operators through flowed operators [Suzuki 2013; Makino, Suzuki 2014; Monahan, Orginos 2015]:

Flowed OPE

$$
T=\sum_{i} c_{i} \mathcal{O}_{i}=\sum_{i, j} c_{i} \zeta_{i j}^{-1}(t) \tilde{\mathcal{O}}_{j}(t) \equiv \sum_{j} \tilde{c}_{j}(t) \tilde{\mathcal{O}}_{j}(t)
$$

- T defined in regular QCD expressed through finite flowed operators $\tilde{\mathcal{O}}_{j}(t)$
- Gradient-flow definition of T valid both on the lattice and perturbatively

Flowed OPE for the electroweak Hamiltonian

Karlsruhe Institute of Technology

- Write electroweak Hamiltonian as

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} C_{i} \mathcal{O}_{i}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i, j} C_{i} \zeta_{i j}^{-1} \tilde{\mathcal{O}}_{j} \equiv-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} \tilde{C}_{i} \tilde{\mathcal{O}}_{i}
$$

- Gradient-flow scheme valid both on the lattice and perturbatively:

Perturbative \tilde{C}_{j} :

- Dimensional regularization with $D=4-2 \epsilon$
- Finite and scheme independent:
(. No explicit dependence on μ
(2) No dependence on scheme for γ_{5}
(3) Independent of evanescent operators

Lattice $\left\langle\tilde{\mathcal{O}}_{j}\right\rangle$:

- Lattice spacing a as UV regulator
- Finite for $a \rightarrow 0$
- No operator mixing
-

Flowed OPE for the electroweak Hamiltonian

- Write electroweak Hamiltonian as

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} C_{i} \mathcal{O}_{i}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i, j} C_{i} \zeta_{i j}^{-1} \tilde{\mathcal{O}}_{j} \equiv-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} \tilde{C}_{i} \tilde{\mathcal{O}}_{i}
$$

- Gradient-flow scheme valid both on the lattice and perturbatively:

Perturbative \tilde{C}_{j} :

- Dimensional regularization with $D=4-2 \epsilon$
- Finite and scheme independent:
(1) No explicit dependence on μ
(2) No dependence on scheme for γ_{5}
(3) Independent of evanescent operators
- Three ingredients:
- C_{i} known perturbatively through (N)NLO (depending on process)
- $\zeta_{i j}^{-1}$ has to be computed, some first results in [Suzuki, Taniguchi, Suzuki, Kanaya 2020; Harlander, FL 2022] \Rightarrow this talk
- $\left\langle\tilde{O}_{j}\right\rangle$ to be computed on the lattice \Rightarrow Matthew Black's talk

Lagrangian

- Write Lagrangian for the gradient flow as [Lüscher, Weisz 2011; Lüscher 2013]

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{B}+\mathcal{L}_{\chi} \\
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{4 g^{2}} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\sum_{f=1}^{n_{f}} \bar{\psi}_{f}\left(\not D^{\mathrm{F}}+m_{f}\right) \psi_{f}+\ldots
\end{aligned}
$$

- Construct flowed Lagrangian using Lagrange multiplier fields $L_{\mu}^{a}(t, x)$ and $\lambda_{f}(t, x)$:

$$
\begin{array}{ll}
\mathcal{L}_{B}=-2 \int_{0}^{\infty} \mathrm{d} t \operatorname{Tr}\left[L_{\mu}^{a} T^{a}\left(\partial_{t} B_{\mu}^{b} T^{b}-\mathcal{D}_{\nu}^{b c} G_{\nu \mu}^{c} T^{b}\right)\right], & \partial_{t} B_{\mu}^{a}=\mathcal{D}_{\nu}^{a b} G_{\nu \mu}^{b} \\
\mathcal{L}_{\chi}=\sum_{f=1}^{n_{f}} \int_{0}^{\infty} \mathrm{d} t\left(\bar{\lambda}_{f}\left(\partial_{t}-\Delta\right) \chi_{f}+\bar{\chi}_{f}\left(\overleftarrow{\partial}_{t}-\overleftarrow{\Delta}\right) \lambda_{f}\right), & \partial_{t} \chi=\Delta \chi, \partial_{t} \bar{\chi}=\bar{\chi} \overleftarrow{\Delta}
\end{array}
$$

\Rightarrow Flow equations automatically fulfilled
\Rightarrow QCD Feynman rules + gradient-flow Feynman rules (complete list in [Artz, Harlander, FL, Neumann, Prausa 2019])

Solving the flow equations

- Split flow equation into linear part and remainder [Lüscher 2010]

$$
\partial_{t} B_{\mu}^{a}=\partial_{\nu} \partial_{\nu} B_{\mu}^{a}+R_{\mu}^{a} \quad \text { with }\left.\quad B_{\mu}^{a}(t, x)\right|_{t=0}=A_{\mu}^{a}(x)
$$

- Solved by

$$
B_{\mu}^{a}(t, x)=\int_{y} K_{\mu \nu}(t, x-y) A_{\nu}^{a}(y)+\int_{y} \int_{0}^{t} \mathrm{~d} s K_{\mu \nu}(t-s, x-y) R_{\nu}^{a}(s, y)
$$

with integration kernel

$$
K_{\mu \nu}(t, x)=\int_{p} e^{\mathrm{i} p \cdot x} \delta_{\mu \nu} e^{-t p^{2}} \equiv \int_{p} e^{\mathrm{i} p \cdot x} \widetilde{K}_{\mu \nu}(t, p)
$$

Propagators

$$
\begin{aligned}
B_{\mu}^{a}(t, x) & =\int_{y} K_{\mu \nu}(t, x-y) A_{\nu}^{a}(y)+\int_{y} \int_{0}^{t} \mathrm{~d} s K_{\mu \nu}(t-s, x-y) R_{\nu}^{a}(s, y) \\
K_{\mu \nu}(t, x) & =\int_{p} e^{\mathrm{i} p \cdot x} \delta_{\mu \nu} e^{-t p^{2}} \equiv \int_{p} e^{\mathrm{i} p \cdot x} \widetilde{K}_{\mu \nu}(t, p)
\end{aligned}
$$

- Flowed gluon propagator contains fundamental gluon propagator:

$$
\left.\left\langle\widetilde{B}_{\mu}^{a}(t, p) \widetilde{B}_{\nu}^{b}(s, q)\right\rangle\right|_{\mathrm{LO}}=\widetilde{K}_{\mu \rho}(t, p) \widetilde{K}_{\nu \sigma}(s, q)\left\langle\widetilde{A}_{\rho}^{a}(p) \widetilde{A}_{\sigma}^{b}(q)\right\rangle
$$

\Rightarrow Can express both by same Feynman rule

$$
\stackrel{p}{s, \nu, b \text { ellele }} t, \mu, a=\delta^{a b} \frac{1}{p^{2}} \delta_{\mu \nu} e^{-(t+s) p^{2}}
$$

Flow lines

- Flowed gluon Lagrangian:

$$
\mathcal{L}_{B}=-2 \int_{0}^{\infty} \mathrm{d} t \operatorname{Tr}\left[L_{\mu}^{a} T^{a}\left(\partial_{t} B_{\mu}^{b} T^{b}-\mathcal{D}_{\nu}^{b c} G_{\nu \mu}^{c} T^{b}\right)\right]
$$

\Rightarrow No squared L_{μ}^{a} in $\mathcal{L}_{B} \Rightarrow$ no propagator

- Instead mixed propagator $\left\langle\widetilde{B}_{\mu}^{a}(t, p) \widetilde{L}_{\nu}^{b}(s, q)\right\rangle$ called flow line:

$$
s, \nu, b \underset{\longrightarrow}{\stackrel{p}{\text { lulele- }} t, \mu, a}=\delta^{a b} \theta(t-s) \delta_{\mu \nu} e^{-(t-s) p^{2}}
$$

- Directed towards increasing flow time

Flow vertices

$$
\mathcal{L}_{B}=-2 \int_{0}^{\infty} \mathrm{d} t \operatorname{Tr}\left[L_{\mu}^{a} T^{a}\left(\partial_{t} B_{\mu}^{b} T^{b}-\mathcal{D}_{\nu}^{b c} G_{\nu \mu}^{c} T^{b}\right)\right]
$$

- Example:

- Integral restricted by $\theta(t-s)$ from outgoing flow line
- Incoming lines can be both flow lines and flowed propagators

Renormalization

- QCD renormalization of QCD parameters like α_{s} and quark masses
- Flowed gluon fields do not require renormalization [Lüscher 2010; Lüscher, Weisz 2011]
- Flowed quark fields have to be renormalized: $\chi^{\mathrm{R}}=Z_{\chi}^{1 / 2} \chi^{\mathrm{B}}$ [Lüscher 2013]
$\Rightarrow \chi$ acquire anomalous dimension and not scheme independent
- "Physical" scheme: Ringed fermions $\dot{\chi}=\dot{Z}_{\chi}^{1 / 2} \chi^{\mathrm{B}}$ [Makino, Suzuki 2014]:

$$
\dot{z}_{\chi}=-\frac{2 N_{\mathrm{c}}}{\left.(4 \pi t)^{2}\left\langle\bar{\chi}^{\mathrm{B}} \stackrel{\leftrightarrow}{\square} \chi^{\mathrm{B}}\right\rangle\right|_{m=0}}
$$

$\Rightarrow \chi$ $\mathfrak{\chi}$ formally independent of renormalization scale μ

- \dot{Z}_{χ} available through NNLO [Artz, Harlander, FL, Neumann, Prausa 2019]
- Composite operators do not require renormalization [Lüscher, Weisz 2011]
\Rightarrow Gradient-flow scheme without operator mixing

Gluon action density

- Simple first observable: vacuum expectation value of gluon action density

$$
\begin{gathered}
E(t, x) \equiv \frac{1}{4} G_{\mu \nu}^{a}(t, x) G_{\mu \nu}^{a}(t, x) \\
G_{\mu \nu}^{a}(t, x)=\partial_{\mu} B_{\nu}^{a}(t, x)-\partial_{\nu} B_{\mu}^{a}(t, x)+f^{a b c} B_{\mu}^{b}(t, x) B_{\nu}^{c}(t, x)
\end{gathered}
$$

- Feynman rules like

Sample Feynman diagrams for $\langle E(t)\rangle$ at higher orders

Institute for Theoretical Particle Physics and

Integration-by-parts relations

- After tensor reduction, we end up with many scalar integrals of the form

$$
I\left(\left\{t_{f}^{\mathrm{up}}\right\},\left\{T_{i}\right\},\left\{a_{i}\right\}\right)=\left(\prod_{f=1}^{F} \int_{0}^{t_{f}^{\mathrm{up}}} \mathrm{~d} t_{f}\right) \int_{k_{1}, \ldots, k_{L}} \frac{\exp \left[-\left(T_{1} q_{1}^{2}+\cdots+T_{N} q_{N}^{2}\right)\right]}{q_{1}^{2 a_{1}} \cdots q_{N}^{2 a_{N}}}
$$

with q_{i} linear combinations of k_{j} and T_{i} linear combinations of t_{j}, e.g. $q_{1}=k_{1}-k_{2}$ and $T_{1}=t+2 t_{1}-t_{3}$

Integration-by-parts relations

- After tensor reduction, we end up with many scalar integrals of the form

$$
I\left(\left\{t_{f}^{\mathrm{up}}\right\},\left\{T_{i}\right\},\left\{a_{i}\right\}\right)=\left(\prod_{f=1}^{F} \int_{0}^{t_{f}^{\mathrm{up}}} \mathrm{~d} t_{f}\right) \int_{k_{1}, \ldots, k_{L}} \frac{\exp \left[-\left(T_{1} q_{1}^{2}+\cdots+T_{N} q_{N}^{2}\right)\right]}{q_{1}^{2 a_{1}} \cdots q_{N}^{2 a_{N}}}
$$

with q_{i} linear combinations of k_{j} and T_{i} linear combinations of t_{j}, e.g. $q_{1}=k_{1}-k_{2}$ and $T_{1}=t+2 t_{1}-t_{3}$

- Chetyrkin and Tkachov observed [Tkachov 1981; Chetyrkin, Tkachov 1981]

$$
\int_{k_{1}, \ldots k_{L}} \frac{\partial}{\partial k_{i}^{\mu}}\left(\tilde{q}_{j}^{\mu} \frac{1}{P_{1}^{a_{1}} \ldots P_{N}^{a_{N}}}\right)=0
$$

\Rightarrow Linear relations between Feynman integrals

- Can easily be adopted to gradient-flow integrals
- Additional new relations for gradient-flow integrals:

$$
\int_{0}^{t_{f}^{\mathrm{up}}} \mathrm{~d} t_{f} \partial_{t_{f}} F\left(t_{f}, \ldots\right)=F\left(t_{f}^{\mathrm{up}}, \ldots\right)-F(0, \ldots)
$$

Laporta algorithm

- Schematically integration-by-parts read

$$
0=\left(d-a_{1}\right) /\left(a_{1}, a_{2}, a_{3}\right)+\left(a_{1}-a_{2}\right) /\left(a_{1}+1, a_{2}-1, a_{3}\right)+\left(2 a_{3}+a_{1}-a_{2}\right) /\left(a_{1}+1, a_{2}, a_{3}-1\right)
$$

- Rarely possible to find general solution like

$$
I\left(a_{1}, a_{2}, a_{3}\right)=a_{1} I\left(a_{1}-1, a_{2}, a_{3}\right)+\left(d+a_{1}-a_{2}\right) /\left(a_{1}, a_{2}-1, a_{3}\right)+2 a_{3} I\left(a_{1}, a_{2}, a_{3}-1\right)
$$

- Instead set up system of equations and solve it [Laporta 2000]:
- Insert seeds $\left\{a_{1}=1, a_{2}=1, a_{3}=1\right\},\left\{a_{1}=2, a_{2}=1, a_{3}=1\right\}, \ldots$:

$$
\begin{aligned}
& 0=(d-1) I(1,1,1)+I(2,1,0) \\
& 0=(d-2) I(2,1,1)+I(3,0,1)-I(3,1,0)
\end{aligned}
$$

- Solve with Gaussian elimination
\Rightarrow Express integrals through significantly smaller number of master integrals

Automatized calculation

- qgraf [Nogueira 1991]: Generate Feynman diagrams
- q2e and exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]: Assign diagrams to topologies and prepare FORM code
- FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013]: Insert Feynman rules, perform tensor reduction, Dirac traces, color algebra, and expansions
- Generate system of equations employing integration-by-parts-like relations [Tkachov 1981; Chetyrkin, Tkachov 1981] with in-house Mathematica code
- Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] \oplus FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]: Solve system to express all integrals through master integrals with Laporta algorithm [Laporta 2000]
- Calculation of master integrals:
- Direct integration with Mathematica
- Expansion employing HyperInt [Panzer 2014]
- Numerical integration with following sector decomposition strategy [Binoth, Heinrich $2000+2003$] with FIESTA [Smirnov, Tentyukov 2008; Smirnov, Smirnov, Tentyukov 2009; Smirnov 2013] and in-house integration routines [Harlander, Neumann 2016] or pySecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke 2017; Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk 2018; Heinrich, Jahn, Jones, Kerner, Langer, Magerya, Poldaru, Schlenk, Villa 2021]

$\langle E(t)\rangle$ through NNLO (I)

$$
\begin{aligned}
\langle E(t)\rangle & =\frac{3 \alpha_{\mathrm{s}}}{4 \pi t^{2}} \frac{N_{\mathrm{A}}}{8}\left[1+\frac{\alpha_{\mathrm{s}}}{4 \pi} e_{1}+\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2} e_{2}+O\left(\alpha_{\mathrm{s}}^{3}\right)\right]+O\left(m^{2}\right) \\
e_{1} & =e_{1,0}+\beta_{0} L\left(\mu^{2} t\right) \\
e_{2} & =e_{2,0}+\left(2 \beta_{0} e_{1,0}+\beta_{1}\right) L\left(\mu^{2} t\right)+\beta_{0}^{2} L^{2}\left(\mu^{2} t\right) \\
L(z) & \equiv \ln (2 z)+\gamma_{\mathrm{E}}
\end{aligned}
$$

- $\langle E(t)\rangle$ finite after QCD renormalization of α_{s} only!
- NLO [Lüscher 2010] :

$$
e_{1,0}=\left(\frac{52}{9}+\frac{22}{3} \ln 2-3 \ln 3\right) C_{\mathrm{A}}-\frac{8}{9} n_{\mathrm{f}} T_{\mathrm{R}}
$$

- NNLO [Harlander, Neumann 2016; Artz, Harlander, FL, Neumann, Prausa 2019]:

$$
e_{2,0}=27.9786 C_{\mathrm{A}}^{2}-(31.5652 \ldots) n_{\mathrm{f}} T_{\mathrm{R}} C_{\mathrm{A}}+\left(16 \zeta(3)-\frac{43}{3}\right) n_{\mathrm{f}} T_{\mathrm{R}} C_{\mathrm{F}}+\left(\frac{8 \pi^{2}}{27}-\frac{80}{81}\right) n_{\mathrm{f}}^{2} T_{\mathrm{R}}^{2}
$$

$\langle E(t)\rangle$ through NNLO (II)

- Uncertainty through scale variation reduces from 3.3% to 0.29% at 130 GeV and from 19% to 3.4% at 3 GeV

Operator basis

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} c_{i} \mathcal{O}_{i}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i, j} c_{i} \zeta_{i j}^{-1} \tilde{\mathcal{O}}_{j} \equiv-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} \tilde{c}_{i} \tilde{\mathcal{O}}_{i}
$$

- Operator basis depends on process
- We focus on the current-current operators relevant for $|\Delta F|=2$ processes
- Operator basis not unique even for the same process, but different bases related by basis transformations
- CMM basis [Chetyrkin, Misiak, Münz 1997]:

$$
\begin{aligned}
& \mathcal{O}_{1}=-\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} T^{a} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} T^{a} \psi_{4, \mathrm{~L}}\right), \\
& \mathcal{O}_{2}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} \psi_{4, \mathrm{~L}}\right)
\end{aligned}
$$

with

$$
\psi_{\mathrm{R} / \mathrm{L}}=P_{ \pm} \psi=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi
$$

Evanescent operators

$$
\mathcal{O}_{2}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} \psi_{4, \mathrm{~L}}\right)
$$

- In dimensional regularization, loop corrections produce additional non-reducible γ structures:

$$
\Rightarrow \quad\left(\gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}}\right) \otimes\left(\gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}}\right)
$$

- These contributions have to be attributed to evanescent operators like [Buras, Weisz 1990]

$$
E_{2}^{(1)}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} \psi_{4, \mathrm{~L}}\right)-16 \mathcal{O}_{2} \quad \text { with } \quad \gamma_{\mu_{1} \cdots \mu_{n}} \equiv \gamma_{\mu_{1}} \cdots \gamma_{\mu_{n}}
$$

- Algebraically they are of $O(\epsilon)$ and vanish for $D \rightarrow 4$
- Nonetheless required to renormalize the physical operators
- Renormalization has to take care of finite pieces from $\frac{1}{\epsilon}$ (poles) $\times \epsilon$ (operators)
- Every loop order introduces more evanescent operators

Complete operator basis

- Physical operators:

$$
\begin{aligned}
& \mathcal{O}_{1}=-\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} T^{a} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} T^{a} \psi_{4, \mathrm{~L}}\right) \\
& \mathcal{O}_{2}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} \psi_{4, \mathrm{~L}}\right)
\end{aligned}
$$

- Evanescent operators through NNLO:

$$
\begin{aligned}
& E_{1}^{(1)}=-\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} T^{a} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} T^{a} \psi_{4, \mathrm{~L}}\right)-16 \mathcal{O}_{1} \\
& E_{2}^{(1)}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} \psi_{4, \mathrm{~L}}\right)-16 \mathcal{O}_{2} \\
& E_{1}^{(2)}=-\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} T^{a} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} T^{a} \psi_{4, \mathrm{~L}}\right)-20 E_{1}^{(1)}-256 \mathcal{O}_{1} \\
& E_{2}^{(2)}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} \psi_{4, \mathrm{~L}}\right)-20 E_{2}^{(1)}-256 \mathcal{O}_{2}
\end{aligned}
$$

Flowed operator basis

- Flowed physical operators:

$$
\begin{array}{ll}
\mathcal{O}_{1}=-\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} T^{a} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} T^{a} \psi_{4, \mathrm{~L}}\right) & \Rightarrow \tilde{\mathcal{O}}_{1}=-\dot{Z}_{\chi}^{2}\left(\bar{\chi}_{1, \mathrm{~L}} \gamma_{\mu} T^{a} \chi_{2, \mathrm{~L}}\right)\left(\bar{\chi}_{3, \mathrm{~L}} \gamma_{\mu} T^{a} \chi_{4, \mathrm{~L}}\right) \\
\mathcal{O}_{2}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} \psi_{4, \mathrm{~L}}\right) & \Rightarrow \tilde{\mathcal{O}}_{2}=\dot{Z}_{\chi}^{2}\left(\bar{\chi}_{1, \mathrm{~L}} \gamma_{\mu} \chi_{2, \mathrm{~L}}\right)\left(\bar{\chi}_{3, \mathrm{~L}} \gamma_{\mu} \chi_{4, \mathrm{~L}}\right)
\end{array}
$$

- Flowed evanescent operators:

$$
\begin{aligned}
& \tilde{E}_{1}^{(1)}=-\dot{Z}_{\chi}^{2}\left(\bar{\chi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} T^{a} \chi_{2, \mathrm{~L}}\right)\left(\bar{\chi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} T^{a} \chi_{4, \mathrm{~L}}\right)-16 \tilde{\mathcal{O}}_{1}, \\
& \tilde{E}_{2}^{(1)}=\dot{Z}_{\chi}^{2}\left(\bar{\chi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} \chi_{2, \mathrm{~L}}\right)\left(\bar{\chi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3}} \chi_{4, \mathrm{~L}}\right)-16 \tilde{\mathcal{O}}_{2}, \\
& \tilde{E}_{1}^{(2)}=-\dot{Z}_{\chi}^{2}\left(\bar{\chi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} T^{a} \chi_{2, \mathrm{~L}}\right)\left(\bar{\chi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} T^{a} \chi_{4, \mathrm{~L}}\right)-20 \tilde{E}_{1}^{(1)}-256 \tilde{\mathcal{O}}_{1}, \\
& \tilde{E}_{2}^{(2)}=\dot{Z}_{\chi}^{2}\left(\bar{\chi}_{1, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} \chi_{2, \mathrm{~L}}\right)\left(\bar{\chi}_{3, \mathrm{~L}} \gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} \chi_{4, \mathrm{~L}}\right)-20 \tilde{E}_{2}^{(1)}-256 \tilde{\mathcal{O}}_{2}
\end{aligned}
$$

- Since flowed operators do not have to be renormalized, the flowed evanescent operators actually vanish and could be dropped
- Keeping them allows us to check our results

Renormalization (I)

- Small-flow-time expansion for operators of electroweak Hamiltonian:

$$
\begin{gathered}
\binom{\tilde{\mathcal{O}}(t)}{\tilde{E}(t)} \asymp \zeta^{\mathrm{B}}(t)\binom{\mathcal{O}}{E} \\
\text { with } \quad \mathcal{O}=\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right)^{\mathrm{T}}, \quad E=\left(E_{1}^{(1)}, E_{2}^{(1)}, E_{1}^{(2)}, E_{2}^{(2)}\right)^{\mathrm{T}}
\end{gathered}
$$

- Since regular operators divergent, $\zeta^{\mathrm{B}}(t)$ divergent as well
- Regular operators renormalized through

$$
\binom{\mathcal{O}}{E}^{\mathrm{R}}=Z\binom{\mathcal{O}}{E} \equiv\left(\begin{array}{ll}
Z_{\mathrm{PP}} & Z_{\mathrm{PE}} \\
Z_{\mathrm{EP}} & Z_{\mathrm{EE}}
\end{array}\right)\binom{\mathcal{O}}{E}
$$

- Renormalized $\zeta(t)$:

$$
\binom{\tilde{\mathcal{O}}(t)}{\tilde{E}(t)} \asymp \zeta^{\mathrm{B}}(t) Z^{-1}\binom{\mathcal{O}}{E}^{\mathrm{R}} \equiv \zeta(t)\binom{\mathcal{O}}{E}^{\mathrm{R}} \equiv\left(\begin{array}{ll}
\zeta_{\mathrm{PP}}(t) & \zeta_{\mathrm{PE}}(t) \\
\zeta_{\mathrm{EP}}(t) & \zeta_{\mathrm{EE}}(t)
\end{array}\right)\binom{\mathcal{O}}{E}^{\mathrm{R}}
$$

Renormalization (II)

- Renormalization matrix Z includes finite renormalization:

$$
z_{i j}=\delta_{i j}+\sum_{k=1}^{\infty}\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{k} Z_{i j}^{(k)} \quad \text { with } \quad Z_{i j}^{(k)}=\sum_{l=0}^{k} \frac{1}{\epsilon^{l}} Z_{i j}^{(k, l)}
$$

- Related to anomalous dimension of operators and Wilson coefficients:

$$
\mu \frac{\mathrm{d} \mathcal{O}_{i}(\mu)}{\mathrm{d} \mu} \equiv \gamma_{i j} \mathcal{O}_{j}(\mu) \quad \text { and } \quad \mu \frac{\mathrm{d} C_{i}(\mu)}{\mathrm{d} \mu} \equiv \gamma_{j i} C_{j}(\mu) \quad \Rightarrow \quad \gamma_{i j}=2 \alpha_{\mathrm{s}} \beta_{\epsilon} Z_{i k} \frac{\partial Z_{k j}^{-1}}{\partial \alpha_{\mathrm{s}}}
$$

- Block form [Buras, Weisz 1990; Dugan, Grinstein 1991; Herrlich, Nierste 1995]:

$$
\gamma^{(k)}=\left(\begin{array}{cc}
\gamma_{\mathrm{PP}}^{(k)} & \gamma_{\mathrm{PE}}^{(k)} \\
0 & \gamma_{\mathrm{EE}}^{(k)}
\end{array}\right) \quad \text { and } \quad Z^{(k, 0)}=\left(\begin{array}{cc}
0 & 0 \\
Z_{\mathrm{EP}}^{(k, 0)} & 0
\end{array}\right)
$$

- Ensures that matrix elements of renormalized evanescent operators vanish:

$$
\left\langle E^{\mathrm{R}}\right\rangle=Z_{\mathrm{EP}}\langle\mathcal{O}\rangle+Z_{\mathrm{EE}}\langle E\rangle \stackrel{!}{=} O(\epsilon)
$$

Method of projectors

- Define projectors [Gorishny, Larin, Tkachov 1983; Gorishny, Larin 1987]

$$
P_{k}\left[\mathcal{O}_{i}\right] \equiv D_{k}\langle 0| \mathcal{O}_{i}|k\rangle \stackrel{!}{=} \delta_{i k}+O\left(\alpha_{s}\right)
$$

- Apply to small flow-time expansion:

$$
P_{k}\left[\tilde{\mathcal{O}}_{i}(t)\right]=\sum_{j} \zeta_{i j}(t) P_{k}\left[\mathcal{O}_{j}\right]
$$

- $\zeta_{i j}(t)$ only depend on t
\Rightarrow Set all other scales to zero
\Rightarrow No perturbative corrections to $P_{k}\left[\mathcal{O}_{j}\right]$, because all loop integrals scaleless

"Master formula"

$$
\zeta_{i j}(t)=\left.P_{j}\left[\tilde{\mathcal{O}}_{i}(t)\right]\right|_{p=m=0}
$$

Projectors and example diagrams

- Schematic projector for $\mathcal{O}_{2}=\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} \psi_{4, \mathrm{~L}}\right)$:

$$
P_{2}[\mathcal{O}]=\left.\frac{1}{16 N_{\mathrm{C}}^{2}} \operatorname{Tr}_{\text {line } 1} \operatorname{Tr}_{\text {line } 2}\langle 0|\left(\psi_{4, \mathrm{~L}} \gamma_{\nu} \bar{\psi}_{3, \mathrm{~L}}\right)\left(\psi_{2, \mathrm{~L}} \gamma_{\nu} \bar{\psi}_{1, \mathrm{~L}}\right) \mathcal{O}|0\rangle\right|_{p=m=0}
$$

\Rightarrow more detailed construction of projectors in Janosch Borgulat's talk

- Sample diagrams:

Results in CMM basis

- Physical matching matrix $\left(\zeta^{-1}\right)_{\mathrm{PP}}$:

$$
\begin{aligned}
& \left(\zeta^{-1}\right)_{11}(t)=1+a_{\mathrm{s}}\left(4.212+\frac{1}{2} L_{\mu t}\right)+a_{\mathrm{s}}^{2}\left[22.72-0.7218 n_{\mathrm{f}}+L_{\mu t}\left(16.45-0.7576 n_{\mathrm{f}}\right)+L_{\mu t}^{2}\left(\frac{17}{16}-\frac{1}{24} n_{\mathrm{f}}\right)\right], \\
& \left(\zeta^{-1}\right)_{12}(t)=a_{\mathrm{s}}\left(-\frac{5}{6}-\frac{1}{3} L_{\mu t}\right)+a_{\mathrm{s}}^{2}\left[-4.531+0.1576 n_{\mathrm{f}}+L_{\mu t}\left(-3.133+\frac{5}{54} n_{\mathrm{f}}\right)+L_{\mu t}^{2}\left(-\frac{13}{24}+\frac{1}{36} n_{\mathrm{f}}\right)\right], \\
& \left(\zeta^{-1}\right)_{21}(t)=a_{\mathrm{s}}\left(-\frac{15}{4}-\frac{3}{2} L_{\mu t}\right)+a_{\mathrm{s}}^{2}\left[-23.20+0.7091 n_{\mathrm{f}}+L_{\mu t}\left(-15.22+\frac{5}{12} n_{\mathrm{f}}\right)+L_{\mu t}^{2}\left(-\frac{39}{16}+\frac{1}{8} n_{\mathrm{f}}\right)\right], \\
& \left(\zeta^{-1}\right)_{22}(t)=1+a_{\mathrm{s}} 3.712+a_{\mathrm{s}}^{2}\left[19.47-0.4334 n_{\mathrm{f}}+L_{\mu t}\left(11.75-0.6187 n_{\mathrm{f}}\right)+\frac{1}{4} L_{\mu t}^{2}\right]
\end{aligned}
$$

- $a_{\mathrm{S}}=\alpha_{\mathrm{S}}(\mu) / \pi$ renormalized in $\overline{\mathrm{MS}}$ scheme and $L_{\mu t}=\ln 2 \mu^{2} t+\gamma_{\mathrm{E}}$
- Set $N_{\mathrm{c}}=3, T_{\mathrm{R}}=\frac{1}{2}$, and transcendental coefficients replaced by floating-point numbers

Checks

$$
\zeta^{-1}=Z\left(\zeta^{\mathrm{B}}\right)^{-1}=\left(\begin{array}{ll}
\left(\zeta^{-1}\right)_{\mathrm{PP}} & \left(\zeta^{-1}\right)_{\mathrm{PE}} \\
\left(\zeta^{-1}\right)_{\mathrm{EP}} & \left(\zeta^{-1}\right)_{\mathrm{EE}}
\end{array}\right)
$$

- Finite after $\alpha_{\mathrm{s}}+$ field renormalization and with Z from [Chetyrkin, Misiak, Münz 1997; Gambino, Gorbahn, Haisch 2003; Gorbahn, Haisch 2004]
- $\left(\zeta^{-1}\right)_{\mathrm{EP}}=O(\epsilon)$
- Independent of QCD gauge parameter

Basis transformations

- Different operator bases related by

$$
\overrightarrow{\mathcal{O}^{\prime}}=R(\overrightarrow{\mathcal{O}}+W \vec{E}) \quad \text { and } \quad \vec{E}^{\prime}=M(\epsilon U \overrightarrow{\mathcal{O}}+[1+\epsilon V] \vec{E})
$$

- Not sufficient to simply rotate the physical submatrix with R : $\zeta_{\text {PP }}^{\prime} \neq R \zeta_{\mathrm{PP}} R^{-1}$
- 1. possibility:
- Transform whole ζ^{B}
- Perform renormalization in the same way as before with a different Z
- 2. possibility:
- Rotate renormalized ζ_{PP}
- But: basis transformation also changes the scheme of Z !
\Rightarrow Restore the scheme by an additional finite renormalization [Chetyrkin, Misiak, Münz 1997; Gambino, Gorbahn, Haisch 2003; Gorbahn, Haisch 2004]:

$$
\zeta_{\mathrm{PP}}^{\prime}=R \zeta_{\mathrm{PP}} R^{-1}\left(1+Z_{\mathrm{fin}}^{-1}\right)
$$

Transformation to non-mixing basis

- Physical operators:

$$
\mathcal{O}_{ \pm}=\frac{1}{2}\left[\left(\bar{\psi}_{1}^{\alpha} \gamma_{\mu}^{\mathrm{L}} \psi_{2}^{\alpha}\right)\left(\bar{\psi}_{3}^{\beta} \gamma_{\mu}^{\mathrm{L}} \psi_{4}^{\beta}\right) \pm\left(\bar{\psi}_{1}^{\alpha} \gamma_{\mu}^{\mathrm{L}} \psi_{2}^{\beta}\right)\left(\bar{\psi}_{3}^{\beta} \gamma_{\mu}^{\mathrm{L}} \psi_{4}^{\alpha}\right)\right]
$$

- Evanescent operators and transformation matrices through NNLO defined in [Buras, Gorbahn, Haisch, Nierste 2006]
- Anomalous dimension diagonal, i.e. operators do not mix under RGE running
- We did the transformation in both ways and find agreement as well as diagonal form:

$$
\begin{aligned}
& \zeta_{++}^{-1}=1+a_{\mathrm{s}}\left(2.796-\frac{1}{2} L_{\mu t}\right)+a_{\mathrm{s}}^{2}\left[14.15-0.1739 n_{\mathrm{f}}+L_{\mu t}\left(6.509-0.4798 n_{\mathrm{f}}\right)+L_{\mu t}^{2}\left(-\frac{9}{16}+\frac{1}{24} n_{\mathrm{f}}\right)\right] \\
& \zeta_{--}^{-1}=1+a_{\mathrm{s}}\left(5.546+L_{\mu t}\right)+a_{\mathrm{s}}^{2}\left[32.01-0.9524 n_{\mathrm{f}}+L_{\mu t}\left(21.23-0.8965 n_{\mathrm{f}}\right)+L_{\mu t}^{2}\left(\frac{15}{8}-\frac{1}{12} n_{\mathrm{f}}\right)\right]
\end{aligned}
$$

Summary

- Discussed automatized setup for perturbative calculations in gradient-flow formalism \Rightarrow further discussions and applications in talks of Janosch Borgulat and Robert Harlander
- Constructed gradient-flow version of electroweak Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} C_{i} \mathcal{O}_{i}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i, j} C_{i} \zeta_{i j}^{-1} \tilde{\mathcal{O}}_{j} \equiv-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i} \tilde{C}_{i} \tilde{\mathcal{O}}_{i}
$$

- Valid both on the lattice and perturbatively
$\Rightarrow \tilde{C}_{i}$ and $\left\langle\tilde{\mathcal{O}}_{j}\right\rangle$ can be computed in different regularization schemes, e.g. perturbatively and on the lattice
- Perturbative ingredients C_{i} and $\zeta_{i j}^{-1}$ required in exactly same scheme (operator basis, evanescent operators, scheme for γ_{5}), but no major problem

Status and outlook

$$
\mathcal{H}_{\mathrm{eff}}=-\left(\frac{4 G_{\mathrm{F}}}{\sqrt{2}}\right)^{x} V_{\mathrm{CKM}} \sum_{i, j} C_{i} \zeta_{i j}^{-1} \tilde{\mathcal{O}}_{j}:
$$

- Kaon mixing $(|\Delta S|=2)$:
- C_{i} : NLO [Buchalla, Buras, Lautenbacher 1995 and references therein] with two of three contributions known through NNLO [Brod, Gorbahn 2010 + 2012]
- $\zeta_{i j}{ }^{-1}$: NNLO [Harlander, FL 2022] (NLO in different basis and scheme in [Suzuki, Taniguchi, Suzuki, Kanaya 2020])
- $\left\langle\tilde{\mathcal{O}}_{j}\right\rangle$: ?
- Non-leptonic $|\Delta F|=1$ decays:
- C_{i} : NNLO [Bobeth, Misiak, Urban 2000; Gorbahn, Haisch 2004]
- $\zeta_{i j}^{-1}$: NNLO, but without penguin operators [Harlander, FL 2022], extension to QCD penguin operators planned
- $\left\langle\tilde{\mathcal{O}}_{j}\right\rangle$: ?
- Neutral B-meson mixing $(|\Delta B|=2)$:
- $C_{i}:$ NLO [Buchalla, Buras, Lautenbacher 1995 and references therein; Kirk, Lenz, Rauh 2017]
- $\zeta_{i j}^{-1}$: NNLO for mass difference [Harlander, FL 2022], calculation of remaining matching matrix planned
- $\left\langle\tilde{\mathcal{O}}_{j}\right\rangle \Rightarrow$ Matthew Black's talk

Treatment of $\gamma_{5}(\mathbf{l})$

- In dimensional regularization,

$$
\left\{\gamma_{\mu}, \gamma_{5}\right\}=0
$$

is incompatible with the trace requirement

$$
\operatorname{Tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right) \neq 0 \underset{D \rightarrow 4}{\longrightarrow} 4 \mathbf{i} \epsilon_{\mu \nu \rho \sigma}
$$

- Different prescriptions for γ_{5} (NDR, 't Hooft-Veltmann, DREG) lead to different results for scheme-dependent quantities like Wilson coefficients!

Treatment of γ_{5} (II)

$$
\begin{aligned}
P_{2}[\mathcal{O}] & =\left.\frac{1}{16 N_{\mathrm{C}}^{2}} \operatorname{Tr}_{\text {line } 1} \operatorname{Tr}_{\text {line } 2}\langle 0|\left(\psi_{4, \mathrm{~L}} \gamma_{\nu} \bar{\psi}_{3, \mathrm{~L}}\right)\left(\psi_{2, \mathrm{~L}} \gamma_{\nu} \bar{\psi}_{1, \mathrm{~L}}\right) \mathcal{O}|0\rangle\right|_{\rho=m=0} \\
\mathcal{O}_{2} & =\left(\bar{\psi}_{1, \mathrm{~L}} \gamma_{\mu} \psi_{2, \mathrm{~L}}\right)\left(\bar{\psi}_{3, \mathrm{~L}} \gamma_{\mu} \psi_{4, \mathrm{~L}}\right)
\end{aligned}
$$

- The quarks in our operators cannot annihilate due to different flavors
\Rightarrow No γ_{5} in traces produced by loop corrections
- Define external quarks in projectors to be left-handed, anticommute γ_{5} from operator, and use $P_{L}^{2}=P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right)$
\Rightarrow No traces with γ_{5}, simply use naively anticommuting γ_{5}
- Note: CMM basis avoids γ_{5} in traces also for penguin operators $(|\Delta F|=1)$ [Chetyrkin, Misiak, Münz 1997]

